JPH05136098A - Apparatus and method for manufacturing semiconductor device - Google Patents

Apparatus and method for manufacturing semiconductor device

Info

Publication number
JPH05136098A
JPH05136098A JP30045091A JP30045091A JPH05136098A JP H05136098 A JPH05136098 A JP H05136098A JP 30045091 A JP30045091 A JP 30045091A JP 30045091 A JP30045091 A JP 30045091A JP H05136098 A JPH05136098 A JP H05136098A
Authority
JP
Japan
Prior art keywords
etching
gas
plasma
wafer
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30045091A
Other languages
Japanese (ja)
Inventor
Hideyasu Hanaoka
秀安 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP30045091A priority Critical patent/JPH05136098A/en
Publication of JPH05136098A publication Critical patent/JPH05136098A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To make a plasma density uniform and to improve the uniformity of an etching rate by providing at least two or more plasma reception sensors and at least two or more reaction gas injection ports. CONSTITUTION:In the case of SiO2 etching, an SiO2 is deposited on an entire surface of a wafer, patterned and mounted at a center in a chamber. Then, the chamber is evacuated in vacuum, mixture gas of CHF3 and C2F6 gas is fed from mass flow controllers 115, 116 via a gas blow-off plate 103, applied to a high frequency electrode 110 to generate a plasma, and etching is started. In this case, light emission of plasma at two positions on the surface of a wafer is monitored via light receiving windows 118, 117, signals are fed to detectors 113, 114 by fibers 119, 120 and converted to electric signals. The amplified signals are fed to a calculator 112, a control signal is fed to the controllers 115, 116 to etch while controlling a reaction gas flow rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造装置及
び製造方法に関し特にプラズマエッチング装置と製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device manufacturing apparatus and manufacturing method, and more particularly to a plasma etching apparatus and manufacturing method.

【0002】[0002]

【従来の技術】図11は従来のエッチング装置のチャン
バ−断面図であり、1101は反応ガス、1102はマ
スフロコントロ−ラ−、1103は冷却水、1104は
接地電極、1105はガス吹き出し板、1106は排気
ガス、1107はウェハ−、1108はウェハ−押え、
1109は絶縁物、1110は冷却水、1111は高周
波電極である。従来のエッチング装置と方法は、まず、
1101の反応ガスを1102のマスフロコントロ−ラ
−にて流量制御しながら流し、1105のガス吹き出し
板(図12にガス吹き出し口を示す。)の吹き出し口か
ら吹き出し、そこで、チャンバ−内を真空にして111
1の高周波電極にてプラズマを発生させドライエッチン
グを行う。例としてSiO2エッチングを説明する。ま
ず、チャンバ−内の中心に全面にSiO2をCVDによ
りデポジショウンして付け、そして、フォトリソ工程に
よりフォトレジストをパタ−ニングしたシリコンウェハ
−を1108のウェハ−押えに合うように設置してチャ
ンバ−内を真空状態にしたところで1105のガス吹き
出し板よりCHF3ガスとC26ガスの混合ガスを導入
して1111の高周波電極により高周波を印加してプラ
ズマを発生させエッチングを行っていた。表1にエッチ
ング条件とエッチング特性を示す。
2. Description of the Related Art FIG. 11 is a sectional view of a chamber of a conventional etching apparatus, in which 1101 is a reaction gas, 1102 is a mass flow controller, 1103 is cooling water, 1104 is a ground electrode, 1105 is a gas blowing plate, and 1106 is an exhaust gas, 1107 is a wafer, 1108 is a wafer retainer,
Reference numeral 1109 is an insulator, 1110 is cooling water, and 1111 is a high-frequency electrode. The conventional etching device and method are as follows.
The reaction gas of 1101 is flown while controlling the flow rate by a mass flow controller of 1102, and is blown out from a blowout port of a gas blowout plate of 1105 (a gas blowout port is shown in FIG. 12), where the inside of the chamber is vacuumed. Then 111
Plasma is generated at the high frequency electrode of No. 1 and dry etching is performed. As an example, SiO 2 etching will be described. First, SiO 2 is deposited on the entire surface in the center of the chamber by CVD, and a silicon wafer on which a photoresist is patterned by a photolithography process is installed so as to fit the wafer holder of 1108. When the inside was evacuated, a mixed gas of CHF 3 gas and C 2 F 6 gas was introduced from a gas blowing plate 1105 and a high frequency was applied by a high frequency electrode 1111 to generate plasma for etching. Table 1 shows etching conditions and etching characteristics.

【0003】[0003]

【表1】 CHF3ガス流量 100(SCCM) C26ガス流量 40(SCCM) RFパワ− 800(W) 圧力 200(mTorr) エッチングレ−ト 7652(Å/min) 均一性 7.32(%) 前述の従来の技術では、チャンバ−内のプラズマ密度が
反応ガスの流れが一定で、エッチング装置の構成により
ウェハ−面内におけるエッチングレ−トが不均一となり
問題となっていた。
[Table 1] CHF 3 gas flow rate 100 (SCCM) C 2 F 6 gas flow rate 40 (SCCM) RF power 800 (W) Pressure 200 (mTorr) Etching rate 7652 (Å / min) Uniformity 7.32 ( %) In the above-mentioned conventional technique, the plasma density in the chamber is constant and the flow of the reaction gas is constant, and the etching rate in the wafer surface becomes non-uniform due to the structure of the etching apparatus, which is a problem.

【0004】[0004]

【発明が解決しようとする課題】従来のプラズマエッチ
ング装置ではチャンバ−内のプラズマ密度がチャンバ−
構成に影響され均一にならずエッチングレ−ト及びエッ
チング形状が均一にならなかった。よって、本発明はプ
ラズマエッチング装置のチャンバ−内のプラズマ密度を
均一化してエッチングレ−ト均一性向上を目的とする。
In the conventional plasma etching apparatus, the plasma density in the chamber is
The etching rate and etching shape were not uniform due to the influence of the structure. Therefore, an object of the present invention is to improve the uniformity of the etching rate by making the plasma density in the chamber of the plasma etching apparatus uniform.

【0005】[0005]

【課題を解決するための手段】本発明の半導体製造装置
の製造装置はプラズマを利用したエッチング装置におい
て少なくとも2つ以上のプラズマ受光センサ−を有し、
また、少なくとも2つ以上の反応ガス噴出口を有するこ
とを特徴とする。また、本発明は半導体装置の製造方法
は前記プラズマ受光量の変化により前記反応ガス噴出口
から反応ガス流量を変化させることを特徴とする。
A semiconductor manufacturing apparatus manufacturing apparatus according to the present invention has at least two plasma light receiving sensors in an etching apparatus using plasma.
Moreover, it is characterized by having at least two or more reactive gas ejection ports. Further, the present invention is characterized in that in the method for manufacturing a semiconductor device, the flow rate of the reaction gas from the reaction gas ejection port is changed by changing the amount of received plasma.

【0006】[0006]

【作用】プラズマの変化によりプラズマ発光強度が変化
することよりウェハ−上数点のプラズマ発光強度により
ウェハ−上での反応ガス流量を制御してプラズマ密度を
均一化し、プラズマ密度不均一によるエッチングレ−ト
不均一を防止する。
[Function] Since the plasma emission intensity changes due to the change in plasma, the reaction gas flow rate on the wafer is controlled by the plasma emission intensity at several points on the wafer to make the plasma density uniform, and the etching density caused by the nonuniform plasma density -To prevent unevenness.

【0007】[0007]

【実施例】以下に本発明について実施例に基づき詳細に
説明する。
EXAMPLES The present invention will be described in detail below based on examples.

【0008】図1は本発明の第1の実施例を示すナロ−
ギャップ型RIE装置のチャンバ−断面図であり、10
1は反応ガス、102は接地電極、105は冷却水、1
03はガス吹き出し板、104は排気ガス、106はウ
ェハ−、107はウェハ−押え、108は絶縁物、10
9は冷却水、110は高周波電極、113,114はデ
ィテクタ−、112は計算部、111,はコントロ−ラ
−、119,120はファイバ−、115,116はマ
スフロコントロ−ラ−、117,118は受光窓であ
る。次に本発明の実施例としてSiO2エッチングを例
として説明する。まず、シリコンウェハ−全面にSiO
2をCVDによりデポジションして、フォトリソ工程に
よりパタ−ンニングしたものをチャンバ−内の中心に設
置して、チャンバ−内を真空にして115と116のマ
スフロコントロ−ラ−によりCHF3ガスとC26ガス
の混合ガスを103のガス吹き出し板(図2にガス吹き
出し口を示しす。)より流し込み110の高周波電極の
印加によりプラズマを発生させてエッチングを開始す
る、その時、図3のウェハ−面上の2箇所のプラズマ発
光を118の受光窓(ウェハ−中心部)と、117の受
光窓(ウェハ−外周部)でモニタ−して119,120
のファイバ−により信号を113,114のディテクタ
−に送り電気信号に変換し増幅する、増幅された信号は
112の計算部に送り計算部より制御信号を111のコ
ントロ−ラ−を通して115,116のマスフロコント
ロ−ラ−に送り反応ガス流量制御を行ないながらエッチ
ングを行う。
FIG. 1 is a narrow view showing a first embodiment of the present invention.
FIG. 10 is a cross-sectional view of the chamber of the gap type RIE device.
1 is a reaction gas, 102 is a ground electrode, 105 is cooling water, 1
Reference numeral 03 is a gas blowing plate, 104 is an exhaust gas, 106 is a wafer, 107 is a wafer retainer, 108 is an insulator, 10
Reference numeral 9 is cooling water, 110 is a high-frequency electrode, 113 and 114 are detectors, 112 is a calculation unit, 111 is a controller, 119 and 120 are fibers, and 115 and 116 are mass flow controllers, 117 and 117, respectively. Reference numeral 118 is a light receiving window. Next, SiO 2 etching will be described as an example of the present invention. First, silicon wafer-SiO on the entire surface
2 is deposited by CVD and patterned by a photolithography process is placed at the center of the chamber, and the chamber is evacuated to CHF 3 gas by a mass flow controller 115 and 116. A mixed gas of C 2 F 6 gas was poured from a gas blowing plate 103 (a gas blowing port is shown in FIG. 2) to generate plasma by applying a high frequency electrode 110, and etching was started. Plasma emission at two points on the wafer surface is monitored at 118 light receiving windows (wafer-center portion) and 117 light receiving windows (wafer-outer peripheral portion) to monitor 119 and 120.
The signal is sent to the detectors 113 and 114 by the fiber of the above and is converted into an electric signal for amplification. The amplified signal is sent to the calculation unit of 112 and the control signal is sent from the calculation unit to the controller of 111 and 116. Etching is carried out while sending the reaction gas to the mass flow controller.

【0009】図4、図5、図6に図3のプラズマ発光強
度とエッチング時間を示し、プラズマ発光強度による反
応ガス流量制御パタ−ンについて説明する。1)図4に
おいてプラズマ発光強度が安定する時間t1からt2ま
でプラズマ発光強度をモニタ−してt1からt2までの
間におけるプラズマ発光強度の平均を求め、この平均値
になるように流量を制御する。この方法でエッチングし
た時のエッチング条件とエッチング特性を表2に示す。
The plasma emission intensity and etching time of FIG. 3 are shown in FIGS. 4, 5 and 6, and the reaction gas flow rate control pattern based on the plasma emission intensity will be described. 1) In FIG. 4, the plasma emission intensity is monitored from time t1 to t2 when the plasma emission intensity stabilizes, the average of the plasma emission intensity is calculated from t1 to t2, and the flow rate is controlled to be the average value. .. Table 2 shows etching conditions and etching characteristics when etching is performed by this method.

【0010】[0010]

【表2】 CHF3ガス流量 115(SCCM) C26ガス流量 25(SCCM) RFパワ− 750(W) 圧力 200(mTorr) エッチングレ−ト 7512(Å/min) 均一性 4.25(%) 2)図5においてプラズマ発光強度が安定する時間t1
からt2までプラズマ発光強度をモニタ−してt1から
t2までの間におけるプラズマ発光強度の最大値を求
め、この最大値になるように流量を制御する。この方法
でエッチングした時のエッチング条件とエッチング特性
を表3に示す。
[Table 2] CHF 3 gas flow rate 115 (SCCM) C 2 F 6 gas flow rate 25 (SCCM) RF power 750 (W) Pressure 200 (mTorr) Etching rate 7512 (Å / min) Uniformity 4.25 ( %) 2) Time t1 when the plasma emission intensity is stable in FIG.
The plasma emission intensity is monitored from t1 to t2, the maximum value of the plasma emission intensity is obtained from t1 to t2, and the flow rate is controlled to reach this maximum value. Table 3 shows etching conditions and etching characteristics when etching is performed by this method.

【0011】[0011]

【表3】 CHF3ガス流量 110(SCCM) C26ガス流量 25(SCCM) RFパワ− 800(W) 圧力 200(mTorr) エッチングレ−ト 7658(Å/min) 均一性 5.32(%) 3)図6においてプラズマ発光強度が安定する時間t1
からt2までプラズマ発光強度をモニタ−してt1から
t2までの間におけるプラズマ発光強度の最小値を求
め、この最小値になるように流量を制御する。この方法
でエッチングした時のエッチング条件とエッチング特性
を表4に示す。
[Table 3] CHF 3 gas flow rate 110 (SCCM) C 2 F 6 gas flow rate 25 (SCCM) RF power 800 (W) Pressure 200 (mTorr) Etching rate 7658 (Å / min) Uniformity 5.32 ( %) 3) Time t1 when plasma emission intensity stabilizes in FIG.
The plasma emission intensity is monitored from t1 to t2, the minimum value of the plasma emission intensity from t1 to t2 is obtained, and the flow rate is controlled to be the minimum value. Table 4 shows etching conditions and etching characteristics when etching is performed by this method.

【0012】[0012]

【表4】 CHF3ガス流量 110(SCCM) C26ガス流量 30(SCCM) RFパワ− 750(W) 圧力 200(mTorr) エッチングレ−ト 6850(Å/min) 均一性 3.51(%) 図7は、本発明の第2の実施例を示す平行平板型プラズ
マエッチング装置のチャンバ−断面図であり、701は
高周波電極、702,703はマスフロコントロ−ラ
−、704はコントロ−ラ−、705は計算部、70
6,708はディテクタ−707,709は受光窓、7
10はウェハ−、711はアノ−ド、712,713は
排気ガス714はア−ス、715はカソ−ド電極71
6,717はファイバ−である。次に本発明の実施例と
してSiO2エッチングを例として説明する。まず、シ
リコンウェハ−全面にSiO2をCVDによりデポジシ
ョンして、フォトリソ工程によりパタ−ンニングしたも
のをチャンバ−内の中心に設置して、チャンバ−内を真
空にして702と703のマスフロコントロ−ラ−によ
りCHF3ガスとC26ガスの混合ガスをそれぞれのガ
ス噴出口(図8にガス吹き出し口を示す。)から出し7
15のカソ−ド電極(電極に穴が開いている)を通しチ
ャンバ−内に流し込み701の高周波電極の印加により
プラズマを発生させエッチングする。その時、図3ウェ
ハ−面上の2箇所のプラズマ発光を707の受光窓(ウ
ェハ−外周部)と709の受光窓(ウェハ−中心部)で
モニタ−して716,717のファイバ−により信号を
706,708のディテクタ−に送り電気信号に変換し
増幅する、そして、増幅された信号は705の計算部に
送り計算部より制御信号を704のコントロ−ラ−を通
して702,703のマスフロコントロ−ラ−に送り反
応ガス流量制御を行ないながらエッチングを行なう。プ
ラズマ発光強度による反応ガス流量制御方法は先の第1
の実施例と同様で、また、プラズマ発光強度による反応
ガス流量制御パタ−ンも同様の3つのパタ−ンである。
表5にプラズマ発光強度の平均値を求めて制御するパタ
−ンのエッチング条件とエッチング特性を示す。
[Table 4] CHF 3 gas flow rate 110 (SCCM) C 2 F 6 gas flow rate 30 (SCCM) RF power 750 (W) Pressure 200 (mTorr) Etching rate 6850 (Å / min) Uniformity 3.51 ( FIG. 7 is a chamber sectional view of a parallel plate type plasma etching apparatus showing a second embodiment of the present invention, in which 701 is a high frequency electrode, 702 and 703 are mass flow controllers, and 704 is a controller. La, 705 is a calculation unit, 70
6, 708 are detectors 707, 709 are light receiving windows, 7
Reference numeral 10 is a wafer, 711 is an anode, 712 and 713 are exhaust gas 714, and 715 is a cathode electrode 71.
Reference numerals 6,717 are fibers. Next, SiO 2 etching will be described as an example of the present invention. First, SiO 2 is deposited on the entire surface of a silicon wafer by CVD, and a patterning pattern formed by a photolithography process is set at the center of the chamber. The chamber is evacuated to a mass flow controller 702 and 703. A mixed gas of CHF 3 gas and C 2 F 6 gas from each gas jet port (the gas blowout port is shown in FIG. 8) 7
15 cathode electrodes (holes are formed in the electrodes) are flown into the chamber and plasma is generated by the application of the high frequency electrode 701 for etching. At that time, the plasma light emission at two locations on the wafer surface in FIG. 3 is monitored by the light receiving window 707 (wafer-outer peripheral portion) and the light receiving window 709 (wafer central portion), and signals are output by the fibers 716 and 717. It is sent to the detectors 706 and 708 and converted into an electric signal for amplification, and the amplified signal is sent to the calculator 705 and the control signal is sent from the calculator 704 through the controller 704 to the mass flow controllers 702 and 703. Etching is carried out while controlling the flow rate of the reaction gas by sending it to the laser. The reaction gas flow rate control method based on the plasma emission intensity is the first
In the same manner as in Example 1, the reaction gas flow rate control pattern based on the plasma emission intensity is also the same three patterns.
Table 5 shows the etching conditions and etching characteristics of the pattern for controlling by obtaining the average value of the plasma emission intensity.

【0013】[0013]

【表5】 CHF3ガス流量 80(SCCM) C26ガス流量 15(SCCM) RFパワ− 300(W) 圧力 70(mTorr) エッチングレ−ト 896(Å/min) 均一性 5.98(%) また、プラズマ発光強度の最大値及び最小値を求め制御
するパタ−ンのエッチング条件及びエッチング特性を表
6,7に示す。
[Table 5] CHF 3 gas flow rate 80 (SCCM) C 2 F 6 gas flow rate 15 (SCCM) RF power 300 (W) Pressure 70 (mTorr) Etching rate 896 (Å / min) Uniformity 5.98 ( %) Further, Tables 6 and 7 show the etching conditions and etching characteristics of the pattern for controlling the maximum and minimum values of the plasma emission intensity.

【0014】[0014]

【表6】 CHF3ガス流量 70(SCCM) C26ガス流量 20(SCCM) RFパワ− 250(W) 圧力 100(mTorr) エッチングレ−ト 1003(Å/min) 均一性 6.58(%)[Table 6] CHF 3 gas flow rate 70 (SCCM) C 2 F 6 gas flow rate 20 (SCCM) RF power 250 (W) Pressure 100 (mTorr) Etching rate 1003 (Å / min) Uniformity 6.58 ( %)

【0015】[0015]

【表7】 CHF3ガス流量 75(SCCM) C26ガス流量 10(SCCM) RFパワ− 210(W) 圧力 60(mTorr) エッチングレ−ト 752(Å/min) 均一性 3.91(%) 図9は本発明の第3の実施例を示すカソ−ドカップリン
グ型RIE装置のチャンバ−断面図であり、901,9
02はマスフロコントロ−ラ−、903はコントロ−ラ
−、904は計算部、905,906はディテクタ−、
907は冷却水、908はアノ−ド(ガス吹き出し板)
909,910は受光窓、911はウェハ−、912は
絶縁物、913,914は排気ガス、915は冷却水、
916は高周波電極、917,918はファイバ−であ
る。次に本発明の実施例としてSiO2エッチングを例
として説明する。まず、シリコンウェハ−全面にSiO
2をCVDによりデポジションして、フォトリソ工程に
よりパタ−ンニングしたものをチャンバ−内の中心に設
置して、チャンバ−内を真空にして901と902のマ
スフロコントロ−ラ−によりCHF3ガスとC26ガス
の混合ガスをそれぞれのガス噴出口(図10にガス吹き
出し口を示す。)から出し908のアノ−ドを通しチャ
ンバ−内に流し込み916の高周波電極の印加によりプ
ラズマを発生させエッチングする。
[Table 7] CHF 3 gas flow rate 75 (SCCM) C 2 F 6 gas flow rate 10 (SCCM) RF power 210 (W) Pressure 60 (mTorr) Etching rate 752 (Å / min) Uniformity 3.91 ( 9) FIG. 9 is a sectional view of a chamber of a cathodic coupling type RIE apparatus showing a third embodiment of the present invention.
02 is a mass flow controller, 903 is a controller, 904 is a calculator, 905 and 906 are detectors,
Reference numeral 907 is cooling water, and 908 is an anode (gas blowing plate).
909 and 910 are light receiving windows, 911 is a wafer, 912 is an insulator, 913 and 914 are exhaust gas, 915 is cooling water,
Reference numeral 916 is a high frequency electrode, and 917 and 918 are fibers. Next, SiO2 etching will be described as an example of the present invention. First, silicon wafer-SiO on the entire surface
2 is deposited by CVD and patterned by a photolithography process is set in the center of the chamber, and the chamber is evacuated to CHF 3 gas by a mass flow controller 901 and 902. A mixed gas of C 2 F 6 gas is discharged from each of the gas ejection ports (the gas outlet is shown in FIG. 10) and is introduced into the chamber through the anode of 908 to generate plasma by applying the high frequency electrode of 916. Etching.

【0016】その時、図3のウェハ−面上の2箇所のプ
ラズマ発光を910の受光窓(ウェハ−外周部)と90
9の受光窓(ウェハ−中心部)でモニタ−して917,
918のファイバ−により信号を906,905のディ
テクタ−に送り電気信号に変換し増幅する、そして、増
幅された信号は904の計算部に送り計算部より制御信
号を903のコントロ−ラ−を通して901,902の
マスフロコントロ−ラ−に送り反応ガス流量制御を行な
いながらエッチングを行なう。プラズマ発光強度による
反応ガス流量制御方法は先の第1の実施例と同様で、ま
た、プラズマ発光強度による反応ガス流量制御パタ−ン
も同様の3つのパタ−ンである。表8にプラズマ発光強
度の平均値を求めて制御するパタ−ンのエッチング条件
とエッチング特性を示す。また、プラズマ発光強度の最
大値または最小値を求め制御するパタ−ンのエッチング
条件及びエッチング特性を表9,10に示す。
At that time, plasma emission at two points on the wafer surface of FIG.
Monitored at the light receiving window 9 (wafer-center part) 917,
The signal is sent to the detectors 906 and 905 by the fiber 918 to be converted into an electric signal and amplified, and the amplified signal is sent to the calculator 904 and the control signal is sent from the calculator 903 through the controller 903. , 902 to the mass flow controller for etching while controlling the flow rate of the reaction gas. The method of controlling the reaction gas flow rate by the plasma emission intensity is the same as that of the first embodiment, and the reaction gas flow rate control pattern by the plasma emission intensity is also the same three patterns. Table 8 shows the etching conditions and etching characteristics of the pattern for controlling by obtaining the average value of the plasma emission intensity. Tables 9 and 10 show the etching conditions and etching characteristics of the pattern for obtaining and controlling the maximum or minimum value of the plasma emission intensity.

【0017】[0017]

【表8】 CHF3ガス流量 60(SCCM) C26ガス流量 20(SCCM) RFパワ− 200(W) 圧力 50(mTorr) エッチングレ−ト 1005(Å/min) 均一性 5.10(%)[Table 8] CHF 3 gas flow rate 60 (SCCM) C 2 F 6 gas flow rate 20 (SCCM) RF power 200 (W) Pressure 50 (mTorr) Etching rate 1005 (Å / min) Uniformity 5.10 ( %)

【0018】[0018]

【表9】 CHF3ガス流量 55(SCCM) C26ガス流量 25(SCCM) RFパワ− 280(W) 圧力 70(mTorr) エッチングレ−ト 1250(Å/min) 均一性 5.97(%)[Table 9] CHF 3 gas flow rate 55 (SCCM) C 2 F 6 gas flow rate 25 (SCCM) RF power 280 (W) Pressure 70 (mTorr) Etching rate 1250 (Å / min) Uniformity 5.97 ( %)

【0019】[0019]

【表10】 CHF3ガス流量 70(SCCM) C26ガス流量 25(SCCM) RFパワ− 230(W) 圧力 80(mTorr) エッチングレ−ト 950(Å/min) 均一性 3.98(%)[Table 10] CHF 3 gas flow rate 70 (SCCM) C 2 F 6 gas flow rate 25 (SCCM) RF power 230 (W) Pressure 80 (mTorr) Etching rate 950 (Å / min) Uniformity 3.98 ( %)

【0020】[0020]

【発明の効果】本発明の製造工程によれば、プラズマ密
度が均一化しSiO2エッチングにおいてウェハ−面内
のSiO2のエッチングレ−トとの均一性が向上した。
同様に本発明のプラズマエッチング装置にてポリシリコ
ンまたはアルミニウム合金のエッチングを行うと同様な
効果が期待できる。
According to the manufacturing process of the present invention, the plasma density is made uniform, and the uniformity of the etching rate of SiO 2 within the wafer surface in SiO 2 etching is improved.
Similarly, the same effect can be expected by etching polysilicon or aluminum alloy with the plasma etching apparatus of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の半導体装置の製造装置
を示す断面図である。
FIG. 1 is a cross-sectional view showing a semiconductor device manufacturing apparatus according to a first embodiment of the present invention.

【図2】本発明の第1の実施例の半導体装置の製造装置
の反応ガス噴出口位置を示す平面図である。
FIG. 2 is a plan view showing a reactive gas ejection port position of the semiconductor device manufacturing apparatus according to the first embodiment of the present invention.

【図3】本発明の半導体装置の製造装置におけるウェハ
−上のプラズマ発光測定領域を示す図である。
FIG. 3 is a diagram showing a plasma emission measurement region on a wafer in the semiconductor device manufacturing apparatus of the present invention.

【図4】本発明の半導体装置の製造装置によりSiO2
エッチングした時のエッチング時間とプラズマ発光強度
を示す図である。
FIG. 4 shows SiO 2 produced by the semiconductor device manufacturing apparatus of the present invention.
It is a figure which shows the etching time and the plasma emission intensity at the time of etching.

【図5】本発明の半導体装置の製造装置によりSiO2
エッチングした時のエッチング時間とプラズマ発光強度
を示す図である。
FIG. 5 is a view showing SiO 2 produced by the semiconductor device manufacturing apparatus of the present invention.
It is a figure which shows the etching time and the plasma emission intensity at the time of etching.

【図6】本発明の半導体装置の製造装置によりSiO2
エッチングした時のエッチング時間とプラズマ発光強度
示す図である。
FIG. 6 is a schematic diagram of a SiO 2 manufacturing apparatus of the present invention.
It is a figure which shows the etching time and plasma emission intensity at the time of etching.

【図7】本発明の第1の実施例の半導体装置の製造装置
を示す断面図である。
FIG. 7 is a cross-sectional view showing the semiconductor device manufacturing apparatus of the first embodiment of the present invention.

【図8】本発明の第1の実施例の半導体装置の製造装置
の反応ガス噴出口位置を示す平面図である。
FIG. 8 is a plan view showing a reactive gas ejection port position of the semiconductor device manufacturing apparatus according to the first embodiment of the present invention.

【図9】本発明の第1の実施例の半導体装置の製造装置
を示す断面図である。
FIG. 9 is a cross-sectional view showing the semiconductor device manufacturing apparatus of the first embodiment of the present invention.

【図10】本発明の第1の実施例の半導体装置の製造装
置の反応ガス噴出口位置を示す平面図である。
FIG. 10 is a plan view showing a reactive gas ejection port position of the semiconductor device manufacturing apparatus according to the first embodiment of the present invention.

【図11】従来の半導体装置の製造装置を示す断面図で
ある。
FIG. 11 is a cross-sectional view showing a conventional semiconductor device manufacturing apparatus.

【図12】従来の半導体装置の製造装置の反応ガス噴出
口位置を示す平面図である。
FIG. 12 is a plan view showing a reactive gas ejection port position of a conventional semiconductor device manufacturing apparatus.

【符号の説明】[Explanation of symbols]

101 反応ガス 102 接地電極 103 ガス吹き出し板 104 排気ガス 105 冷却水 106 ウェハ− 107 ウェハ−押え 108 絶縁物 109 冷却水 110 高周波電極 111 コントロ−ラ− 112 計算部− 113,114 ディテクタ− 115,116マスフロコントロ−ラ− 117,118 受光窓 119,120 ファイバ− 701 高周波電極 702,703 マスフロコントロ−ラ− 704 コントロ−ラ− 705 計算部 706,708 ディテクタ− 707,709 受光窓 710 ウェハ− 711 アノ−ド 712,713 排気ガス 714 ア−ス 715 カソ−ド電極 716,717 ファイバ− 901,902 マスフロコントロ−ラ− 903 コントロ−ラ− 904 計算部 905,906 ディテクタ− 907 冷却水 908 アノ−ド(ガス吹き出し板) 909,910 受光窓 911 ウェハ− 912 絶縁物 913,914 排気ガス 915 冷却水 916 高周波電極 917,918 ファイバ− 1101 反応ガス 1102 マスフロコントロ−ラ− 1103 冷却水 1104 接地電極 1105 ガス吹き出し板 1106 排気ガス 1107 ウェハ− 1108 ウェハ−押え 1109 絶縁物 1110 冷却水 1111 高周波電極 101 Reaction Gas 102 Ground Electrode 103 Gas Blowing Plate 104 Exhaust Gas 105 Cooling Water 106 Wafer-107 Wafer-Holder 108 Insulator 109 Cooling Water 110 High-Frequency Electrode 111 Controller-112 Calculation Unit-113,114 Detector-115,116 Mass Flow controller 117,118 Light receiving window 119,120 Fiber 701 High frequency electrode 702,703 Mass flow controller 704 Controller 705 Calculation unit 706,708 Detector 707,709 Light receiving window 710 Wafer 711 Anno -De 712,713 exhaust gas 714 earth 715 cathode electrode 716,717 fiber 901,902 mass flow controller 903 controller 904 calculation unit 905,906 detector 907 cooling Water 908 Anode (gas blowing plate) 909,910 Light receiving window 911 Wafer 912 Insulator 913,914 Exhaust gas 915 Cooling water 916 High frequency electrode 917,918 Fiber 1101 Reaction gas 1102 Mass flow controller 1103 Cooling water 1104 Ground Electrode 1105 Gas Blowout Plate 1106 Exhaust Gas 1107 Wafer-1108 Wafer-Holder 1109 Insulator 1110 Cooling Water 1111 High Frequency Electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 プラズマを利用したエッチング装置にお
いて少なくとも2つ以上のプラズマ受光センサ−を有
し、また、少なくとも2つ以上の反応ガス噴出口を有す
ることを特徴とする半導体装置の製造装置。
1. An apparatus for manufacturing a semiconductor device, which comprises at least two or more plasma light receiving sensors in an etching apparatus using plasma, and at least two or more reactive gas ejection ports.
【請求項2】 半導体装置の製造装置について前記プラ
ズマ受光量の変化により前記反応ガス噴出口から反応ガ
ス流量を変化させることを特徴とする半導体装置の製造
方法。
2. A method of manufacturing a semiconductor device, comprising: changing a flow rate of the reaction gas from the reaction gas jet port according to a change in the amount of received plasma light in the apparatus for manufacturing the semiconductor device.
JP30045091A 1991-11-15 1991-11-15 Apparatus and method for manufacturing semiconductor device Pending JPH05136098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30045091A JPH05136098A (en) 1991-11-15 1991-11-15 Apparatus and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30045091A JPH05136098A (en) 1991-11-15 1991-11-15 Apparatus and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPH05136098A true JPH05136098A (en) 1993-06-01

Family

ID=17884947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30045091A Pending JPH05136098A (en) 1991-11-15 1991-11-15 Apparatus and method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH05136098A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2406706A (en) * 2003-09-30 2005-04-06 Agere Systems Inc Real-time gate etch critical dimension control by oxygen monitoring
US6923885B2 (en) 2000-02-21 2005-08-02 Hitachi, Ltd. Plasma processing system and apparatus and a sample processing method
JP2006049497A (en) * 2004-08-03 2006-02-16 Hitachi High-Technologies Corp Apparatus and method of plasma processing
CN100390933C (en) * 2004-12-09 2008-05-28 东京毅力科创株式会社 Gas supply unit, substrate processing apparatus, and supply gas setting method
US7713756B2 (en) 2003-08-05 2010-05-11 Hitachi High-Technologies Corporation Apparatus and method for plasma etching
KR100978754B1 (en) * 2008-04-03 2010-08-30 주식회사 테스 Plasma processing apparatus
US20110022215A1 (en) * 2006-06-07 2011-01-27 Lam Research Corporation Apparatus to detect fault conditions of a plasma processing reactor
US7967930B2 (en) 2006-10-30 2011-06-28 Applied Materials, Inc. Plasma reactor for processing a workpiece and having a tunable cathode
US7976671B2 (en) 2006-10-30 2011-07-12 Applied Materials, Inc. Mask etch plasma reactor with variable process gas distribution
US8012366B2 (en) 2006-10-30 2011-09-06 Applied Materials, Inc. Process for etching a transparent workpiece including backside endpoint detection steps
US8017029B2 (en) 2006-10-30 2011-09-13 Applied Materials, Inc. Plasma mask etch method of controlling a reactor tunable element in accordance with the output of an array of optical sensors viewing the mask backside
US8197634B2 (en) * 2007-05-22 2012-06-12 Hitachi High-Technologies Corporation Plasma processing apparatus
US8202393B2 (en) * 2007-08-29 2012-06-19 Lam Research Corporation Alternate gas delivery and evacuation system for plasma processing apparatuses
US8512510B2 (en) 2002-11-26 2013-08-20 Tokyo Electron Limited Plasma processing method and apparatus
US20150162227A1 (en) * 2013-12-10 2015-06-11 Taiwan Semiconductor Manufacturing Co., Ltd. Mechanisms for etching apparatus and etching-detection method
US9218944B2 (en) * 2006-10-30 2015-12-22 Applied Materials, Inc. Mask etch plasma reactor having an array of optical sensors viewing the workpiece backside and a tunable element controlled in response to the optical sensors
US9390892B2 (en) 2012-06-26 2016-07-12 Kla-Tencor Corporation Laser sustained plasma light source with electrically induced gas flow
US20190348317A1 (en) * 2016-08-23 2019-11-14 Applied Materials, Inc. Edge ring or process kit for semiconductor process module
US20210272777A1 (en) * 2018-07-19 2021-09-02 Nissin Electric Co., Ltd. Plasma treatment device

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169254B2 (en) 2000-02-21 2007-01-30 Hitachi, Ltd. Plasma processing system and apparatus and a sample processing method
US6923885B2 (en) 2000-02-21 2005-08-02 Hitachi, Ltd. Plasma processing system and apparatus and a sample processing method
US7686917B2 (en) 2000-02-21 2010-03-30 Hitachi, Ltd. Plasma processing system and apparatus and a sample processing method
US8512510B2 (en) 2002-11-26 2013-08-20 Tokyo Electron Limited Plasma processing method and apparatus
US8083889B2 (en) 2003-08-05 2011-12-27 Hitachi High-Technologies Corporation Apparatus and method for plasma etching
US7713756B2 (en) 2003-08-05 2010-05-11 Hitachi High-Technologies Corporation Apparatus and method for plasma etching
US7261745B2 (en) 2003-09-30 2007-08-28 Agere Systems Inc. Real-time gate etch critical dimension control by oxygen monitoring
GB2406706A (en) * 2003-09-30 2005-04-06 Agere Systems Inc Real-time gate etch critical dimension control by oxygen monitoring
GB2406706B (en) * 2003-09-30 2007-04-04 Agere Systems Inc Real-time gate etch critical dimension control by oxygen monitoring
JP4522783B2 (en) * 2004-08-03 2010-08-11 株式会社日立ハイテクノロジーズ Plasma processing apparatus and plasma processing method
JP2006049497A (en) * 2004-08-03 2006-02-16 Hitachi High-Technologies Corp Apparatus and method of plasma processing
CN100390933C (en) * 2004-12-09 2008-05-28 东京毅力科创株式会社 Gas supply unit, substrate processing apparatus, and supply gas setting method
US20110022215A1 (en) * 2006-06-07 2011-01-27 Lam Research Corporation Apparatus to detect fault conditions of a plasma processing reactor
US7976671B2 (en) 2006-10-30 2011-07-12 Applied Materials, Inc. Mask etch plasma reactor with variable process gas distribution
US8012366B2 (en) 2006-10-30 2011-09-06 Applied Materials, Inc. Process for etching a transparent workpiece including backside endpoint detection steps
US8017029B2 (en) 2006-10-30 2011-09-13 Applied Materials, Inc. Plasma mask etch method of controlling a reactor tunable element in accordance with the output of an array of optical sensors viewing the mask backside
US7967930B2 (en) 2006-10-30 2011-06-28 Applied Materials, Inc. Plasma reactor for processing a workpiece and having a tunable cathode
US10170280B2 (en) 2006-10-30 2019-01-01 Applied Materials, Inc. Plasma reactor having an array of plural individually controlled gas injectors arranged along a circular side wall
US9218944B2 (en) * 2006-10-30 2015-12-22 Applied Materials, Inc. Mask etch plasma reactor having an array of optical sensors viewing the workpiece backside and a tunable element controlled in response to the optical sensors
US8197634B2 (en) * 2007-05-22 2012-06-12 Hitachi High-Technologies Corporation Plasma processing apparatus
US8202393B2 (en) * 2007-08-29 2012-06-19 Lam Research Corporation Alternate gas delivery and evacuation system for plasma processing apparatuses
KR100978754B1 (en) * 2008-04-03 2010-08-30 주식회사 테스 Plasma processing apparatus
TWI393163B (en) * 2008-04-03 2013-04-11 Tes Co Ltd Plasma processing apparatus
US8138444B2 (en) 2008-04-03 2012-03-20 Tes Co., Ltd. Plasma processing apparatus
US9390892B2 (en) 2012-06-26 2016-07-12 Kla-Tencor Corporation Laser sustained plasma light source with electrically induced gas flow
US20150162227A1 (en) * 2013-12-10 2015-06-11 Taiwan Semiconductor Manufacturing Co., Ltd. Mechanisms for etching apparatus and etching-detection method
US10515813B2 (en) * 2013-12-10 2019-12-24 Taiwan Semiconductor Manufacturing Co., Ltd. Mechanisms for etching apparatus and etching-detection method
US20190348317A1 (en) * 2016-08-23 2019-11-14 Applied Materials, Inc. Edge ring or process kit for semiconductor process module
US20210272777A1 (en) * 2018-07-19 2021-09-02 Nissin Electric Co., Ltd. Plasma treatment device

Similar Documents

Publication Publication Date Title
JPH05136098A (en) Apparatus and method for manufacturing semiconductor device
JP3323530B2 (en) Method for manufacturing semiconductor device
US8187415B2 (en) Plasma etch reactor with distribution of etch gases across a wafer surface and a polymer oxidizing gas in an independently fed center gas zone
US4614639A (en) Compound flow plasma reactor
JPH0359573B2 (en)
JPH10125662A (en) Method and system for controlling side wall profile during etching process
JPH1098022A (en) Dry etching system and dry etching method
JPH09223685A (en) Plasma processing apparatus and plasma processing method
JP2002110642A (en) Plasma treatment method
JP3217581B2 (en) Etching end point detection method
JP2006066536A (en) Plasma processing device and its processing method
JPS63239948A (en) Dry etching apparatus
JPH0343772B2 (en)
JP2000299311A (en) Plasma processing system
JPH06120177A (en) Method of dry etching and apparatus used in same
JP3752468B2 (en) Manufacturing method of semiconductor device
JPH07201822A (en) Dry etching device
JP3752464B2 (en) Manufacturing method of semiconductor device
JPH10335308A (en) Plasma treating method
JP3327285B2 (en) Plasma processing method and semiconductor device manufacturing method
JPH06163465A (en) Dry etching device
JPH0661190A (en) Dry etching method
JP2003059900A (en) Plasma processing system and plasma processing method
JP3609241B2 (en) Plasma processing apparatus and plasma processing method
JPS61166131A (en) Plasma treatment apparatus