JPH05144685A - Electrolytic capacitor - Google Patents

Electrolytic capacitor

Info

Publication number
JPH05144685A
JPH05144685A JP33256791A JP33256791A JPH05144685A JP H05144685 A JPH05144685 A JP H05144685A JP 33256791 A JP33256791 A JP 33256791A JP 33256791 A JP33256791 A JP 33256791A JP H05144685 A JPH05144685 A JP H05144685A
Authority
JP
Japan
Prior art keywords
solid electrolyte
carbon layer
carbon
layer
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33256791A
Other languages
Japanese (ja)
Inventor
Yuuya Takaku
侑也 高久
Yasuyo Nishijima
泰世 西嶋
Hiroshi Mizutsuki
洋 水月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP33256791A priority Critical patent/JPH05144685A/en
Publication of JPH05144685A publication Critical patent/JPH05144685A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To protect solid electrolyte from mechanical stress caused by the contraction of a resin sheath body, in a chip type solid electrolytic capacitor. CONSTITUTION:In a capacitor element, solid electrolyte 4 composed of manganese dioxide is formed on a sintered pellet 1 of valve action metal powder, and a carbon layer 5 and a silver layer 6 are formed in order around the solid electrolyte 4. In the solid electrolyte capacitor having the above element, the carbon layer 5 has a thickness of 0.1-0.3mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解コンデンサに関
し、さらに詳しく言えば、インピーダンス特性の良好な
固体電解コンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor, and more particularly to a solid electrolytic capacitor having good impedance characteristics.

【0002】[0002]

【従来の技術】図1にはタンタルからなるコンデンサ素
子がその一部を断面にして示されている。同図を参照し
ながら、その製造工程を説明すると、まず、タンタル粉
末に適当なバインダーを混合して例えば円筒状に形成
し、その円筒体に陽極リード2を植設した上で、焼結し
てタンタルの焼結ペレット1を得る。
2. Description of the Related Art In FIG. 1, a capacitor element made of tantalum is shown with a part thereof in cross section. The manufacturing process will be described with reference to the figure. First, a suitable binder is mixed with tantalum powder to form, for example, a cylindrical shape, and the anode lead 2 is planted in the cylindrical body and then sintered. To obtain a sintered pellet 1 of tantalum.

【0003】そして、この焼結ペレット1に誘電体とし
ての酸化皮膜を形成した後、同焼結ペレットの周囲に固
体電解質4を形成する。
After forming an oxide film as a dielectric on the sintered pellet 1, a solid electrolyte 4 is formed around the sintered pellet.

【0004】固体電解質4が二酸化マンガン(Mn
)からなる場合について説明すると、陽極リード2
に固体電解質這い上がり防止板3を挿通した後、焼結ペ
レット1を硝酸マンガン水溶液中に浸漬して硝酸マンガ
ンを含浸させ、引き上げて熱分解を行なう。硝酸マンガ
ン水溶液の濃度を順次高めて数回これを繰り返す。ま
た、熱分解工程により損傷した酸化皮膜を修復する目的
で再化成工程が数回繰り返される。
The solid electrolyte 4 is manganese dioxide (Mn
O 2 ), the anode lead 2 will be described.
After inserting the solid electrolyte creeping-up prevention plate 3 into the above, the sintered pellet 1 is immersed in a manganese nitrate aqueous solution to be impregnated with manganese nitrate, and then pulled up for thermal decomposition. The concentration of the manganese nitrate aqueous solution is gradually increased and this is repeated several times. Further, the re-formation process is repeated several times for the purpose of repairing the oxide film damaged by the thermal decomposition process.

【0005】しかる後、焼結ペレット1をカーボン液中
に浸漬し、引き上げて約150℃にて焼き付けて固体電
解質上にカーボン層5を形成する。そして、同カーボン
層5上に銀層6を形成する。
Thereafter, the sintered pellet 1 is immersed in a carbon liquid, pulled up and baked at about 150 ° C. to form a carbon layer 5 on the solid electrolyte. Then, the silver layer 6 is formed on the carbon layer 5.

【0006】このようにしてコンデンサ素子が製造され
るが、これをチップ型とする場合にはリードフレームを
用意し、コンデンサ素子の陽極リード2を同フレームの
陽極端子板に溶接するとともに、銀層6を導電性接着剤
(例えば、接着銀)を介して同フレームの陰極端子板に
取付けた上で、成形金型内に入れて樹脂モールド法によ
り、コンデンサ素子の周囲に樹脂外装体を形成する。
The capacitor element is manufactured in this manner. When this is a chip type, a lead frame is prepared, the anode lead 2 of the capacitor element is welded to the anode terminal plate of the frame, and the silver layer is formed. 6 is attached to the cathode terminal plate of the same frame via a conductive adhesive (for example, adhesive silver), and then placed in a molding die to form a resin exterior body around the capacitor element by a resin molding method. .

【0007】[0007]

【発明が解決しようとする課題】ところで、上記従来例
において、カーボン層5の厚さは約0.01〜0.03
mm、銀層6の厚さは0.01〜0.05mm程度であ
る。
By the way, in the above-mentioned conventional example, the thickness of the carbon layer 5 is about 0.01 to 0.03.
mm, and the thickness of the silver layer 6 is about 0.01 to 0.05 mm.

【0008】このため、成形後に生ずる樹脂外装体の収
縮によるストレスが固体電解質4に直接的に加えられる
ことになり、これが原因で同固体電解質4が破壊され、
インピーダンス不良が多発していた。
For this reason, the stress due to the shrinkage of the resin sheathing produced after the molding is directly applied to the solid electrolyte 4, which causes the solid electrolyte 4 to be destroyed.
Impedance was occurring frequently.

【0009】[0009]

【課題を解決するための手段】本発明は上記従来の事情
に鑑みなされたもので、その構成上の特徴は、弁作用金
属粉末の焼結ペレットに二酸化マンガンからなる固体電
解質が形成され、さらに同固体電解質の周囲にカーボン
層および銀層が順次形成されているコンデンサ素子を有
する固体電解コンデンサにおいて、上記カーボン層が
0.1〜0.3mmの厚さをもって形成されていること
にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional circumstances, and its structural feature is that a solid electrolyte made of manganese dioxide is formed on a sintered pellet of valve action metal powder. In the solid electrolytic capacitor having a capacitor element in which a carbon layer and a silver layer are sequentially formed around the solid electrolyte, the carbon layer is formed to have a thickness of 0.1 to 0.3 mm.

【0010】なお、カーボン層の厚さが0.1mm以下
であると緩衝層としての効果が余り期待できず、他方、
その厚さを0.3mm以上とすることは、カーボン層の
密着力低下による剥離を生ずるので好ましくない。
If the thickness of the carbon layer is 0.1 mm or less, the effect as a buffer layer cannot be expected so much, while on the other hand,
It is not preferable to set the thickness to 0.3 mm or more because peeling may occur due to a decrease in adhesion of the carbon layer.

【0011】[0011]

【作用】カーボン層が従来に比べて約10倍程度の厚さ
とされているため、樹脂外装体の収縮によるストレスが
同カーボン層によって緩衝され、固体電解質の破壊が防
止される。
Since the carbon layer is about 10 times thicker than the conventional one, the stress due to the contraction of the resin outer package is buffered by the carbon layer, and the solid electrolyte is prevented from being broken.

【0012】[0012]

【実施例】《実施例1》タンタル粉末の焼結ペレットに
誘電体酸化皮膜を形成した後、従来と同様にして固体電
解質としての二酸化マンガンを形成した。次に、カーボ
ンとして日本アチソン社製アクアダック(商品名)を用
い、その1wt%懸濁液中に焼結ペレットを浸漬し、引
き上げて150℃,15分間加熱してカーボン層の焼き
付けを行なった。この時のカーボン層の厚さは0.10
mmであった。しかる後、従来と同様にして銀層を形成
し、さらに従来の組立工程にしたがって、定格4V10
μFのチップ型タンタル固体電解コンデンサを1000
個試作しところ、そのインピーダンス(|Z|)不良率
は1.0%で、漏れ電流(LC)不良率は2.7%であ
った。また、歩留は96.3%であった。
Example 1 A dielectric oxide film was formed on a sintered pellet of tantalum powder, and then manganese dioxide as a solid electrolyte was formed in the same manner as in the prior art. Next, using Aqua Duck (trade name) manufactured by Nippon Acheson Co., Ltd. as carbon, the sintered pellets were immersed in a 1 wt% suspension thereof, pulled up and heated at 150 ° C. for 15 minutes to bake the carbon layer. . At this time, the thickness of the carbon layer is 0.10.
It was mm. After that, a silver layer is formed in the same manner as the conventional method, and the rated voltage is 4V10 according to the conventional assembly process.
1000 μF chip type tantalum solid electrolytic capacitor
As a result of trial production, the impedance (| Z |) defect rate was 1.0% and the leakage current (LC) defect rate was 2.7%. The yield was 96.3%.

【0013】《実施例2》タンタル粉末の焼結ペレット
に誘電体酸化皮膜を形成した後、従来と同様にして固体
電解質としての二酸化マンガンを形成した。次に、カー
ボンとして日本アチソン社製アクアダック(商品名)を
用い、その3wt%懸濁液中に焼結ペレットを浸漬し、
引き上げて150℃,15分間加熱してカーボン層の焼
き付けを行なった。この時のカーボン層の厚さは0.1
3mmであった。しかる後、従来と同様にして銀層を形
成し、さらに従来の組立工程にしたがって、定格4V1
0μFのチップ型タンタル固体電解コンデンサを100
0個試作しところ、そのインピーダンス(|Z|)不良
率は0.9%で、漏れ電流(LC)不良率は1.9%で
あった。また、歩留は97.2%であった。
Example 2 After forming a dielectric oxide film on a sintered pellet of tantalum powder, manganese dioxide as a solid electrolyte was formed in the same manner as in the conventional method. Next, using Aqua Duck (trade name) manufactured by Nippon Acheson Co., Ltd. as carbon, immersing the sintered pellets in the 3 wt% suspension,
The carbon layer was baked by pulling up and heating at 150 ° C. for 15 minutes. At this time, the thickness of the carbon layer is 0.1
It was 3 mm. After that, a silver layer is formed in the same manner as the conventional method, and the rated voltage is 4V1 according to the conventional assembly process.
100 μF of 0 μF chip type tantalum solid electrolytic capacitor
When 0 prototypes were manufactured, the impedance (| Z |) defect rate was 0.9% and the leakage current (LC) defect rate was 1.9%. The yield was 97.2%.

【0014】《実施例3》タンタル粉末の焼結ペレット
に誘電体酸化皮膜を形成した後、従来と同様にして固体
電解質としての二酸化マンガンを形成した。次に、カー
ボンとして日本アチソン社製アクアダック(商品名)を
用い、その5wt%懸濁液中に焼結ペレットを浸漬し、
引き上げて150℃,15分間加熱してカーボン層の焼
き付けを行なった。この時のカーボン層の厚さは0.1
6mmであった。しかる後、従来と同様にして銀層を形
成し、さらに従来の組立工程にしたがって、定格4V1
0μFのチップ型タンタル固体電解コンデンサを100
0個試作しところ、そのインピーダンス(|Z|)不良
率は0.6%で、漏れ電流(LC)不良率は1.8%で
あった。また、歩留は97.6%であった。
Example 3 A dielectric oxide film was formed on a sintered pellet of tantalum powder, and then manganese dioxide as a solid electrolyte was formed in the same manner as in the prior art. Next, by using Aqua Duck (trade name) manufactured by Nippon Acheson Co., Ltd. as carbon, the sintered pellets are immersed in a 5 wt% suspension thereof,
The carbon layer was baked by pulling up and heating at 150 ° C. for 15 minutes. At this time, the thickness of the carbon layer is 0.1
It was 6 mm. After that, a silver layer is formed in the same manner as the conventional method, and the rated voltage is 4V1 according to the conventional assembly process.
100 μF of 0 μF chip type tantalum solid electrolytic capacitor
When 0 prototypes were manufactured, the impedance (| Z |) defect rate was 0.6% and the leakage current (LC) defect rate was 1.8%. The yield was 97.6%.

【0015】《実施例4》タンタル粉末の焼結ペレット
に誘電体酸化皮膜を形成した後、従来と同様にして固体
電解質としての二酸化マンガンを形成した。次に、カー
ボンとして日本アチソン社製アクアダック(商品名)を
用い、その10wt%懸濁液中に焼結ペレットを浸漬
し、引き上げて150℃,15分間加熱してカーボン層
の焼き付けを行なった。この時のカーボン層の厚さは
0.20mmであった。しかる後、従来と同様にして銀
層を形成し、さらに従来の組立工程にしたがって、定格
4V10μFのチップ型タンタル固体電解コンデンサを
1000個試作しところ、そのインピーダンス(|Z
|)不良率は0.5%で、漏れ電流(LC)不良率は
1.8%であった。また、歩留は97.7%であった。
Example 4 A dielectric oxide film was formed on a sintered pellet of tantalum powder, and then manganese dioxide as a solid electrolyte was formed in the same manner as in the prior art. Next, using Aqua Duck (trade name) manufactured by Nippon Acheson Co., Ltd. as carbon, the sintered pellets were immersed in a 10 wt% suspension of the carbon, pulled up and heated at 150 ° C. for 15 minutes to bake the carbon layer. .. At this time, the thickness of the carbon layer was 0.20 mm. After that, a silver layer was formed in the same manner as the conventional method, and 1000 chip tantalum solid electrolytic capacitors with a rating of 4V and 10 μF were prototyped according to the conventional assembly process, and the impedance (| Z
|) The defective rate was 0.5% and the leakage current (LC) defective rate was 1.8%. The yield was 97.7%.

【0016】〈比較例1〉タンタル粉末の焼結ペレット
に誘電体酸化皮膜を形成した後、従来と同様にして固体
電解質としての二酸化マンガンを形成した。次に、カー
ボンとして日本アチソン社製アクアダック(商品名)を
用い、その0.5wt%懸濁液中に焼結ペレットを浸漬
し、引き上げて150℃,15分間加熱してカーボン層
の焼き付けを行なった。この時のカーボン層の厚さは
0.05mmであった。しかる後、従来と同様にして銀
層を形成し、さらに従来の組立工程にしたがって、定格
4V10μFのチップ型タンタル固体電解コンデンサを
1000個試作しところ、そのインピーダンス(|Z
|)不良率は1.2%で、漏れ電流(LC)不良率は
3.1%であった。また、歩留は95.7%であった。
Comparative Example 1 After forming a dielectric oxide film on a sintered pellet of tantalum powder, manganese dioxide as a solid electrolyte was formed in a conventional manner. Next, using Aqua Duck (trade name) manufactured by Nippon Acheson Co., Ltd. as the carbon, the sintered pellets are immersed in a 0.5 wt% suspension of the carbon, pulled up and heated at 150 ° C. for 15 minutes to bake the carbon layer. I did. At this time, the thickness of the carbon layer was 0.05 mm. After that, a silver layer was formed in the same manner as the conventional method, and 1000 chip tantalum solid electrolytic capacitors with a rating of 4V and 10 μF were prototyped according to the conventional assembly process, and the impedance (| Z
|) The defective rate was 1.2% and the leakage current (LC) defective rate was 3.1%. The yield was 95.7%.

【0017】《実施例5》タンタル粉末の焼結ペレット
に誘電体酸化皮膜を形成した後、従来と同様にして固体
電解質としての二酸化マンガンを形成した。次に、カー
ボンとして日本黒鉛社製T−602(商品名)を用い、
その50wt%懸濁液中に焼結ペレットを浸漬し、引き
上げて190℃,15分間加熱してカーボン層の焼き付
けを行なった。この時のカーボン層の厚さは0.15m
mであった。しかる後、従来と同様にして銀層を形成
し、さらに従来の組立工程にしたがって、定格4V10
μFのチップ型タンタル固体電解コンデンサを1000
個試作しところ、そのインピーダンス(|Z|)不良率
は0.7%で、漏れ電流(LC)不良率は2.7%であ
った。また、歩留は96.6%であった。
Example 5 A dielectric oxide film was formed on a sintered pellet of tantalum powder, and then manganese dioxide as a solid electrolyte was formed in the same manner as in the prior art. Next, using T-602 (trade name) manufactured by Nippon Graphite Co., Ltd. as carbon,
The sintered pellet was immersed in the 50 wt% suspension, pulled up and heated at 190 ° C. for 15 minutes to bake the carbon layer. The thickness of the carbon layer at this time is 0.15 m
It was m. After that, a silver layer is formed in the same manner as the conventional method, and the rated voltage is 4V10 according to the conventional assembly process.
1000 μF chip type tantalum solid electrolytic capacitor
As a result of trial production, the impedance (| Z |) defect rate was 0.7%, and the leakage current (LC) defect rate was 2.7%. The yield was 96.6%.

【0018】《実施例6》タンタル粉末の焼結ペレット
に誘電体酸化皮膜を形成した後、従来と同様にして固体
電解質としての二酸化マンガンを形成した。次に、カー
ボンとして日本黒鉛社製T−602(商品名)を用い、
その50wt%懸濁液中に焼結ペレットを浸漬し、引き
上げて190℃,15分間加熱してカーボン層の焼き付
けを行なった。再び、同じカーボン50wt%懸濁液中
に浸漬し、引き上げて190℃,15分間加熱してカー
ボン層の焼き付けを行なった。この時のカーボン層の厚
さは0.23mmであった。しかる後、従来と同様にし
て銀層を形成し、さらに従来の組立工程にしたがって、
定格4V10μFのチップ型タンタル固体電解コンデン
サを1000個試作しところ、そのインピーダンス(|
Z|)不良率は0.5%で、漏れ電流(LC)不良率は
2.1%であった。また、歩留は97.4%であった。
Example 6 After forming a dielectric oxide film on a sintered pellet of tantalum powder, manganese dioxide as a solid electrolyte was formed in the same manner as in the conventional method. Next, using T-602 (trade name) manufactured by Nippon Graphite Co., Ltd. as carbon,
The sintered pellet was immersed in the 50 wt% suspension, pulled up and heated at 190 ° C. for 15 minutes to bake the carbon layer. Again, the carbon layer was immersed in the same 50 wt% suspension of carbon, pulled up and heated at 190 ° C. for 15 minutes to bake the carbon layer. At this time, the thickness of the carbon layer was 0.23 mm. After that, a silver layer is formed in the same manner as the conventional method, and further according to the conventional assembly process,
When 1000 chip tantalum solid electrolytic capacitors with a rating of 4V and 10μF were prototyped, their impedance (|
The Z |) defect rate was 0.5%, and the leakage current (LC) defect rate was 2.1%. The yield was 97.4%.

【0019】《実施例7》タンタル粉末の焼結ペレット
に誘電体酸化皮膜を形成した後、従来と同様にして固体
電解質としての二酸化マンガンを形成した。次に、カー
ボンとして日本黒鉛社製T−602(商品名)を用い、
その100wt%懸濁液中に焼結ペレットを浸漬し、引
き上げて190℃,15分間加熱してカーボン層の焼き
付けを行なった。この時のカーボン層の厚さは0.3m
mであった。しかる後、従来と同様にして銀層を形成
し、さらに従来の組立工程にしたがって、定格4V10
μFのチップ型タンタル固体電解コンデンサを1000
個試作しところ、そのインピーダンス(|Z|)不良率
は0.6%で、漏れ電流(LC)不良率は2.0%であ
った。また、歩留は97.4%であった。
Example 7 A dielectric oxide film was formed on a sintered pellet of tantalum powder, and then manganese dioxide as a solid electrolyte was formed in the same manner as in the prior art. Next, using T-602 (trade name) manufactured by Nippon Graphite Co., Ltd. as carbon,
The sintered pellet was immersed in the 100 wt% suspension, pulled up and heated at 190 ° C. for 15 minutes to bake the carbon layer. The thickness of the carbon layer at this time is 0.3 m
It was m. After that, a silver layer is formed in the same manner as the conventional method, and the rated voltage is 4V10 according to the conventional assembly process.
1000 μF chip type tantalum solid electrolytic capacitor
As a result of trial production, the impedance (| Z |) defect rate was 0.6% and the leakage current (LC) defect rate was 2.0%. The yield was 97.4%.

【0020】〈比較例2〉タンタル粉末の焼結ペレット
に誘電体酸化皮膜を形成した後、従来と同様にして固体
電解質としての二酸化マンガンを形成した。次に、カー
ボンとして日本黒鉛社製T−602(商品名)を用い、
その30wt%懸濁液中に焼結ペレットを浸漬し、引き
上げて190℃,15分間加熱してカーボン層の焼き付
けを行なった。この時のカーボン層の厚さは0.07m
mであった。しかる後、従来と同様にして銀層を形成
し、さらに従来の組立工程にしたがって、定格4V10
μFのチップ型タンタル固体電解コンデンサを1000
個試作しところ、そのインピーダンス(|Z|)不良率
は0.8%で、漏れ電流(LC)不良率は2.8%であ
った。また、歩留は96.4%であった。比較を容易に
するため、実施例1〜7および比較例1,2の特性不良
率および歩留を表1に示すが、この表からも分かるよう
に、本発明によれば特性不良率および歩留が大幅に改善
される。
Comparative Example 2 After forming a dielectric oxide film on a sintered pellet of tantalum powder, manganese dioxide as a solid electrolyte was formed in the same manner as in the prior art. Next, using T-602 (trade name) manufactured by Nippon Graphite Co., Ltd. as carbon,
The sintered pellet was immersed in the 30 wt% suspension, pulled up and heated at 190 ° C. for 15 minutes to bake the carbon layer. The thickness of the carbon layer at this time is 0.07 m
It was m. After that, a silver layer is formed in the same manner as the conventional method, and the rated voltage is 4V10 according to the conventional assembly process.
1000 μF chip type tantalum solid electrolytic capacitor
As a result of trial production, the impedance (| Z |) defect rate was 0.8% and the leakage current (LC) defect rate was 2.8%. The yield was 96.4%. In order to facilitate the comparison, the characteristic defective rate and the yield of Examples 1 to 7 and Comparative Examples 1 and 2 are shown in Table 1. As can be seen from this table, according to the present invention, the characteristic defective rate and the yield are shown. The stay is greatly improved.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
カーボン層の厚さを0.1〜0.3mmとしたことによ
り、樹脂外装体の収縮などによる機械的ストレスが同カ
ーボン層によって緩衝されるため、固体電解質の破壊が
防止され、特性不良率の低減が図れる。
As described above, according to the present invention,
By setting the thickness of the carbon layer to 0.1 to 0.3 mm, the mechanical stress due to the shrinkage of the resin outer package is buffered by the carbon layer, so that the solid electrolyte is prevented from being broken and the characteristic defect rate is reduced. Can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】コンデンサ素子の構成を説明するため、その一
部を断面にして示した正面図。
FIG. 1 is a front view showing a part of the capacitor element in section for explaining a configuration of a capacitor element.

【符号の説明】[Explanation of symbols]

1 焼結ペレット 2 陽極リード 3 固体電解質這い上がり防止板 4 固体電解質 5 カーボン層 6 銀層 1 Sintered Pellets 2 Anode Leads 3 Solid Electrolyte Crawling Prevention Plate 4 Solid Electrolyte 5 Carbon Layer 6 Silver Layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】弁作用金属粉末の焼結ペレットに二酸化マ
ンガンからなる固体電解質が形成され、さらに同固体電
解質の周囲にカーボン層および銀層が順次形成されてい
るコンデンサ素子を有する固体電解コンデンサにおい
て、上記カーボン層が0.1〜0.3mmの厚さをもっ
て形成されていることを特徴とする固体電解コンデン
サ。
1. A solid electrolytic capacitor having a capacitor element in which a solid electrolyte made of manganese dioxide is formed on a sintered pellet of valve metal powder, and a carbon layer and a silver layer are sequentially formed around the solid electrolyte. A solid electrolytic capacitor, wherein the carbon layer is formed with a thickness of 0.1 to 0.3 mm.
JP33256791A 1991-11-21 1991-11-21 Electrolytic capacitor Withdrawn JPH05144685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33256791A JPH05144685A (en) 1991-11-21 1991-11-21 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33256791A JPH05144685A (en) 1991-11-21 1991-11-21 Electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH05144685A true JPH05144685A (en) 1993-06-11

Family

ID=18256370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33256791A Withdrawn JPH05144685A (en) 1991-11-21 1991-11-21 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH05144685A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100697106B1 (en) * 1998-11-06 2007-03-21 더 트러스티스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 Image description system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100697106B1 (en) * 1998-11-06 2007-03-21 더 트러스티스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 Image description system and method

Similar Documents

Publication Publication Date Title
US5621608A (en) Solid electrolytic capacitor having two solid electrolyte layers and method of manufacturing the same
JPH05144685A (en) Electrolytic capacitor
JP2836114B2 (en) Method for manufacturing solid electrolytic capacitor
JP3199096B2 (en) Solid electrolytic capacitors
JP2513369B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0821524B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3391364B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
JP2811648B2 (en) Method for manufacturing solid electrolytic capacitor
JP2738186B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6322048B2 (en)
JPH0338011A (en) Manufacture of solid electrolytic capacitor
JPH07220982A (en) Manufacture of solid electrolytic capacitor
JP3367221B2 (en) Electrolytic capacitor
JP3067900B2 (en) Chip type tantalum solid electrolytic capacitor
JPH07153650A (en) Manufacture of solid electrolytic capacitor
JPH05136009A (en) Chip-type solid electrolytic capacitor and its manufacturing method
JPH0555093A (en) Manufacture of solid electrolytic capacitor
JPH05326341A (en) Manufacture of solid electrolytic capacitor
JPH0555094A (en) Solid electrolytic capacitor
JPH09120935A (en) Tantalum solid-state electrolytic capacitor
JPH05144684A (en) Manufacture of solid electrolytic capacitor
JP2000340460A (en) Solid electrolytic capacitor and its manufacture
JPS6293920A (en) Manufacture of solid electrolytic capacitor
JPH10242000A (en) Tantalum solid electrolytic capacitor element and tantalum solid electrolytic capacitor
JPH08153650A (en) Manufacture of solid-state electrolytic capacitor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204