JPH05164494A - Plate type heat exchanger - Google Patents

Plate type heat exchanger

Info

Publication number
JPH05164494A
JPH05164494A JP33500291A JP33500291A JPH05164494A JP H05164494 A JPH05164494 A JP H05164494A JP 33500291 A JP33500291 A JP 33500291A JP 33500291 A JP33500291 A JP 33500291A JP H05164494 A JPH05164494 A JP H05164494A
Authority
JP
Japan
Prior art keywords
heat exchange
exchange fluid
plate
hole
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33500291A
Other languages
Japanese (ja)
Inventor
Yoichi Hisamori
洋一 久森
Mitsunori Kurachi
光教 倉地
Masaaki Taniguchi
雅昭 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP33500291A priority Critical patent/JPH05164494A/en
Publication of JPH05164494A publication Critical patent/JPH05164494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To obtain a multilayer plate type heat exchanger in which a heat transfer rate is improved and heat exchanging is efficiently conducted, even if larger heat exchanging amount is required, by as many platen as the conventional number of plates or less. CONSTITUTION:The plate type heat exchanger comprises a porous layer 16 having a lower height than that of a heat exchanging fluid passage 9a and high thermal conductivity and connected to a heat exchanging plate 12 at least partly on the passage 9a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、アルミ系材料を使用
し、アルミろう材が両面にクラッドされた板材により、
接合された冷暖房用ヒートポンプや、オイルクーラなど
に使用されるプレート型の熱交換器のうち、蒸発側の熱
交換流体が流れる熱交換流体流路を、熱交換板を挟んで
片側もしくは両側から凝縮側の熱交換流体が流れる熱交
換流体流路で熱交換する形式のプレート型熱交換器の構
造に関するものである。
BACKGROUND OF THE INVENTION This invention uses an aluminum-based material and a plate material in which aluminum brazing material is clad on both sides,
Among plate type heat exchangers used for joined heat pumps for cooling and heating, oil coolers, etc., the heat exchange fluid flow path where the heat exchange fluid on the evaporation side flows is condensed from one side or both sides across the heat exchange plate. The present invention relates to a structure of a plate heat exchanger of a type in which heat is exchanged in a heat exchange fluid flow path in which a heat exchange fluid on the side flows.

【0002】[0002]

【従来の技術】図4は特願平3−15292号明細書に
示される筆者らが発明した5枚重ねのプレート型熱交換
器の接合前の構成部品の状態を示す斜視図である。図に
おいて、3は蒸発側の熱交換流体Bの入口、4は蒸発側の
熱交換流体Bの出口である。5は凝縮側の熱交換流体A
の入口、6は凝縮側の熱交換流体Aの出口である。8は第
1の端板で、例えばアルミニュム板である。9は第1の
中間板で例えば両面にろう材がコーティングされたブレ
ージングシートである。9aは第1の中間板に蒸発側の熱
交換流体入口3を含む範囲で連続して形成された板面を
貫通する溝状の第1の熱交換流体流通路用で、熱交換面
積を広く取るために外側から内側に向かって蛇行して通
路を形成している。9bは凝縮側の熱交換流体Aの出口6
と連通する第1の透孔である。10は第2の端板で例えば
アルミニュウム板である。11は第2の中間板で例えば両
面にろう材がコーティングされたブレージングシートで
ある。11aは凝縮側の熱交換流体Aの出口4と連通する第
2の透孔である。11bは第2の中間板に凝縮側の熱交換
流体のAの入口5を含む範囲で連続して形成された板面
を貫通する溝状の第2の熱交換流体流通路用透孔で、第
1の熱交換流体流通路用透孔9aと対向して通路を形成し
ている。12は第1の中間板9と第2の中間板11の間に介
在して、蒸発側の熱交換流体Bと凝縮側の熱交換流体A
を熱交換させる熱交換板で例えばアルミニュウム板であ
る。12aは熱交換板12に第1の熱交換流体流通路用透孔9
aと第2の透孔11aとを連通するために設けられた第3の
透孔、12bは第2の熱交換流体流通路用透孔11bと第1透
孔9bとを連通するために設けられた第4の透孔である。
2. Description of the Related Art FIG. 4 is a perspective view showing a state of components before joining of a plate type heat exchanger of five sheets invented by the authors disclosed in Japanese Patent Application No. 3-15292. In the figure, 3 is an inlet of the heat exchange fluid B on the evaporation side, and 4 is an outlet of the heat exchange fluid B on the evaporation side. 5 is the heat exchange fluid A on the condensation side
Of the heat exchange fluid A on the condensation side. Reference numeral 8 is a first end plate, for example, an aluminum plate. Reference numeral 9 denotes a first intermediate plate, which is, for example, a brazing sheet whose both surfaces are coated with a brazing material. Reference numeral 9a denotes a groove-shaped first heat exchange fluid flow passage which penetrates the plate surface formed continuously in the range including the heat exchange fluid inlet 3 on the evaporation side in the first intermediate plate, and has a wide heat exchange area. For taking, it meanders from the outside to the inside to form a passage. 9b is an outlet 6 of the heat exchange fluid A on the condensation side
It is a first through hole communicating with. A second end plate 10 is, for example, an aluminum plate. Reference numeral 11 denotes a second intermediate plate, which is, for example, a brazing sheet having both surfaces coated with a brazing material. Reference numeral 11a is a second through hole communicating with the outlet 4 of the heat exchange fluid A on the condensation side. Reference numeral 11b is a groove-shaped second heat exchange fluid flow passage through hole that penetrates the plate surface continuously formed in the second intermediate plate in a range including the inlet 5 for the heat exchange fluid A on the condensation side, A passage is formed so as to face the first heat exchange fluid flow passage through hole 9a. Reference numeral 12 is interposed between the first intermediate plate 9 and the second intermediate plate 11 to form a heat exchange fluid B on the evaporation side and a heat exchange fluid A on the condensation side.
A heat exchange plate for exchanging heat with, for example, an aluminum plate. 12a is a through hole 9 for the first heat exchange fluid flow passage in the heat exchange plate 12.
and a third through hole 12b provided for communicating between a and the second through hole 11a, and 12b provided for communicating between the second heat exchange fluid flow passage through hole 11b and the first through hole 9b. This is the fourth through hole.

【0003】そしてこれらを組み立てて製造するときは
第1の端板8、第1の中間板9、熱交換板12、第2の中間
板11、第2の端板10を順次重合して、第1及び第2の中
間板にブレージングシートを使用する場合は炉中ろう付
で一気にろう付固着化し一体化する。
When these are assembled and manufactured, the first end plate 8, the first intermediate plate 9, the heat exchange plate 12, the second intermediate plate 11 and the second end plate 10 are sequentially superposed, When a brazing sheet is used for the first and second intermediate plates, they are brazed and fixed at once by brazing in a furnace.

【0004】図5は前述の5枚重ねのプレート型熱交換
器をさらに発展させ、より多くの熱交換をするため,7
枚重ねにしたプレート型熱交換器の接合前の構成部品の
状態を示す斜視図である。図において、3は凝縮側の熱
交換流体Aの流体入口、4は凝縮側の熱交換流体Aの流
体出口である。5は蒸発側の熱交換流体Bの流体入口、6
は蒸発側の熱交換流体Bの出口である。8は第1の端板
で、例えばアルミニュウム板である。9は第1の中間板
で例えば両面にろう材がコーティングされたブレージン
グシートである。9aは第1の中間板に蒸発側の熱交換流
体Bの出入口6,5を含む範囲で連続して形成された板面
を貫通する溝状の第1の熱交換流体流通路用透孔で、9d
は凝縮側の熱交換流体Aの流体入口3と連通する第一の
透孔、9cはそれぞれが凝縮側の熱交換流体Aの流体出口
4と連通する第2の透孔である。10は第2の端板で例え
ばアルミニュム板である。11は第2の中間板で例えば両
面にろう材がコーティングされたブレージングシートで
ある。11bは蒸発側の熱交換流体Bの入口6と連通する第
4の透孔で、11aは蒸発側の熱交換流体Bの出口5と連通
する第3の透孔である。11dは第2の中間板に凝縮側の
熱交換流体Aの出入口4,3を含む範囲で連続して形成さ
れた板面を貫通する溝状の第2の熱交換流体流通路用透
孔である。 14は第3の中間板で例えば両面にろう材が
コーティングされたブレージングシートであり、第1の
中間板9と同様な蒸発側の熱交換流体Bの出入口6,5を含
む範囲で連続して形成された板面を貫通する溝状の第3
の熱交換流体流通路用透孔14aを有する。12は第1の中
間板9と第2の中間板11の間に介在して、凝縮側の熱交
換流体Aと蒸発側の熱交換流体Bを熱交換させる熱交換
板で例えばアルミニュウム板である。12bは蒸発側の熱
交換流体Bの入口6と連通した第4の透孔、12aは蒸発側
の熱交換流体Bの出口5と連通する第3の透孔である。1
2dは凝縮側の熱交換流体入口3と連通する第1の透孔、1
2cはそれぞれが凝縮側の熱交換流体Aの流体出口4と連
通する第2の透孔である。13は第2の中間板11と第3の
中間板14の間に介在して、凝縮側の熱交換流体Aと蒸発
側の熱交換流体Bとを熱交換させる熱交換板で例えばア
ルミニュウム板である。13bは蒸発側の熱交換流体Bの
入口6と連通した第4の透孔、13aは蒸発側の熱交換流体
Bの出口5と連通する第3の透孔である。
FIG. 5 shows a further development of the above-mentioned five-plate plate type heat exchanger, in order to perform more heat exchange,
It is a perspective view showing the state of the component before joining of the plate type heat exchanger piled up. In the figure, 3 is a fluid inlet of the heat exchange fluid A on the condensation side, and 4 is a fluid outlet of the heat exchange fluid A on the condensation side. 5 is a fluid inlet of the heat exchange fluid B on the evaporation side, 6
Is an outlet of the heat exchange fluid B on the evaporation side. Reference numeral 8 is a first end plate, for example, an aluminum plate. Reference numeral 9 denotes a first intermediate plate, which is, for example, a brazing sheet whose both surfaces are coated with a brazing material. Reference numeral 9a is a groove-shaped first heat exchange fluid flow passage through hole that penetrates the plate surface formed continuously in the first intermediate plate in a range including the inlets and outlets 6 and 5 of the heat exchange fluid B on the evaporation side. , 9d
Is a first through hole communicating with the fluid inlet 3 of the heat exchange fluid A on the condensation side, and 9c is a fluid outlet of the heat exchange fluid A on the condensation side.
It is a second through hole communicating with 4. A second end plate 10 is, for example, an aluminum plate. Reference numeral 11 denotes a second intermediate plate, which is, for example, a brazing sheet having both surfaces coated with a brazing material. 11b is a fourth through hole communicating with the inlet 6 of the heat exchange fluid B on the evaporation side, and 11a is a third through hole communicating with the outlet 5 of the heat exchange fluid B on the evaporation side. Reference numeral 11d is a groove-shaped second heat exchange fluid flow passage through hole that penetrates the plate surface formed continuously in the range including the inlets and outlets 4, 3 of the heat exchange fluid A on the condensation side in the second intermediate plate. is there. Reference numeral 14 denotes a third intermediate plate, which is, for example, a brazing sheet whose both surfaces are coated with a brazing material, and which is similar to the first intermediate plate 9 in a range including inlets and outlets 6 and 5 of the heat exchange fluid B on the evaporation side. Groove-shaped third penetrating the formed plate surface
The heat exchange fluid flow passage through-hole (14a) is provided. Reference numeral 12 is a heat exchange plate interposed between the first intermediate plate 9 and the second intermediate plate 11 to exchange heat between the heat exchange fluid A on the condensation side and the heat exchange fluid B on the evaporation side, which is, for example, an aluminum plate. .. Reference numeral 12b is a fourth through hole communicating with the inlet 6 of the heat exchange fluid B on the evaporation side, and 12a is a third through hole communicating with the outlet 5 of the heat exchange fluid B on the evaporation side. 1
2d is a first through hole communicating with the heat exchange fluid inlet 3 on the condensation side, 1
2 c are second through holes that communicate with the fluid outlet 4 of the heat exchange fluid A on the condensation side. Reference numeral 13 is a heat exchange plate interposed between the second intermediate plate 11 and the third intermediate plate 14 to exchange heat between the heat exchange fluid A on the condensation side and the heat exchange fluid B on the evaporation side, for example, an aluminum plate. is there. Reference numeral 13b is a fourth through hole communicating with the inlet 6 of the heat exchange fluid B on the evaporation side, and 13a is a third through hole communicating with the outlet 5 of the heat exchange fluid B on the evaporation side.

【0005】以上、各々の透孔はレーザ切断機、あるい
はターレットパンチプレス機で加工される。そしてこれ
らを組み立てて製造するときは第1の端板8、第1の中
間板9、第1の熱交換板12、第2の中間板11、第2の熱
交換板13、第3の中間板14、第2の端板10を順次重合し
て、第1、第2及び第3の中間板にブレージングシート
を使用する場合は炉中ろう付で一気にろう付固着化し一
体化する。他の部材を使用する場合はろう付あるいは接
着剤により一体化するが、熱交換板はアルミニュム板な
どの良熱伝導体を使用する。
As described above, each through hole is processed by a laser cutting machine or a turret punch press machine. When these are assembled and manufactured, the first end plate 8, the first intermediate plate 9, the first heat exchange plate 12, the second intermediate plate 11, the second heat exchange plate 13, and the third intermediate plate When the plate 14 and the second end plate 10 are sequentially polymerized and brazing sheets are used for the first, second and third intermediate plates, they are brazed and fixed at once by brazing in a furnace. When other members are used, they are integrated by brazing or an adhesive, but a good heat conductor such as an aluminum plate is used as the heat exchange plate.

【0006】次に動作について説明する。まず、図4の
5枚重ねのプレート型熱交換器の動作について説明する
と、蒸発側の熱交換流体Bは蒸発側の熱交換流体入口3
から第1の熱交換流体流通路用透孔9aに導かれる。ここ
で2方向に分流し外側から内側に向かって蛇行し、第3
の透孔12aで合流し、第2の透孔11aを経て蒸発側の熱交
換流体出口4にいたる。また、凝縮側の熱交換流体Aは
2箇所の凝縮側の熱交換流体A入口5から第2の熱交換
流体流通路用透孔11bに導かれる。この時、第2の熱交
換流体流通路用透孔11bは、第1の熱交換流体流通路用
透孔9aと対抗して通路が形成されており、凝縮側の熱交
換流体Aはここで熱交換板12を介在して蒸発側の熱交換
流体Bと熱交換する。熱交換後、凝縮側の熱交換流体A
は第4の透孔12bで合流し、第1の透孔9bを経て凝縮側
の熱交換流体B出口6に至る。
Next, the operation will be described. First, the operation of the plate-type heat exchanger of five stacked layers of FIG. 4 will be described. The heat exchange fluid B on the evaporation side is the heat exchange fluid inlet 3 on the evaporation side.
From the first heat exchange fluid flow passage through hole 9a. Here, the flow is divided into two directions, meandering from the outside to the inside, and
Through the second through hole 11a and reach the heat exchange fluid outlet 4 on the evaporation side. Further, the heat exchange fluid A on the condensation side is introduced from the heat exchange fluid A inlets 5 on the two condensation sides to the second heat exchange fluid flow passage through holes 11b. At this time, a passage is formed in the second heat exchange fluid flow passage through hole 11b so as to face the first heat exchange fluid flow passage through hole 9a, and the heat exchange fluid A on the condensing side is here. Heat is exchanged with the heat exchange fluid B on the evaporation side through the heat exchange plate 12. After heat exchange, heat exchange fluid A on the condensation side
Flow through the fourth through hole 12b and reach the heat exchange fluid B outlet 6 on the condensing side through the first through hole 9b.

【0007】次に図5の7枚重ねのプレート型熱交換器
の動作について説明する。凝縮側の熱交換流体Aは凝縮
側の熱交換流体入口3から第一の透孔9d、12dを通過して
第2の熱交換流体流通路用透孔11dに導かれる。ここで
4つに分流され、それぞれの第2の透孔12c,9cを通過
し、凝縮側の熱交換流体Aの流体出口4に至る。また、
蒸発側の熱交換流体Bは蒸発側の熱交換流体B入口6か
ら第1の熱交換流体流通路用透孔9aに、そして第4の透
孔12b、11b、13bを通過し第3の熱交換流体流通路用透
孔14aに導かれる。この時、第2の熱交換流体流通路用
透孔11bは、第1及び第3の熱交換流体流通路用透孔9
a、14aと対抗または直交して通路が形成されており、凝
縮側の熱交換流体Aはここで熱交換板12,13を介して両
側から蒸発側の熱交換流体Bと熱交換する。熱交換後、
蒸発側の熱交換流体Bは第4の透孔13a、11a、12aを通
過し、蒸発側の熱交換流体Aの流体出口6に至る。
Next, the operation of the plate type heat exchanger of 7 sheets in FIG. 5 will be described. The heat exchange fluid A on the condensation side is guided from the heat exchange fluid inlet 3 on the condensation side to the second heat exchange fluid flow passage through hole 11d through the first through holes 9d and 12d. Here, it is divided into four, passes through the respective second through holes 12c and 9c, and reaches the fluid outlet 4 of the heat exchange fluid A on the condensation side. Also,
The heat exchange fluid B on the evaporation side passes from the heat exchange fluid B inlet 6 on the evaporation side to the first heat exchange fluid flow passage through hole 9a, and the fourth through holes 12b, 11b, 13b, and the third heat It is guided to the exchange fluid flow passage through hole 14a. At this time, the second heat-exchange-fluid-flow-passage through-hole 11b has the first and third heat-exchange-fluid-flow-passage through-holes 9b.
A passage is formed opposite or orthogonal to a and 14a, and the heat exchange fluid A on the condensation side exchanges heat with the heat exchange fluid B on the evaporation side from both sides via the heat exchange plates 12 and 13. After heat exchange,
The heat exchange fluid B on the evaporation side passes through the fourth through holes 13a, 11a, 12a and reaches the fluid outlet 6 of the heat exchange fluid A on the evaporation side.

【0008】[0008]

【発明が解決しようとする課題】筆者らが発明した従来
の5枚重ねのプレート型熱交換器は、蒸発側の熱交換流
体Bと凝縮側の熱交換流体Aとの熱交換量が小さい間は
対応がつくが、大きな熱交換量が要求される場合は、7
枚重ねもしくは9枚やそれ以上の枚数を重ねたプレート
型熱交換器が必要となる。同様に、7枚重ねのプレート
型熱交換器も、より大きな熱交換量が要求される場合
は、9枚重ねやそれ以上の枚数を重ねたプレート型熱交
換器が必要となる。そのため、7枚重ねやそれ以上の枚
数を重ねた熱交換器では材料費が増大し、製品コストを
上昇させてしまう問題点があった。
In the conventional five-plate plate heat exchanger invented by the present inventors, the heat exchange fluid B on the evaporating side and the heat exchange fluid A on the condensing side have a small heat exchange amount. Can handle, but if a large amount of heat exchange is required, 7
A plate-type heat exchanger in which one plate is stacked or nine or more plates are stacked is required. Similarly, a plate heat exchanger having seven stacked plates also requires a plate heat exchanger having nine stacked plates or more when a larger heat exchange amount is required. Therefore, there is a problem that the material cost is increased and the product cost is increased in the heat exchanger in which seven or more sheets are stacked.

【0009】この発明は上記のような問題点を解決する
ためになされたもので、より大きな熱交換量が要求され
ても従来と同じ枚数もしくはより少ない枚数で効率的に
熱交換ができるプレート型熱交換器を得ることを目的と
する。
The present invention has been made in order to solve the above-mentioned problems, and is capable of efficiently exchanging heat with the same number of sheets or a smaller number of sheets, even if a larger amount of heat exchange is required. The purpose is to obtain a heat exchanger.

【0010】[0010]

【課題を解決するための手段】この発明に係わるプレー
ト型熱交換器は、熱交換流体流通路の少なくとも一部
に、熱交換板に接合され高さが熱交換流体流通路の高さ
より低い熱良導性の多孔質層を有するものである。
According to the plate type heat exchanger of the present invention, at least a part of the heat exchange fluid flow passage is joined to the heat exchange plate and the height is lower than the height of the heat exchange fluid flow passage. It has a good conductive porous layer.

【0011】[0011]

【作用】この発明におけるプレート型熱交換器は、熱交
換流体流通路に熱良導性の多孔質層を有するので、熱伝
達率が向上し、プレート型熱交換器全体としての熱交換
効率を向上させる。このことにより、より大きな熱交換
量が要求されても従来と同じ枚数もしくはより少ない枚
数で効率的に熱交換できる
Since the plate heat exchanger according to the present invention has the porous layer having good heat conductivity in the heat exchange fluid flow passage, the heat transfer coefficient is improved and the heat exchange efficiency of the plate heat exchanger as a whole is improved. Improve. As a result, even if a larger amount of heat exchange is required, heat can be efficiently exchanged with the same number of sheets as the conventional one or a smaller number of sheets.

【0012】[0012]

【実施例】【Example】

実施例1.以下この発明の一実施例を図について説明す
る。図1はこの発明の実施例1によるプレート型熱交換
器を示す分解斜視図であり、5枚重ねのプレート型熱交
換器の接合前の構成部品の状態を示す斜視図である。図
において、8は第1の端板で心材がアルミニュウムから
なり、9の第1の中間板に接する面にアルミろうがコー
ティングまたはクラッドされたブレジングシートからな
り、前記第1の中間体9はアルミニュウム板からなる。9
aは第1の中間板に蒸発側の熱交換流体Bの流体入口3を
含む範囲で連続して形成された板面を貫通する溝状の第
1の熱交換流体流通路用透孔で、熱交換面積を広く取る
ために外側から内側に向かって蛇行して流路を形成して
いる。9bは凝縮側の熱交換流体Aの流体出口6と連通す
る第1の透孔である。15は第1の熱交換流体流路用透孔
9a内に複数個設置された粒子径200μm程度のアルミ粒
子であり,熱交換器全体が接合されるときに熱良導性の
多孔質層16となるものである。10は第2の端体板で心材
がアルミニュウムからなり、11の第2の中間板に接する
面にアルミろうがコーティングまたはクラッドされたブ
レジングシートからなり、前記第2の中間板11はアルミ
ニュウム板からなる。11aは第1の流体出口4と連通する
第2の透孔である。11bは第2の中間板11に第2の流体
入口5を含む範囲で連続して形成された板面を貫通する
溝状の第2の熱交換流体流通路用透孔で、第1の熱交換
流体流通路用透孔9aと対向して通路を形成している。12
は第1の中間板9と第2の中間板11の間に介在して、第
1の流体Aと第2の流体Bを熱交換させる熱交換板で、
両面にろう材がコーティングまたはクラッドされたブレ
ージングシートである。12aは熱交換板12に第1の熱交
換流体流通路用透孔9aと第2の透孔11aとを連通するた
めに設けられた第3の透孔、12bは第2の熱交換流体流
通用透孔11bと第1の透孔9bとを連通するために設けら
れた第4の透孔である。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an exploded perspective view showing a plate heat exchanger according to a first embodiment of the present invention, and is a perspective view showing a state of components of a plate heat exchanger having five stacked plates before being joined. In the figure, 8 is a first end plate made of aluminum as a core material, and 9 is a brazing sheet in which aluminum brazing is coated or clad on the surface in contact with the first intermediate plate, and the first intermediate 9 is It consists of an aluminum plate. 9
a is a groove-shaped first heat exchange fluid flow passage through hole that penetrates the plate surface continuously formed in the first intermediate plate in a range including the fluid inlet 3 of the heat exchange fluid B on the evaporation side, The flow path is formed by meandering from the outside to the inside to secure a large heat exchange area. 9b is a first through hole communicating with the fluid outlet 6 of the heat exchange fluid A on the condensation side. 15 is a through hole for the first heat exchange fluid passage
A plurality of aluminum particles having a particle diameter of about 200 μm are provided in 9a, and become the heat conductive porous layer 16 when the entire heat exchanger is joined. Reference numeral 10 denotes a second end plate, and the core material is made of aluminum, and a brazing sheet having a surface contacting with the second intermediate plate of 11 is coated or clad with aluminum wax. The second intermediate plate 11 is an aluminum plate. Consists of. Reference numeral 11a is a second through hole communicating with the first fluid outlet 4. Reference numeral 11b is a groove-shaped second heat exchange fluid flow passage through hole that penetrates the plate surface continuously formed in the range including the second fluid inlet 5 in the second intermediate plate 11, A passage is formed facing the through hole 9a for the exchange fluid flow passage. 12
Is a heat exchange plate interposed between the first intermediate plate 9 and the second intermediate plate 11 to exchange heat between the first fluid A and the second fluid B,
It is a brazing sheet with brazing material coated or clad on both sides. Reference numeral 12a is a third through hole provided in the heat exchange plate 12 for communicating the first through hole 9a for the first heat exchange fluid flow passage and the second through hole 11a, and 12b is the second through hole for the heat exchange fluid. It is a fourth through hole provided to connect the through hole 11b for use with the first through hole 9b.

【0013】以上、各々の透孔はワイヤーカット機、レ
ーザ切断機、あるいはターレットパンチプレス機などで
加工される。そしてこれらを組み立てて製造するときは
第1の端板8、第1の中間板9、第1の熱交換流体流路用
透孔9a内に200μm程度のアルミ粒子15を複数個設置
し、熱交換板12,第2の中間板11、第2の端体板10を順
次重合して、炉中ろう付で一気にろう付固着し、一体化
する。図2にろう付後、熱交換流体流路用透孔9a内に設
けられた多孔質層14を含む流路の断面すなわち図1のI
−I線断面図を示す。
As described above, each through hole is processed by a wire cutting machine, a laser cutting machine, a turret punch press machine or the like. When these are assembled and manufactured, a plurality of aluminum particles 15 of about 200 μm are installed in the first end plate 8, the first intermediate plate 9, and the first heat exchange fluid passage through-hole 9a, The exchange plate 12, the second intermediate plate 11, and the second end plate 10 are sequentially superposed, and are integrally brazed and fixed at once by brazing in the furnace. After the brazing in FIG. 2, the cross section of the flow path including the porous layer 14 provided in the through hole 9a for the heat exchange fluid flow path, that is, I in FIG.
A -I line sectional view is shown.

【0014】つぎにこの発明の実施例1である5枚重ね
のプレート型熱交換器の動作について説明する。かかる
構成において、蒸発側の熱交換流体Bは第1の流体入口
3から第1の流体流通路用透孔9aに導かれる。ここで2
方向に分流し外側から内側に向かって蛇行し、多孔質層
16が設けられた熱交換流体流路用透孔9a内を通り、第3
の透孔12aで合流した後、第2の透孔11aを経て第1の流
体出口4に至る。この時、熱交換流体流路用透孔9a内に
設けられた多孔質層16部分で、沸騰熱伝達が起こる。沸
騰熱伝達は、伝熱面から離脱する蒸気泡による液体の攪
乱効果や潜熱の輸送効果などによって、沸騰熱伝達率α
は蒸気泡の発生を伴わない(すなわち、相変化のない)
対流熱伝達に比してけた違いで極めて大きくなる。例え
ば、空気の強制対流熱伝達率が数十〜数百(Kcal/m2h℃)
であるのに対し、水の沸騰熱伝達率は数千〜数万(Kcal/
m2h℃)にも達する。また凝縮側の熱交換流体Aは2箇所
の流体入口5から第2の熱交換流体流通路用透孔11bに導
かれる。この第2の熱交換流体流通路用透孔11bは第1
の熱交換流体流通路用透孔9aと対向して通路が形成され
ており、凝縮側の流体Aはここで熱交換板12を介在して
蒸発側の流体Bと熱交換する。熱交換後、凝縮側の流体
Aは第4透孔12bで合流し、第1透孔9bを経て第2の流
体出口6に至る。また第1及び第2の熱交換流体流通路
用透孔9a,11bは第1の端板8、熱交換板12、および第2
の端板10の面でろう付により強固に重合され、それぞれ
密封された流体通路を形成する。
Next, the operation of the plate heat exchanger of the fifth embodiment, which is Embodiment 1 of the present invention, will be described. In such a configuration, the heat exchange fluid B on the evaporation side is the first fluid inlet
It is guided from 3 to the first fluid passage through hole 9a. 2 here
Flow toward the inside and meander from the outside to the inside to form a porous layer
16 through the heat exchange fluid passage through hole 9a
After merging at the through hole 12a of the above, it reaches the first fluid outlet 4 through the second through hole 11a. At this time, boiling heat transfer occurs in the porous layer 16 portion provided in the heat exchange fluid passage through-hole 9a. The boiling heat transfer is caused by the boiling heat transfer coefficient α due to the disturbance effect of the liquid by the vapor bubbles leaving the heat transfer surface and the transfer effect of latent heat.
Does not generate vapor bubbles (ie no phase change)
It becomes extremely large due to the order of magnitude compared to convection heat transfer. For example, the forced convection heat transfer coefficient of air is several tens to several hundreds (Kcal / m 2 h ℃)
In contrast, the boiling heat transfer coefficient of water is several thousand to several tens of thousands (Kcal /
m 2 h ℃). Further, the heat exchange fluid A on the condensation side is introduced from the two fluid inlets 5 to the second heat exchange fluid flow passage through hole 11b. This second heat exchange fluid flow passage through hole 11b is
A passage is formed opposite to the heat exchange fluid flow passage through hole 9a, and the fluid A on the condensation side exchanges heat with the fluid B on the evaporation side through the heat exchange plate 12. After heat exchange, the fluid A on the condensing side merges at the fourth through hole 12b and reaches the second fluid outlet 6 through the first through hole 9b. Further, the first and second heat exchange fluid flow passage through holes 9a, 11b are formed in the first end plate 8, the heat exchange plate 12, and the second
The surfaces of the end plates (10) are strongly polymerized by brazing to form sealed fluid passages.

【0015】実施例2.図3はこの発明の実施例2によ
る7枚重ねのプレート型熱交換器を示す分解斜視図であ
る。図において、3は凝縮側の熱交換流体Aの流体入
口、4は凝縮側の熱交換流体Aの流体出口である。6は蒸
発側の熱交換流体Bの流体入口、5は蒸発側の熱交換流
体Bの出口である。8は第1の端板で、心材がアルミニ
ュウムからなり、9の第1の中間板に接する面にアルミ
ろうがコーティングまたはクラッドされたブレジングシ
ートからなり、9は第1の中間板でアルミニュウム板か
らなる。9aは第1の中間板に蒸発側の熱交換流体B出入
口6,5を含む範囲で連続して形成された第1の熱交換流
体流通路用透孔で、9dは凝縮側の熱交換流体Aの流体入
口3と連通する第1の透孔、9cはそれぞれが凝縮側の熱
交換流体Aの出口4と連通する第2の透孔である。15は
第1の熱交換流体流通路用透孔9a内に複数個設置された
粒子径200μm程度のアルミ粒子であり、熱交換器全体
が接合されるときに熱良導性の多孔質層16となるもので
ある。10は第2の端板で、心材がアルミニュウムからな
り、第3の中間板14に接する面にアルミろうがコーティ
ングまたはクラッドされたブレジングシートからなる。
11は第2の中間板でアルミニュウム板からなる。11bは
蒸発側の熱交換流体B入口6と連通する第4の透孔であ
る。11aは凝縮側の熱交換流体B出口5と連通する第3の
透孔である。11dは第2の中間板に蒸発側の熱交換流体
B出入口4,3を含む範囲で連続して形成された第2の熱
交換流体流通路用透孔である。14は第3の中間板でアル
ミニュウム板からなり、第1の中間板9と同様な蒸発側
の熱交換流体B出入口6,5を含む範囲で連続して形成さ
れた第3の熱交換流体流通路用透孔14aを有する。17は
第3の熱交換流体流通路用透孔14a内に複数個設置され
た粒子径200μm程度のアルミ粒子であり、熱交換器全
体が接合されるときに多孔質層18となるものである。12
は第1の中間板9と第2の中間板11の間に介在して、凝
縮側の熱交換流体Aと蒸発側の熱交換流体Bを熱交換さ
せる熱交換板で、両面にろう材がコーティングされたブ
レージングシートである。12bは蒸発側の熱交換流体B
入口6と連通する第4の透孔、12aは蒸発側の熱交換流体
B出口5と連通する第3の透孔である。12dは凝縮側の熱
交換流体A入口3と連通する第1の透孔、12cはそれぞれ
がの凝縮側の熱交換流体A出口4と連通する第2の透孔
である。13は第2の中間板11と第3の中間板14の間に介
在して、凝縮側の熱交換流体Aと蒸発側の熱交換流体B
を熱交換させる熱交換板で両面にろう材がコーティング
されたブレージングシートである。13bは蒸発側の熱交
換流体B入口6と連通した第4の透孔であり、13aは蒸発
側の熱交換流体B出口5と連通する第3の透孔である。
Example 2. FIG. 3 is an exploded perspective view showing a plate type heat exchanger having a stack of seven plates according to a second embodiment of the present invention. In the figure, 3 is a fluid inlet of the heat exchange fluid A on the condensation side, and 4 is a fluid outlet of the heat exchange fluid A on the condensation side. 6 is a fluid inlet of the heat exchange fluid B on the evaporation side, and 5 is an outlet of the heat exchange fluid B on the evaporation side. 8 is a first end plate, the core material is made of aluminum, and a brazing sheet having aluminum braze coated or clad on the surface of 9 which contacts the first intermediate plate is used. 9 is the first intermediate plate, which is an aluminum plate. Consists of. Reference numeral 9a is a first heat exchange fluid flow passage through hole continuously formed in the first intermediate plate in a range including the heat exchange fluid B inlets and outlets 6 and 5 on the evaporation side, and 9d is a heat exchange fluid on the condensation side. The first through hole 9c communicates with the fluid inlet 3 of A, and the second through hole 9c communicates with the outlet 4 of the heat exchange fluid A on the condensation side. 15 is a plurality of aluminum particles having a particle diameter of about 200 μm, which are provided in the first heat exchange fluid flow passage through hole 9a, and have a heat conductive porous layer 16 when the entire heat exchanger is joined. It will be. Reference numeral 10 denotes a second end plate, which is made of aluminum and has a core material made of aluminum and a brazing sheet in which the surface in contact with the third intermediate plate 14 is coated or clad with aluminum wax.
The second intermediate plate 11 is made of an aluminum plate. Reference numeral 11b is a fourth through hole communicating with the heat exchange fluid B inlet 6 on the evaporation side. Reference numeral 11a is a third through hole communicating with the heat exchange fluid B outlet 5 on the condensation side. Reference numeral 11d is a second heat exchange fluid flow passage through hole continuously formed in the second intermediate plate in a range including the evaporation side heat exchange fluid B inlets and outlets 4, 3. Reference numeral 14 denotes a third intermediate plate, which is an aluminum plate, and is a third heat exchange fluid distribution which is continuously formed in a range including the heat exchange fluid B inlets and outlets 6 and 5 on the evaporation side similar to the first intermediate plate 9. It has a passage through hole 14a. Reference numeral 17 denotes aluminum particles having a particle diameter of about 200 μm, which are provided in plurality in the third heat exchange fluid flow passage through-hole 14a, and become the porous layer 18 when the entire heat exchanger is joined. .. 12
Is a heat exchange plate interposed between the first intermediate plate 9 and the second intermediate plate 11 to exchange heat between the heat exchange fluid A on the condensation side and the heat exchange fluid B on the evaporation side. It is a coated brazing sheet. 12b is the heat exchange fluid B on the evaporation side
A fourth through hole communicating with the inlet 6 and a third through hole 12a communicating with the heat exchange fluid B outlet 5 on the evaporation side. 12d is a first through hole that communicates with the heat exchange fluid A inlet 3 on the condensation side, and 12c is a second through hole that communicates with the heat exchange fluid A outlet 4 on the condensation side. Reference numeral 13 is interposed between the second intermediate plate 11 and the third intermediate plate 14 to provide heat exchange fluid A on the condensation side and heat exchange fluid B on the evaporation side.
It is a brazing sheet in which a brazing material is coated on both sides with a heat exchange plate for exchanging heat. 13b is a fourth through hole communicating with the heat exchange fluid B inlet 6 on the evaporation side, and 13a is a third through hole communicating with the heat exchange fluid B outlet 5 on the evaporation side.

【0016】以上、各々の透孔はレーザ切断機、あるい
はターレットパンチプレス機で加工される。そしてこれ
らを組み立てて製造するときは第1の端板8、第1の中
間板9、第1の熱交換流体用流通路用透孔9a内に200μm
程度のアルミ粒子15を複数個設置し、第1の熱交換板1
2、第2の中間板11、第2の熱交換板13、第3の中間板1
4、第3の熱交換流体用流通路用透孔14a内に200μm程
度のアルミ粒子17を複数個設置し、第2の端板10を順次
重合して、炉中ろう付で一気にろう付固着化し一体化す
る。
As described above, each through hole is processed by a laser cutting machine or a turret punch press machine. When these are assembled and manufactured, the first end plate 8, the first intermediate plate 9, and the first heat exchange fluid flow passage through hole 9a have a diameter of 200 μm.
1st heat exchange plate with multiple aluminum particles 15
2, second intermediate plate 11, second heat exchange plate 13, third intermediate plate 1
4. A plurality of aluminum particles 17 of about 200 μm are installed in the through hole 14a for the third heat exchange fluid flow passage, the second end plate 10 is sequentially polymerized, and is brazed at once in the furnace by brazing. To be integrated.

【0017】次にこの発明の第2の実施例である7枚重
ねのプレート型熱交換器の動作について説明する。凝縮
側の熱交換流体Aは凝縮側の熱交換流体入口3から第一
の透孔9d、12dを通過して第2の熱交換流体流通路用透
孔11dに導かれる。ここで4つに分流され、それぞれの
第2の透孔12c,9cを通過し、凝縮側の流体出口4に至
る。蒸発側の熱交換流体Bの半分程度は蒸発側の熱交換
流体B入口6から第1の熱交換流体流通路用透孔9aに導
かれ、ここで多孔質層16が設けられた熱交換流体流路用
透孔9a内を通り、蒸発側の熱交換流体Bの出口5にいた
る。一方、第1の熱交換流体流通路用透孔9aに導かれた
蒸発側の熱交換流体Bの半分程度は第4の透孔12b、11
b、13bを通過し、第3の熱交換流体流通路用透孔14aに
導かれる。そして、多孔質層16が設けられた熱交換流体
流路用透孔9a内を通り、第3の透孔13a、11a、12aを通
過し、蒸発側の熱交換流体Bの出口5にいたる。そし
て、第2の熱交換流体流通路用透孔11bは、第1及び第
3の熱交換流体流通路用透孔9a、14aと対抗または直交
して通路が形成されており、凝縮側の熱交換流体Aはこ
こで熱交換板12,13を介して両側から蒸発側の熱交換流
体Bと熱交換する。 この時、熱交換流体流路用透孔9a
内及び14aに設けられた多孔質層16、18部分で、沸騰熱
伝達が起こる。そのため、熱交換効率が向上する。
Next, the operation of the plate heat exchanger with seven stacked plates according to the second embodiment of the present invention will be described. The heat exchange fluid A on the condensation side is guided from the heat exchange fluid inlet 3 on the condensation side to the second heat exchange fluid flow passage through hole 11d through the first through holes 9d and 12d. Here, it is divided into four, passes through the respective second through holes 12c and 9c, and reaches the fluid outlet 4 on the condensation side. About half of the heat exchange fluid B on the evaporation side is introduced from the heat exchange fluid B inlet 6 on the evaporation side to the through hole 9a for the first heat exchange fluid flow passage, where the heat exchange fluid provided with the porous layer 16 is provided. It passes through the flow path through hole 9a and reaches the outlet 5 of the heat exchange fluid B on the evaporation side. On the other hand, about half of the evaporation-side heat exchange fluid B introduced to the first heat exchange fluid flow passage through-hole 9a has fourth through-holes 12b and 11b.
It passes through b and 13b and is guided to the third heat exchange fluid flow passage through hole 14a. Then, it passes through the heat exchange fluid passage through-hole 9a provided with the porous layer 16, passes through the third through holes 13a, 11a and 12a, and reaches the outlet 5 of the heat exchange fluid B on the evaporation side. The second heat exchange fluid flow passage through-hole 11b has a passage formed opposite or orthogonal to the first and third heat exchange fluid flow passage through-holes 9a and 14a. Here, the exchange fluid A exchanges heat with the heat exchange fluid B on the evaporation side from both sides via the heat exchange plates 12 and 13. At this time, the heat exchange fluid passage through hole 9a
Boiling heat transfer occurs in the porous layers 16 and 18 provided inside and in 14a. Therefore, the heat exchange efficiency is improved.

【0018】[0018]

【発明の効果】以上のように、この発明によれば、熱交
換流体流通路の少なくとも一部に、熱交換板に接合され
高さが熱交換流体流通路の高さより低い熱良導性の多孔
質層を有するので、熱伝達率が向上し、より大きな熱交
換量が要求されても従来と同じ枚数もしくはより少ない
枚数で効率的に熱交換ができる。
As described above, according to the present invention, at least a part of the heat exchange fluid flow passage is joined to the heat exchange plate, and the height thereof is lower than the height of the heat exchange fluid flow passage. Since the porous layer is provided, the heat transfer rate is improved, and even if a larger amount of heat exchange is required, heat exchange can be efficiently performed with the same number as or a smaller number than the conventional number.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による5枚重ねのプレート
式熱交換器を示す分解斜視図である。
FIG. 1 is an exploded perspective view showing a plate-type heat exchanger having five stacked plates according to a first embodiment of the present invention.

【図2】図1のI−I線断面図である。FIG. 2 is a sectional view taken along line I-I of FIG.

【図3】この発明の他の実施例による7枚重ねのプレー
ト式熱交換器を示す分解斜視図である。
FIG. 3 is an exploded perspective view showing a plate type heat exchanger having seven stacked plates according to another embodiment of the present invention.

【図4】従来の5枚重ねのプレート式熱交換器を示す分
解斜視図である。
FIG. 4 is an exploded perspective view showing a conventional five-plate plate heat exchanger.

【図5】従来の7枚重ねのプレート式熱交換器を示す分
解斜視図である。
FIG. 5 is an exploded perspective view showing a conventional plate heat exchanger having seven stacked plates.

【符号の説明】[Explanation of symbols]

8 第1の端板 9 第1の中間板 10 第2の端板 11 第2の中間板 12 第1の熱交換板 13 第2の熱交換板 14 第3の中間板 15 アルミ粒子 16 多孔質層 17 アルミ粒子 18 多孔質層 8 First End Plate 9 First Intermediate Plate 10 Second End Plate 11 Second Intermediate Plate 12 First Heat Exchange Plate 13 Second Heat Exchange Plate 14 Third Intermediate Plate 15 Aluminum Particles 16 Porous Layer 17 Aluminum particles 18 Porous layer

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年10月15日[Submission date] October 15, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】図5は前述の5枚重ねのプレート型熱交換
器をさらに発展させ、より多くの熱交換をするため,7
枚重ねにしたプレート型熱交換器の接合前の構成部品の
状態を示す斜視図である。図において、3は凝縮側の熱
交換流体Aの流体入口、4は凝縮側の熱交換流体Aの流
体出口である。6は蒸発側の熱交換流体Bの流体入口、5
は蒸発側の熱交換流体Bの出口である。8は第1の端板
で、例えばアルミニュウム板である。9は第1の中間板
で例えば両面にろう材がコーティングされたブレージン
グシートである。9aは第1の中間板に蒸発側の熱交換流
体Bの出入口6,5を含む範囲で連続して形成された板面
を貫通する溝状の第1の熱交換流体流通路用透孔で、9d
は凝縮側の熱交換流体Aの流体入口3と連通する第一の
透孔、9cはそれぞれが凝縮側の熱交換流体Aの流体出口
4と連通する第2の透孔である。10は第2の端板で例え
ばアルミニュム板である。11は第2の中間板で例えば両
面にろう材がコーティングされたブレージングシートで
ある。11bは蒸発側の熱交換流体Bの入口6と連通する第
4の透孔で、11aは蒸発側の熱交換流体Bの出口5と連通
する第3の透孔である。11dは第2の中間板に凝縮側の
熱交換流体Aの出入口4,3を含む範囲で連続して形成さ
れた板面を貫通する溝状の第2の熱交換流体流通路用透
孔である。 14は第3の中間板で例えば両面にろう材が
コーティングされたブレージングシートであり、第1の
中間板9と同様な蒸発側の熱交換流体Bの出入口6,5を含
む範囲で連続して形成された板面を貫通する溝状の第3
の熱交換流体流通路用透孔14aを有する。12は第1の中
間板9と第2の中間板11の間に介在して、凝縮側の熱交
換流体Aと蒸発側の熱交換流体Bを熱交換させる熱交換
板で例えばアルミニュウム板である。12bは蒸発側の熱
交換流体Bの入口6と連通した第4の透孔、12aは蒸発側
の熱交換流体Bの出口5と連通する第3の透孔である。1
2dは凝縮側の熱交換流体入口3と連通する第1の透孔、1
2cはそれぞれが凝縮側の熱交換流体Aの流体出口4と連
通する第2の透孔である。13は第2の中間板11と第3の
中間板14の間に介在して、凝縮側の熱交換流体Aと蒸発
側の熱交換流体Bとを熱交換させる熱交換板で例えばア
ルミニュウム板である。13bは蒸発側の熱交換流体Bの
入口6と連通した第4の透孔、13aは蒸発側の熱交換流体
Bの出口5と連通する第3の透孔である。
FIG. 5 shows a further development of the plate-type heat exchanger of the above-mentioned five-layer structure so that more heat can be exchanged.
It is a perspective view which shows the state of the component parts before joining of the plate-type heat exchanger laminated | stacked. In the figure, 3 is a fluid inlet of the heat exchange fluid A on the condensation side, and 4 is a fluid outlet of the heat exchange fluid A on the condensation side. 6 is a fluid inlet of the heat exchange fluid B on the evaporation side, 5
Is an outlet of the heat exchange fluid B on the evaporation side. Reference numeral 8 is a first end plate, for example, an aluminum plate. Reference numeral 9 is a first intermediate plate, which is, for example, a brazing sheet having both surfaces coated with a brazing material. Reference numeral 9a is a groove-shaped first heat exchange fluid flow passage through hole that penetrates the plate surface formed continuously in the first intermediate plate in a range including the inlets and outlets 6 and 5 of the heat exchange fluid B on the evaporation side. , 9d
Is a first through hole communicating with the fluid inlet 3 of the heat exchange fluid A on the condensation side, and 9c is a fluid outlet of the heat exchange fluid A on the condensation side.
It is a second through hole communicating with 4. A second end plate 10 is, for example, an aluminum plate. Reference numeral 11 denotes a second intermediate plate, which is, for example, a brazing sheet having both surfaces coated with a brazing material. 11b is a fourth through hole communicating with the inlet 6 of the heat exchange fluid B on the evaporation side, and 11a is a third through hole communicating with the outlet 5 of the heat exchange fluid B on the evaporation side. Reference numeral 11d is a groove-shaped second heat exchange fluid flow passage through hole that penetrates the plate surface formed continuously in the range including the inlets and outlets 4, 3 of the heat exchange fluid A on the condensation side in the second intermediate plate. is there. Reference numeral 14 denotes a third intermediate plate, which is, for example, a brazing sheet whose both surfaces are coated with a brazing material, and which is similar to the first intermediate plate 9 in a range including inlets and outlets 6 and 5 of the heat exchange fluid B on the evaporation side. Groove-shaped third penetrating the formed plate surface
The heat exchange fluid flow passage through-hole (14a) is provided. Reference numeral 12 is a heat exchange plate interposed between the first intermediate plate 9 and the second intermediate plate 11 to exchange heat between the heat exchange fluid A on the condensation side and the heat exchange fluid B on the evaporation side, which is, for example, an aluminum plate. .. Reference numeral 12b is a fourth through hole communicating with the inlet 6 of the heat exchange fluid B on the evaporation side, and 12a is a third through hole communicating with the outlet 5 of the heat exchange fluid B on the evaporation side. 1
2d is a first through hole communicating with the heat exchange fluid inlet 3 on the condensation side, 1
2 c are second through holes that communicate with the fluid outlet 4 of the heat exchange fluid A on the condensation side. Reference numeral 13 is a heat exchange plate interposed between the second intermediate plate 11 and the third intermediate plate 14 to exchange heat between the heat exchange fluid A on the condensation side and the heat exchange fluid B on the evaporation side, for example, an aluminum plate. is there. Reference numeral 13b is a fourth through hole communicating with the inlet 6 of the heat exchange fluid B on the evaporation side, and 13a is a third through hole communicating with the outlet 5 of the heat exchange fluid B on the evaporation side.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】次に図5の7枚重ねのプレート型熱交換器
の動作について説明する。凝縮側の熱交換流体Aは凝縮
側の熱交換流体入口3から第一の透孔9d、12dを通過して
第2の熱交換流体流通路用透孔11dに導かれる。ここで
4つに分流され、それぞれの第2の透孔12c,9cを通過
し、凝縮側の熱交換流体Aの流体出口4に至る。また、
蒸発側の熱交換流体Bは蒸発側の熱交換流体B入口6か
ら第1の熱交換流体流通路用透孔9aに、そして第4の透
孔12b、11b、13bを通過し第3の熱交換流体流通路用透
孔14aに導かれる。この時、第2の熱交換流体流通路用
透孔11bは、第1及び第3の熱交換流体流通路用透孔9
a、14aと対抗または直交して通路が形成されており、凝
縮側の熱交換流体Aはここで熱交換板12,13を介して両
側から蒸発側の熱交換流体Bと熱交換する。熱交換後、
蒸発側の熱交換流体Bは第4の透孔13a、11a、12aを通
過し、蒸発側の熱交換流体Aの流体出口5に至る。
Next, the operation of the plate type heat exchanger of 7 sheets in FIG. 5 will be described. The heat exchange fluid A on the condensation side is guided from the heat exchange fluid inlet 3 on the condensation side to the second heat exchange fluid flow passage through hole 11d through the first through holes 9d and 12d. Here, it is divided into four, passes through the respective second through holes 12c and 9c, and reaches the fluid outlet 4 of the heat exchange fluid A on the condensation side. Also,
The heat exchange fluid B on the evaporation side passes from the heat exchange fluid B inlet 6 on the evaporation side to the first heat exchange fluid flow passage through hole 9a, and the fourth through holes 12b, 11b, 13b, and the third heat It is guided to the exchange fluid flow passage through hole 14a. At this time, the second heat-exchange-fluid-flow-passage through-hole 11b has the first and third heat-exchange-fluid-flow-passage through-holes 9b.
A passage is formed opposite or orthogonal to a and 14a, and the heat exchange fluid A on the condensation side exchanges heat with the heat exchange fluid B on the evaporation side from both sides via the heat exchange plates 12 and 13. After heat exchange,
The heat exchange fluid B on the evaporation side passes through the fourth through holes 13a, 11a, 12a and reaches the fluid outlet 5 of the heat exchange fluid A on the evaporation side.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】実施例2.図3はこの発明の実施例2によ
る7枚重ねのプレート型熱交換器を示す分解斜視図であ
る。図において、3は凝縮側の熱交換流体Aの流体入
口、4は凝縮側の熱交換流体Aの流体出口である。6は蒸
発側の熱交換流体Bの流体入口、5は蒸発側の熱交換流
体Bの出口である。8は第1の端板で、心材がアルミニ
ュウムからなり、9の第1の中間板に接する面にアルミ
ろうがコーティングまたはクラッドされたブレジングシ
ートからなり、9は第1の中間板でアルミニュウム板か
らなる。9aは第1の中間板に蒸発側の熱交換流体B出入
口6,5を含む範囲で連続して形成された第1の熱交換流
体流通路用透孔で、9dは凝縮側の熱交換流体Aの流体入
口3と連通する第1の透孔、9cはそれぞれが凝縮側の熱
交換流体Aの出口4と連通する第2の透孔である。15は
第1の熱交換流体流通路用透孔9a内に複数個設置された
粒子径200μm程度のアルミ粒子であり、熱交換器全体
が接合されるときに良熱伝導性の多孔質層16となるもの
である。10は第2の端板で、心材がアルミニュウムから
なり、第3の中間板14に接する面にアルミろうがコーテ
ィングまたはクラッドされたブレジングシートからな
る。11は第2の中間板でアルミニュウム板からなる。11
bは蒸発側の熱交換流体B入口6と連通する第4の透孔で
ある。11aは凝縮側の熱交換流体出口5と連通する第3
の透孔である。11dは第2の中間板に蒸発側の熱交換流
体B出入口4,3を含む範囲で連続して形成された第2の
熱交換流体流通路用透孔である。14は第3の中間板でア
ルミニュウム板からなり、第1の中間板9と同様な蒸発
側の熱交換流体B出入口6,5を含む範囲で連続して形成
された第3の熱交換流体流通路用透孔14aを有する。17
は第3の熱交換流体流通路用透孔14a内に複数個設置さ
れた粒子径200μm程度のアルミ粒子であり、熱交換器
全体が接合されるときに多孔質層18となるものである。
12は第1の中間板9と第2の中間板11の間に介在して、
凝縮側の熱交換流体Aと蒸発側の熱交換流体Bを熱交換
させる熱交換板で、両面にろう材がコーティングされた
ブレージングシートである。12bは蒸発側の熱交換流体
B入口6と連通する第4の透孔、12aは蒸発側の熱交換流
体B出口5と連通する第3の透孔である。12dは凝縮側の
熱交換流体A入口3と連通する第1の透孔、12cはそれぞ
れがの凝縮側の熱交換流体A出口4と連通する第2の透
孔である。13は第2の中間板11と第3の中間板14の間に
介在して、凝縮側の熱交換流体Aと蒸発側の熱交換流体
Bを熱交換させる熱交換板で両面にろう材がコーティン
グされたブレージングシートである。13bは蒸発側の熱
交換流体B入口6と連通した第4の透孔であり、13aは蒸
発側の熱交換流体B出口5と連通する第3の透孔であ
る。
Example 2. FIG. 3 is an exploded perspective view showing a plate type heat exchanger having a stack of seven plates according to a second embodiment of the present invention. In the figure, 3 is a fluid inlet of the heat exchange fluid A on the condensation side, and 4 is a fluid outlet of the heat exchange fluid A on the condensation side. 6 is a fluid inlet of the heat exchange fluid B on the evaporation side, and 5 is an outlet of the heat exchange fluid B on the evaporation side. 8 is the first end plate, the core is made of aluminum, and the brazing sheet is coated with aluminum brazing or clad on the surface of 9 that contacts the first intermediate plate, and 9 is the first intermediate plate, which is the aluminum plate. Consists of. Reference numeral 9a is a first heat exchange fluid flow passage through hole continuously formed in the first intermediate plate in a range including the heat exchange fluid B inlets and outlets 6 and 5 on the evaporation side, and 9d is a heat exchange fluid on the condensation side. The first through hole communicates with the fluid inlet 3 of A and the second through hole 9c communicates with the outlet 4 of the heat exchange fluid A on the condensation side. Reference numeral 15 is an aluminum particle having a particle diameter of about 200 μm, which is provided in plural in the first heat exchange fluid flow passage through hole 9a, and is a porous layer having good heat conductivity when the entire heat exchanger is joined. It will be. Reference numeral 10 denotes a second end plate, which is made of aluminum and has a core material made of aluminum and a brazing sheet in which the surface in contact with the third intermediate plate 14 is coated or clad with aluminum wax. The second intermediate plate 11 is made of an aluminum plate. 11
Reference numeral b is a fourth through hole communicating with the heat exchange fluid B inlet 6 on the evaporation side. 11a is a third part communicating with the heat exchange fluid A outlet 5 on the condensation side
It is a through hole. Reference numeral 11d denotes a second heat exchange fluid flow passage through hole continuously formed in the second intermediate plate in a range including the evaporation side heat exchange fluid B inlets and outlets 4, 3. Reference numeral 14 denotes a third intermediate plate, which is an aluminum plate, and is a third heat exchange fluid distribution which is continuously formed in a range including the heat exchange fluid B inlets and outlets 6 and 5 on the evaporation side similar to the first intermediate plate 9. It has a passage through hole 14a. 17
Is a plurality of aluminum particles having a particle diameter of about 200 μm, which are provided in the third heat exchange fluid flow passage through hole 14a, and become the porous layer 18 when the entire heat exchanger is joined.
12 is interposed between the first intermediate plate 9 and the second intermediate plate 11,
The brazing sheet is a heat exchange plate for exchanging heat between the condensing side heat exchanging fluid A and the evaporating side heat exchanging fluid B, and has a brazing material coated on both sides. 12b is a fourth through hole communicating with the heat exchange fluid B inlet 6 on the evaporation side, and 12a is a third through hole communicating with the heat exchange fluid B outlet 5 on the evaporation side. 12d is a first through hole that communicates with the heat exchange fluid A inlet 3 on the condensation side, and 12c is a second through hole that communicates with the heat exchange fluid A outlet 4 on the condensation side. Reference numeral 13 is a heat exchange plate interposed between the second intermediate plate 11 and the third intermediate plate 14 to exchange heat between the heat exchange fluid A on the condensation side and the heat exchange fluid B on the evaporation side. It is a coated brazing sheet. 13b is a fourth through hole communicating with the heat exchange fluid B inlet 6 on the evaporation side, and 13a is a third through hole communicating with the heat exchange fluid B outlet 5 on the evaporation side.

【手続補正4】[Procedure correction 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】次にこの発明の第2の実施例である7枚重
ねのプレート型熱交換器の動作について説明する。凝縮
側の熱交換流体Aは凝縮側の熱交換流体入口3から第一
の透孔9d、12dを通過して第2の熱交換流体流通路用透
孔11dに導かれる。ここで4つに分流され、それぞれの
第2の透孔12c,9cを通過し、凝縮側の流体出口4に至
る。蒸発側の熱交換流体Bの半分程度は蒸発側の熱交換
流体B入口6から第1の熱交換流体流通路用透孔9aに導
かれ、ここで多孔質層16が設けられた熱交換流体流路用
透孔9a内を通り、蒸発側の熱交換流体Bの出口5にいた
る。一方、蒸発側の熱交換流体Bの半分程度は第4の透
孔12b、11b、13bを通過し、第3の熱交換流体流通路用
透孔14aに導かれる。そして、多孔質層16が設けられた
熱交換流体流路用透孔14a内を通り、第3の透孔13a、11
a、12aを通過し、蒸発側の熱交換流体Bの出口5にいた
る。そして、第2の熱交換流体流通路用透孔11bは、第
1及び第3の熱交換流体流通路用透孔9a、14aと対抗ま
たは直交して通路が形成されており、凝縮側の熱交換流
体Aはここで熱交換板12,13を介して両側から蒸発側の
熱交換流体Bと熱交換する。 この時、熱交換流体流路
用透孔9a内及び14aに設けられた多孔質層16、18部分
で、沸騰熱伝達が起こる。そのため、熱交換効率が向上
する。
Next, the operation of the plate heat exchanger with seven stacked plates according to the second embodiment of the present invention will be described. The heat exchange fluid A on the condensation side is guided from the heat exchange fluid inlet 3 on the condensation side to the second heat exchange fluid flow passage through hole 11d through the first through holes 9d and 12d. Here, it is divided into four, passes through the respective second through holes 12c and 9c, and reaches the fluid outlet 4 on the condensation side. About half of the heat exchange fluid B on the evaporation side is introduced from the heat exchange fluid B inlet 6 on the evaporation side to the through hole 9a for the first heat exchange fluid flow passage, where the heat exchange fluid provided with the porous layer 16 is provided. It passes through the flow path through hole 9a and reaches the outlet 5 of the heat exchange fluid B on the evaporation side. On the other hand, pass through about half of the heat exchange fluid B in the evaporation side and the fourth through holes 12b, 11b, the 13b, is guided to the third heat exchange fluid passage through hole 14a. Then, it passes through the heat exchange fluid passage through hole 14a provided with the porous layer 16 and passes through the third through holes 13a and 11a.
It passes through a and 12a and reaches the outlet 5 of the heat exchange fluid B on the evaporation side. The second heat exchange fluid flow passage through-hole 11b has a passage formed opposite or orthogonal to the first and third heat exchange fluid flow passage through-holes 9a and 14a. Here, the exchange fluid A exchanges heat with the heat exchange fluid B on the evaporation side from both sides via the heat exchange plates 12 and 13. At this time, boiling heat transfer occurs in the porous layers 16 and 18 provided in the through holes 9a and 14a for the heat exchange fluid passage. Therefore, the heat exchange efficiency is improved.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

【手続補正6】[Procedure correction 6]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 板面を貫通する溝状の熱交換流体流通路
が形成された中間板を熱交換板を介して複数枚積層した
積層体を端板間に備えるプレート型熱交換器において、
上記熱交換流体流通路の少なくとも一部に、上記熱交換
板に接合され高さが熱交換流体流通路の高さより低い熱
良導性の多孔質層を有することを特徴とするプレート型
熱交換器。
1. A plate-type heat exchanger comprising: a stack of a plurality of intermediate plates having a groove-shaped heat exchange fluid flow passage formed therethrough, the stack being laminated between the end plates.
A plate-type heat exchange characterized in that at least a part of the heat exchange fluid flow passage has a porous layer of good heat conductivity joined to the heat exchange plate and having a height lower than the height of the heat exchange fluid flow passage. vessel.
JP33500291A 1991-12-18 1991-12-18 Plate type heat exchanger Pending JPH05164494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33500291A JPH05164494A (en) 1991-12-18 1991-12-18 Plate type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33500291A JPH05164494A (en) 1991-12-18 1991-12-18 Plate type heat exchanger

Publications (1)

Publication Number Publication Date
JPH05164494A true JPH05164494A (en) 1993-06-29

Family

ID=18283641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33500291A Pending JPH05164494A (en) 1991-12-18 1991-12-18 Plate type heat exchanger

Country Status (1)

Country Link
JP (1) JPH05164494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7017655B2 (en) 2003-12-18 2006-03-28 Modine Manufacturing Co. Forced fluid heat sink

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616596A (en) * 1984-06-20 1986-01-13 Showa Alum Corp Heat exchanger
JPH03122495A (en) * 1989-10-04 1991-05-24 Matsushita Refrig Co Ltd Lamination type heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616596A (en) * 1984-06-20 1986-01-13 Showa Alum Corp Heat exchanger
JPH03122495A (en) * 1989-10-04 1991-05-24 Matsushita Refrig Co Ltd Lamination type heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7017655B2 (en) 2003-12-18 2006-03-28 Modine Manufacturing Co. Forced fluid heat sink

Similar Documents

Publication Publication Date Title
US6959492B1 (en) Plate type heat exchanger and method of manufacturing the heat exchanger
JP2814868B2 (en) Plate type heat exchanger and method of manufacturing the same
US5040596A (en) Heat exchanger core
US4665975A (en) Plate type heat exchanger
US20220282931A1 (en) Heat exchanger device
US20180045472A1 (en) Heat exchanger device
US5369883A (en) Method for making an in tank oil cooler
US20050217837A1 (en) Compact counterflow heat exchanger
JP2022186860A (en) Heat transport device and manufacturing method for the same
AU708247B2 (en) Plate-type heat exchanger with distribution zone
GB2552801A (en) Heat exchanger device
JPS6237687A (en) Heat exchanger
JPH05164494A (en) Plate type heat exchanger
JP2930417B2 (en) Heat exchanger and method of manufacturing the same
JP2812070B2 (en) Plate heat exchanger
JP7035187B2 (en) Heat transport device and its manufacturing method
WO2013043263A1 (en) Heat exchanger produced from laminar elements
JP2008170090A (en) Brazed plate for heat transfer, and heat exchanger using the same
JP7206609B2 (en) Metal laminate and method for manufacturing metal laminate
JP2001215093A (en) Lamination-type heat exchanger and its manufacturing method
JPH0674675A (en) Laminate body heat exchanger and manufacture thereof
JPS6093291A (en) Lamination type heat exchanger
EP3978174A1 (en) Assembly for controlling brazing
JPS5974496A (en) Plate-type heat exchanger
JPH05164492A (en) Plate type heat exchanger