JPH05133306A - Fuel injection valve for engine - Google Patents

Fuel injection valve for engine

Info

Publication number
JPH05133306A
JPH05133306A JP3298884A JP29888491A JPH05133306A JP H05133306 A JPH05133306 A JP H05133306A JP 3298884 A JP3298884 A JP 3298884A JP 29888491 A JP29888491 A JP 29888491A JP H05133306 A JPH05133306 A JP H05133306A
Authority
JP
Japan
Prior art keywords
fuel
orifice
air
swirling
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3298884A
Other languages
Japanese (ja)
Other versions
JP3112038B2 (en
Inventor
Toshiji Nogi
利治 野木
Minoru Osuga
大須賀  稔
Takashige Oyama
宜茂 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03298884A priority Critical patent/JP3112038B2/en
Publication of JPH05133306A publication Critical patent/JPH05133306A/en
Application granted granted Critical
Publication of JP3112038B2 publication Critical patent/JP3112038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To atomize the injection fuel of an engine with a small quantity of air and to perform the atomization even under specification of plural air intake valves per cylinder. CONSTITUTION:When a measuring valve 4 is separated from a seat 8 to be opened, a fuel is circulated in a fuel circulating orifice 7B by a fuel circulating member 7 provided upstream from a measuring orifice 9. An air circulating orifice 11B is provided downstream from the measuring orifice 9. In this orifice 11B, the circulating fuel collides with a reversely circulating air flow so that the fuel is properly decelerated while it is atomized. Then, the fuel and air pass through a mixing promoting orifice 14 with a reduced diameter smaller than that of the orifice 11B. In this small space 14, the fuel and air are efficiently mixed together so that the atomization of the fuel with the small quantity of air can be performed. The atomized fuel is injected from an outlet 15. The orifice 14 may be branched corresponding to each of a plurality of suction valves.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエンジンの燃料噴射弁に
係り、更に詳細には噴射燃料の微粒化を図るための技術
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection valve for an engine, and more particularly to a technique for atomizing injected fuel.

【0002】[0002]

【従来の技術】エンジンの燃料噴射弁から噴射される燃
料は、微粒化されるほど空気との混合を良くし、空燃比
の精度向上ひいては運転性、排気浄化性の向上につなが
る。そのため、従来より、例えば特開昭57−1107
69号公報に開示されるように、噴射ノズルの周囲に吸
気通路の空気の一部をエアバイパス通路を介して導く環
状隙間を形成し、この環状隙間から出る空気流を噴射燃
料に衝突させたり、特開昭64−24161号公報に開
示されるように、噴射燃料を旋回させると共にこの噴射
燃料に旋回方向が噴射燃料と逆方向の空気流を衝突させ
たりしている。
2. Description of the Related Art The fuel injected from a fuel injection valve of an engine is mixed with air more finely as it is atomized, which leads to improvement of accuracy of air-fuel ratio and further improvement of drivability and exhaust gas purification. Therefore, conventionally, for example, JP-A-57-1107
As disclosed in Japanese Patent Publication No. 69, an annular gap for guiding a part of the air in the intake passage through the air bypass passage is formed around the injection nozzle, and the air flow coming out of the annular gap collides with the injected fuel. As disclosed in Japanese Patent Laid-Open No. 64-24161, the injected fuel is swirled and an air flow whose swirling direction is opposite to that of the injected fuel collides with the injected fuel.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記のように
噴射された旋回燃料に空気流を衝突させて微粒化させる
場合、従来は微粒化用空気を少なくする点について充分
な配慮がなされていない。
However, when the swirling fuel injected as described above is collided with an air stream to be atomized, conventionally, sufficient consideration has not been given to reducing the amount of atomizing air. ..

【0004】すなわち、微粒化用空気が多い場合には、
燃料の粒径を小さくすることができるが、実際のエンジ
ンに適用する場合には、微粒化用空気が多すぎると、シ
リンダ内の空気と燃料との比を最適にすることはでき
ず、排気浄化性、運転性が悪化する。特に、アイドル運
転時のように燃料量が少ない場合には相対的に微粒化用
空気が過多になる傾向がある。
That is, when there is a large amount of air for atomization,
The particle size of the fuel can be reduced, but when applied to an actual engine, if the air for atomization is too much, the ratio of the air in the cylinder to the fuel cannot be optimized, and the exhaust gas Purification performance and drivability deteriorate. In particular, when the amount of fuel is small, such as during idle operation, the atomizing air tends to be relatively excessive.

【0005】本発明は以上の点に鑑みてなされ、第1の
目的は、少ない空気量で燃料の効率の良い微粒化を図る
ことにある。
The present invention has been made in view of the above points, and a first object thereof is to achieve efficient atomization of fuel with a small amount of air.

【0006】第2の目的は、1気筒あたり複数吸気弁の
エンジン仕様であっても、少ない空気量で燃料の効率の
良い微粒化を図ることにある。
A second object is to achieve efficient atomization of fuel with a small amount of air even if the engine has a plurality of intake valves per cylinder.

【0007】[0007]

【課題を解決するための手段】第1の目的を達成するた
めの基本的な課題解決手段としては、燃料の計量オリフ
ィスの上流に燃料を旋回させるための燃料旋回用オリフ
ィスを設け、計量オリフィス下流には空気流を導入しつ
つこの空気流に燃料の旋回方向と逆方向に旋回力を付与
する空気旋回用オリフィスを設け、この空気旋回用オリ
フィスにて旋回空気と計量オリフィスを通して噴射され
た旋回燃料とを衝突させるよう設定し、且つ、空気旋回
用オリフィスの下流には該空気旋回用オリフィスよりも
細径にした燃料・空気混合促進用オリフィスを設けた
(これを第1の課題解決手段とする)。
As a basic means for solving the first problem, a fuel swirling orifice for swirling fuel is provided upstream of a fuel metering orifice, and a fuel swirling orifice is provided downstream of the metering orifice. Is provided with an air swirling orifice that applies a swirling force to the air flow in the direction opposite to the swirling direction of the fuel while introducing the air flow, and the swirling fuel injected through the swirling air and the metering orifice at this air swirling orifice And a fuel / air mixture promoting orifice having a smaller diameter than the air swirling orifice is provided downstream of the air swirling orifice (this is the first problem solving means. ).

【0008】第2の目的を達成する基本的な課題解決手
段としては、一つは、上記同様に燃料の計量オリフィス
の上流に燃料旋回用オリフィスを下流に空気旋回用オリ
フィスを設け、更に空気旋回用オリフィスの下流には、
該空気旋回用オリフィスよりも細径にした燃料・空気混
合促進用オリフィスをエンジンの1気筒あたり複数吸気
弁に対応して分岐形成した(これを第2の課題解決手段
Aとする)。
As a basic means for solving the second object, one is to provide a fuel swirling orifice upstream of the fuel metering orifice, an air swirling orifice downstream of the fuel metering orifice, and an air swirling orifice as described above. Downstream of the orifice for
A fuel / air mixture promoting orifice having a smaller diameter than the air swirling orifice was formed in a branch manner corresponding to a plurality of intake valves per cylinder of the engine (this is referred to as a second problem solving means A).

【0009】もう一つは、燃料の計量オリフィスの上流
に燃料を旋回させるための燃料旋回用オリフィスを設
け、計量オリフィス下流には、噴射される旋回燃料をエ
ンジンの1気筒あたり複数吸気弁に対応して分配させる
第1の分岐オリフィス(分岐オリフィスとは、複数の分
岐要素たるオリフィスの集合体を指す)を設け、さらに
この第1の分岐オリフィスの下流には、第1の分岐オリ
フィス同様に分岐された第2の分岐オリフィスを設け、
この第2の分岐オリフィスの各オリフィスにて空気流を
導入しつつこの空気流に燃料の旋回方向と逆方向に旋回
力を付与して、旋回空気と旋回燃料とを衝突させるよう
設定した(これを第2の課題解決手段Bとする)。
The other is to provide a fuel swirling orifice for swirling the fuel upstream of the fuel metering orifice, and the swirling fuel to be injected corresponds to a plurality of intake valves per cylinder of the engine downstream of the metering orifice. A first branch orifice (a branch orifice means an assembly of a plurality of branch elements) for further distribution, and further downstream of the first branch orifice, a branch is provided in the same manner as the first branch orifice. A second branched orifice provided,
It is set that the swirling force and the swirling fuel collide with each other by applying a swirling force to the air flow in the direction opposite to the swirling direction of the fuel while introducing the air flow at each orifice of the second branch orifice (this Is referred to as a second problem solving means B).

【0010】[0010]

【作用】第1課題解決手段の作用…燃料は、計量オリフ
ィス上流の燃料旋回用オリフィスで旋回が加えられ、計
量オリフィスから空気旋回用オリフィスに噴射される。
このように計量オリフィス上流で燃料を旋回させた場合
には、計量オリフィス下流で燃料を旋回させる方式に較
べて圧力損失を少なくできる。
Operation of the first problem solving means: Fuel is swirled by the fuel swirling orifice upstream of the metering orifice and is injected from the metering orifice to the air swirling orifice.
When the fuel is swirled upstream of the metering orifice as described above, the pressure loss can be reduced as compared with the method of swirling the fuel downstream of the metering orifice.

【0011】空気旋回用オリフィスでは、空気流が燃料
と逆方向で旋回してこの旋回空気と旋回燃料が衝突す
る。この旋回空気流と旋回燃料流の衝突は、計量オリフ
ィス出口に接近した位置で行われるので、燃料が拡がる
前に微粒化が始まる。また、空気と燃料とが逆方向旋回
を伴って衝突するので、空気と燃料の相対速度が大き
く、微粒化が活発に行われる。さらに、空気旋回用オリ
フィスで合流した空気と燃料は空気旋回用オリフィスよ
り細径にしたオリフィス(燃料・空気混合促進用オリフ
ィス)を通るので、この通過過程で空気と微粒化燃料を
小さな空間にて両者の混合を効率良く促進し、その結
果、少ない空気量により、さらに燃料の微粒化が図ら
れ、その後この微粒化燃料が噴出する。
In the air swirling orifice, the swirling air and the swirling fuel collide with each other by swirling the air flow in the direction opposite to that of the fuel. Since the swirling air flow and swirling fuel flow collide with each other at a position close to the outlet of the metering orifice, atomization starts before the fuel spreads. Further, since the air and the fuel collide with each other in the opposite direction, the relative velocity of the air and the fuel is large, and the atomization is actively performed. Furthermore, since the air and fuel combined at the air swirling orifice pass through an orifice (fuel / air mixing promotion orifice) that has a smaller diameter than the air swirling orifice, air and atomized fuel can be stored in a small space during this passage process. The mixing of the two is efficiently promoted, and as a result, the atomization of the fuel is further achieved with a small amount of air, and thereafter the atomized fuel is ejected.

【0012】第2の課題解決手段Aの作用…燃料と空気
とが空気旋回用オリフィスにて衝突する過程は上記第1
の課題解決手段同様に行われ、さらにこの燃料と空気は
空気旋回用オリフィス下流の分岐オリフィスに分配され
て導かれる。この分岐オリフィスは、それぞれが空気旋
回用オリフィスよりも細径にしてあるので、この通過過
程で空気と微粒化燃料を小さな空間にて両者の混合を効
率良く促進し、その結果、少ない空気量により、さらに
燃料の微粒化が図られ、その後各吸気弁に向けて微粒化
燃料が分配されつつ噴出する。
Operation of the second problem-solving means A ... The process in which the fuel and the air collide with each other at the air swirling orifice is the above first step.
The fuel and air are distributed and guided to the branch orifice downstream of the air swirling orifice. Since each of these branch orifices has a smaller diameter than the air swirling orifice, it efficiently promotes the mixing of air and atomized fuel in a small space during this passage process. Further, the fuel is atomized, and thereafter the atomized fuel is ejected while being distributed toward each intake valve.

【0013】第2の課題解決手段Bの作用…旋回燃料は
計量オリフィスから噴射した直後に、第1の分岐オリフ
ィスにて分配され、さらに第2の分岐オリフィスにて旋
回燃料と逆方向の旋回する空気流と衝突し、これにて各
分岐オリフィスを通過する燃料の微粒化促進が図られ
る。また、微粒化に要する空気は、小空間たる第2の分
岐オリフィスに導かれるので、少ない空気量にて効率の
良い燃料の微粒化を図りつつ、この微粒化燃料が各吸気
弁に対応して分配され噴出する。
Operation of Second Problem Solving Means B ... The swirling fuel is distributed at the first branch orifice immediately after being injected from the metering orifice, and swirls in the direction opposite to the swirling fuel at the second branch orifice. It collides with the air flow, which promotes atomization of the fuel passing through each branch orifice. Further, since the air required for atomization is guided to the second branch orifice, which is a small space, the atomized fuel corresponds to each intake valve while efficiently atomizing the fuel with a small amount of air. It is distributed and spouts.

【0014】[0014]

【実施例】図1は本発明の第1実施例を示す要部断面
図、図2はその縦断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view of the essential parts showing a first embodiment of the present invention, and FIG. 2 is a longitudinal sectional view thereof.

【0015】図2において、1は電磁式の燃料噴射弁
で、本体内部には、電磁コイル2、固定コア3、ボール
弁(計量弁)4付きプランジャ5、戻しばね6、燃料旋
回子7等が組み込まれる。ボール弁4は電磁コイル2の
非通電時には、ばね6の力により燃料旋回子7の下流に
設けた弁シート8に圧接して閉弁状態となる。電磁コイ
ル2の通電時には、コア3,ヨーク10,プランジャ5
が磁気回路を形成してプランジャ5と共にボール弁4が
磁気吸引され弁シート8から離れて開弁状態となる。
In FIG. 2, reference numeral 1 denotes an electromagnetic fuel injection valve. Inside the main body, an electromagnetic coil 2, a fixed core 3, a plunger 5 with a ball valve (measuring valve) 4, a return spring 6, a fuel swirler 7, etc. Is incorporated. When the electromagnetic coil 2 is not energized, the ball valve 4 is brought into pressure contact with the valve seat 8 provided downstream of the fuel swirl 7 by the force of the spring 6 to be closed. When energizing the electromagnetic coil 2, the core 3, the yoke 10, the plunger 5
Forms a magnetic circuit, the ball valve 4 is magnetically attracted together with the plunger 5, and the ball valve 4 is separated from the valve seat 8 and opened.

【0016】燃料旋回子7は図4に示すように駒形のチ
ップで形成され、その下面には燃料に旋回力を付与する
ための燃料通路溝7Aが4つ配設してある。溝7Aは燃
料をチップ側壁からチップ中央の燃料旋回用オリフィス
7Bに導く通路構造を呈し、かつ各溝7Aは燃料旋回用
オリフィス7Bの中心に対してオフセット配置され、実
施例では溝7Aが燃料旋回用オリフィス7Bの周面とほ
ゞ接線関係を保つよう配設される。このようにして開弁
時には、溝7Aから出た加圧燃料が図4に示すように燃
料旋回用オリフィス7Bの壁面に沿った旋回流となっ
て、その下流に設けた計量オリフィス9を通して、次に
のべる空気旋回用オリフィス11Bに噴射される。
As shown in FIG. 4, the fuel swirler 7 is formed of a piece-shaped chip, and four fuel passage grooves 7A for imparting a swirling force to the fuel are provided on the lower surface thereof. The groove 7A has a passage structure for guiding the fuel from the side wall of the chip to the fuel swirling orifice 7B in the center of the chip, and each groove 7A is arranged offset with respect to the center of the fuel swirling orifice 7B. It is arranged so as to maintain a substantially tangential relationship with the peripheral surface of the working orifice 7B. In this way, when the valve is opened, the pressurized fuel discharged from the groove 7A becomes a swirling flow along the wall surface of the fuel swirling orifice 7B as shown in FIG. 4, and passes through the metering orifice 9 provided downstream of the swirling flow. It is injected into the air swirling orifice 11B.

【0017】空気旋回用オリフィス11Bは、図4に示
すように駒形チップ(空気旋回子)11の中央に形成さ
れ、ボール弁4下流で計量オリフィス(燃料噴射オリフ
ィス)9の直ぐ下に隣接するようにして配設される。空
気旋回子11は、図3(イ),図4に示すようにその上
面に空気に旋回力を付与するための空気通路溝11Aが
4つ配設してある。各溝11Aは空気をチップ側壁から
チップ中央の空気旋回用オリフィス11Bに導く通路構
造を呈し、各空気通路溝11Aが空気旋回用オリフィス
11B中央に対してオフセット配置される。空気通路溝
11Aは空気旋回用オリフィス11Bの内周とほゞ接線
関係を保つよう配設され、この溝11Aの配置構造は、
空気旋回流の方向が上記の燃料旋回流と反対となるよう
設定してある。空気旋回用オリフィス11Bは、図3
(ロ)に示すように、その下部11B´が円錐状に絞り
形成される。
The air swirling orifice 11B is formed at the center of the piece tip (air swirler) 11 as shown in FIG. 4, and is located immediately below the metering orifice (fuel injection orifice) 9 downstream of the ball valve 4. Are arranged. As shown in FIGS. 3A and 4, the air swirler 11 has four air passage grooves 11A on its upper surface for imparting a swirling force to the air. Each groove 11A has a passage structure for guiding air from the side wall of the tip to the air swirling orifice 11B at the center of the tip, and each air passage groove 11A is arranged offset with respect to the center of the air swirling orifice 11B. The air passage groove 11A is arranged so as to maintain a substantially tangential relationship with the inner circumference of the air swirling orifice 11B. The arrangement structure of this groove 11A is
The direction of the air swirl flow is set to be opposite to the above-described fuel swirl flow. The air swirling orifice 11B is shown in FIG.
As shown in (b), the lower portion 11B 'is formed into a conical shape by drawing.

【0018】燃料旋回子7,空気旋回子11の材質とし
てステンレスを用いる。燃料として、アルコールを用い
る場合は、計量弁4,燃料旋回用オリフィス7B,空気
旋回用オリフィス11B,燃料・空気混合促進用オリフ
ィス14のうち燃料と接触する部分をニッケルめっきな
どで耐腐食処理をする。空気旋回用オリフィス11B
は、機械加工、ダイキャスト、金属粉末の焼結、エッチ
ング処理などで形成する。また、セラミック或いはシリ
コンを材質としたマイクロマシニングにより加工成形し
てもよい。
Stainless steel is used as the material of the fuel swirler 7 and the air swirler 11. When alcohol is used as the fuel, the portions of the metering valve 4, the fuel swirling orifice 7B, the air swirling orifice 11B, and the fuel / air mixing promoting orifice 14 that come into contact with the fuel are subjected to corrosion resistance treatment by nickel plating or the like. .. Air swirling orifice 11B
Is formed by machining, die casting, sintering of metal powder, etching treatment, or the like. Further, it may be processed and formed by micromachining using ceramic or silicon as a material.

【0019】燃料噴射弁1の本体下部に空気旋回用オリ
フィス11の周囲を囲むようしてカバー12が装着され
る。カバー12内壁と空気旋回子11外壁及び燃料噴射
弁の本体下部外壁との間に環状の通路13が形成され
る。カバー12には空気導通管16の一端16´が取付
けられ、この空気導通管16の他端は、例えば吸気管の
絞り弁上流に接続され、吸気管の空気の一部が例えば絞
り弁上,下流の差圧を利用して環状空気通路13ひいて
は空気旋回子11に空気が導入され、差圧が所定圧以下
になった場合には、空気ポンプを用いて供給する等の手
段が講じられている。
A cover 12 is attached to the lower portion of the main body of the fuel injection valve 1 so as to surround the air swirling orifice 11. An annular passage 13 is formed between the inner wall of the cover 12, the outer wall of the air swirler 11, and the outer wall of the lower portion of the main body of the fuel injection valve. One end 16 ′ of an air conducting pipe 16 is attached to the cover 12, and the other end of the air conducting pipe 16 is connected, for example, to the upstream side of the throttle valve of the intake pipe, so that a part of the air in the intake pipe is above the throttle valve, Air is introduced into the annular air passage 13 and further the air swirl 11 by utilizing the downstream differential pressure, and when the differential pressure becomes equal to or lower than a predetermined pressure, a means such as supply using an air pump is taken. There is.

【0020】空気旋回子11はこのカバー12と燃料噴
射弁1の本体下部との間に介在するよう配置され、空気
旋回用オリフィス11Bの上部が計量オリフィス9の出
口に接し、11Bの下部11B´がカバー12に設けた
燃料・空気混合促進用のオリフィス14に接する。燃料
・空気混合促進用のオリフィス14は空気旋回用オリフ
ィス11Bの最も絞った部分と同径の細径としてある。
燃料・空気混合促進用のオリフィス14の下流には、オ
リフィス14よりも大径の燃料噴霧出口15が形成して
ある。カバー12は、燃料噴射弁本体に圧入またはメタ
ルフローで固定してある。
The air swirler 11 is arranged so as to be interposed between the cover 12 and the lower part of the main body of the fuel injection valve 1. The upper part of the air swirling orifice 11B is in contact with the outlet of the metering orifice 9, and the lower part 11B 'of 11B'. Contacts an orifice 14 provided in the cover 12 for promoting fuel / air mixing. The orifice 14 for promoting fuel / air mixing has a small diameter that is the same as the most narrowed portion of the air swirling orifice 11B.
A fuel spray outlet 15 having a larger diameter than the orifice 14 is formed downstream of the orifice 14 for promoting fuel / air mixing. The cover 12 is fixed to the fuel injection valve main body by press fitting or metal flow.

【0021】本実施例によれば、開弁時には、燃料は燃
料旋回用オリフィス7Bにて旋回しながら計量オリフィ
ス9を通り、空気旋回用オリフィス11Bに薄い液膜状
になって噴出する。この場合、燃料は計量オリフィス9
の上流で旋回力が加えられているので、計量オリフィス
下流で燃料に旋回力を加える方式のものと較べて圧力損
失が少なく、その分、噴出速度を大きくできる。
According to the present embodiment, when the valve is opened, the fuel swirls through the fuel swirling orifice 7B, passes through the metering orifice 9, and is jetted into the air swirling orifice 11B in the form of a thin liquid film. In this case, the fuel is the metering orifice 9
Since the swirling force is applied upstream of, the pressure loss is smaller than that of the system in which the swirling force is applied to the fuel downstream of the metering orifice, and the ejection speed can be increased accordingly.

【0022】一方、空気旋回用オリフィス11Bでは、
既述したように旋回燃料と逆方向に旋回する空気旋回流
が生じており、また、その空気旋回用の空気通路溝11
Aの出口が計量オリフィス9の出口近くに配置してある
ので、計量オリフィス9から噴射された旋回燃料が直ち
に空気旋回流と合流し、且つ燃料と空気の旋回方向は逆
であるので、空気と燃料の相対速度を大きくしつつ微粒
化させる。ついで、この微粒化された燃料と空気は空気
旋回用オリフィス11よりも細く絞った混合促進用オリ
フィス14を通るので、微粒化燃料と空気とが逃げる場
なく効率良く混合し、その後出口15を介して混合され
た燃料が吸気管内に噴霧される。
On the other hand, in the air swirling orifice 11B,
As described above, the swirling air swirling in the direction opposite to the swirling fuel is generated, and the air passage groove 11 for swirling the air is generated.
Since the outlet of A is arranged near the outlet of the metering orifice 9, swirling fuel injected from the metering orifice 9 immediately joins the swirling air flow, and the swirling directions of the fuel and air are opposite to each other. Atomization is performed while increasing the relative velocity of fuel. Next, since the atomized fuel and air pass through the mixing promoting orifice 14 that is narrower than the air swirling orifice 11, the atomized fuel and air are efficiently mixed without escape and then through the outlet 15. The mixed fuel is sprayed into the intake pipe.

【0023】本実施例によれば、上記の作用により少な
い空気によって効率の良い燃料と空気との混合を良好に
行い、ひいては燃料の微粒化向上を図り得る。また、噴
射燃料を適度に減速させて、噴射燃料がそのいきおいで
吸気管壁に付着するといった事態を有効に抑制すること
ができる。
According to the present embodiment, due to the above-mentioned action, the efficient mixing of the fuel and the air can be satisfactorily performed with a small amount of air, and the atomization of the fuel can be improved. In addition, it is possible to effectively reduce the speed of the injected fuel and effectively prevent the injected fuel from adhering to the intake pipe wall.

【0024】図5に微粒化用空気量Qaと噴霧の粒径と
の関係を示し、本実施例のように空気旋回式と混合促進
用オリフィスとを組合せたものは、単なる空気旋回式や
空気衝突式のものに較べ少ない空気量で微粒化を図り得
る結果が得られた。
FIG. 5 shows the relationship between the atomizing air amount Qa and the particle size of the spray. The combination of the air swirling type and the mixing promoting orifice as in this embodiment is simply an air swirling type or air type. The result is that atomization can be achieved with a smaller amount of air compared to the collision type.

【0025】図6は上記図5の実験データを得るのに使
用した従来の空気衝突式の燃料噴射弁の一例で、既述の
実施例と同一符号は同一或いは共通する要素を示す。従
来の空気衝突式の場合は、図6に示すように空気を旋回
させておらず、小さなオリフィス又はスリットから空気
をまっすぐ噴射燃料に衝突させていた。このため、小さ
なオリフィス60から空気を噴出させないと、燃料に均
等に空気を衝突させることができず、大きな粒子が発生
した。また、小さなオリフィスから空気を噴出させる
と、空気の汚れや、排気還流、水分の凍結によって、オ
リフィスがつまりやすく、信頼性が低い。さらに、噴霧
速度が大きく、微粒化した噴霧が吸気管内に付着してし
まう問題があった。
FIG. 6 shows an example of a conventional air collision type fuel injection valve used to obtain the experimental data shown in FIG. 5, and the same reference numerals as those in the above-mentioned embodiments indicate the same or common elements. In the case of the conventional air collision type, as shown in FIG. 6, the air is not swirled, and the air is made to directly collide with the injected fuel through a small orifice or slit. Therefore, unless the air is ejected from the small orifice 60, the air cannot be made to collide with the fuel uniformly, and large particles are generated. Further, when air is ejected from a small orifice, the orifice is apt to be clogged due to contamination of air, exhaust gas recirculation, and freezing of water, resulting in low reliability. Further, there is a problem that the atomization speed is high and the atomized spray adheres to the inside of the intake pipe.

【0026】図7に空気流の旋回方向を変えた場合の微
粒化用空気流量Qaと噴霧粒径の関係を示す。微粒化用
空気量を大きくすると粒径が小さくなるが、空気の旋回
方向を燃料に対して逆方向にすると順方向の場合よりも
少ない空気で微粒化が可能である。
FIG. 7 shows the relationship between the atomizing air flow rate Qa and the atomized particle diameter when the swirling direction of the air flow is changed. When the amount of atomizing air is increased, the particle size is reduced, but when the swirling direction of the air is opposite to the fuel, atomization can be performed with less air than in the case of the forward direction.

【0027】図8に燃料旋回の効果に関するデータを示
す。燃料に旋回を加えない場合、燃料が充分微粒化せ
ず、粒径が大きい。ピントル式のように弁の先端に突出
させた円錐部に燃料を衝突させて薄膜にすると、空気が
ないときでも微粒化するが、空気との相対速度が小さい
ため、粒径が大きい。また、旋回を加えたときには、計
量オリフィスの下流で旋回すると燃料の圧力損失が大き
いため、燃料旋回方向と逆方向の旋回空気流を後で合流
させても、その粒径は本実施例にように燃料を上流旋回
させた方式の場合に較べて粒径が大きい。すなわち、計
量オリフィスの上流で燃料に旋回を加え、計量オリフィ
スの下流で逆方向の空気旋回流を合流させた場合が最も
燃料の粒径を小さくできた。
FIG. 8 shows data relating to the effect of fuel swirling. When the fuel is not swirled, the fuel is not sufficiently atomized and the particle size is large. When the fuel is made to collide into a thin film by colliding a conical portion protruding from the tip of the valve like a pintle type, it atomizes even in the absence of air, but the relative velocity with air is small, so the particle size is large. Further, when swirling is applied, if the swirling is done downstream of the metering orifice, the pressure loss of the fuel is large. Therefore, even if the swirling air flows in the direction opposite to the fuel swirling direction are merged later, the particle size is the same as in this embodiment. The particle size is larger than that of the method in which the fuel is swirled upstream. That is, when the swirl was added to the fuel upstream of the metering orifice and the air swirling flows in the opposite direction were merged downstream of the metering orifice, the particle size of the fuel could be minimized.

【0028】図9にレーザで噴霧の粒径を微細計測した
ときの粒径の径方向分布を示す。空気衝突式では、空気
の当たる外側のみ微粒化が行われ、中央部には大きな粒
子が存在する。本実施例における空気旋回式では、空気
と燃料が充分に衝突するので、中央部にも大きな粒子が
存在せず、ほゞ満遍なく良好な微粒化状態とすることが
できる。
FIG. 9 shows the radial distribution of the particle size when finely measuring the particle size of the spray with a laser. In the air collision type, atomization is performed only on the outside where the air hits, and large particles are present in the central part. In the air swirl type of the present embodiment, since air and fuel collide sufficiently, large particles do not exist in the central portion either, and the atomized state can be made substantially evenly.

【0029】図10に本実施例における空気旋回用オリ
フィス11Bの出口径の寸法(図3に示すφdで、燃料
・空気混合促進用オリフィス14の径でもある)を変え
た場合の微粒化用空気流量Qaと噴霧粒径との関係を示
す。φdをノズルAでは3mm、ノズルBでは2.5m
m、ノズルCでは2mmとした。オリフィス14の寸法
dを小さくすると、空気と燃料の混合が促進され、少な
い空気で微粒化が可能である。
FIG. 10 shows atomizing air when the size of the outlet diameter of the air swirling orifice 11B in this embodiment (φd shown in FIG. 3 and also the diameter of the fuel / air mixing promoting orifice 14) is changed. The relationship between the flow rate Qa and the spray particle size is shown. φd is 3 mm for nozzle A and 2.5 m for nozzle B
m and 2 mm for the nozzle C. When the dimension d of the orifice 14 is reduced, the mixing of air and fuel is promoted, and atomization can be performed with less air.

【0030】図11に上記のように空気旋回用オリフィ
ス11Bの出口径φdを変えた場合の噴射パルス幅と燃
料流量の関係を示す。上記のようにノズルA、ノズル
B、ノズルCではそのオリフィス14の径は少ない空気
流量で燃料の微粒化を図る要素となるが、ノズルCのよ
うにφdを小さくすると、微粒化用空気の圧力が大きく
なるほど燃料噴射量が少なくなる。これは、微粒化用空
気圧力が大きくなると、燃料出口部の圧力が大きくな
り、燃料の供給圧力との差が小さくなるためである。な
お、図11に示す△Paは供給空気圧力Paと吸気管内
圧力Pbとの差である。ノズルCのような場合には、燃
料圧力レギュレータの基準圧力として、吸気管内圧力を
用いず、微粒化用空気圧力または燃料出口部圧力を用い
ると上記問題が改善できる。
FIG. 11 shows the relationship between the injection pulse width and the fuel flow rate when the outlet diameter φd of the air swirling orifice 11B is changed as described above. As described above, in the nozzle A, the nozzle B, and the nozzle C, the diameter of the orifice 14 is a factor for atomizing the fuel with a small air flow rate, but if φd is reduced like the nozzle C, the pressure of the atomizing air is reduced. Becomes larger, the fuel injection amount becomes smaller. This is because as the atomizing air pressure increases, the pressure at the fuel outlet increases and the difference from the fuel supply pressure decreases. Note that ΔPa shown in FIG. 11 is the difference between the supply air pressure Pa and the intake pipe internal pressure Pb. In the case of the nozzle C, the above problem can be solved by using the atomizing air pressure or the fuel outlet pressure as the reference pressure of the fuel pressure regulator without using the intake pipe internal pressure.

【0031】図12に供給空気圧力Paと噴霧粒径との
関係を示す。空気旋回用オリフィス11Bの面積を大き
くすると微粒化用空気量が多くなり、少ない圧力で微粒
化が可能である。このため、空気ポンプを用いる場合、
低い圧力しか供給できない構造では、空気旋回用オリフ
ィスの面積を大きくすればよい。
FIG. 12 shows the relationship between the supply air pressure Pa and the atomized particle size. When the area of the air swirling orifice 11B is increased, the atomization air amount is increased, and atomization can be performed with a small pressure. Therefore, when using an air pump,
In the structure capable of supplying only low pressure, the area of the air swirling orifice may be increased.

【0032】図13に上記実施例の燃料噴射弁における
微粒化用空気の供給方式の一例を示す。
FIG. 13 shows an example of a supply system of atomizing air in the fuel injection valve of the above embodiment.

【0033】図13では、燃料噴射弁1は吸気管40の
各マニホールドごとに配置され、エアクリーナ18,エ
アフローメータ19の下流で、絞り弁20の上流から共
通導管16´,空気分配器17及び各燃料噴射弁に接続
された分岐配管16を介して微粒化用空気が空気旋回用
オリフィス11Bに導入される。
In FIG. 13, the fuel injection valve 1 is arranged for each manifold of the intake pipe 40, and is provided downstream of the air cleaner 18 and the air flow meter 19 and from upstream of the throttle valve 20 to the common conduit 16 ′, the air distributor 17, and each. The atomizing air is introduced into the air swirling orifice 11B via the branch pipe 16 connected to the fuel injection valve.

【0034】吸気管の絞り弁20下流の圧力は、絞り弁
20での圧力損失、吸気管内の通路損失、エンジンの吸
い込みにより絞り弁上流よりも低いために、その差圧△
Paにより空気が燃料噴射弁1に流れる。また、絞り弁
全開時には差圧△Paが小さいので、空気ポンプ21を
設けてもよい。
Since the pressure in the intake pipe downstream of the throttle valve 20 is lower than that upstream of the throttle valve due to pressure loss at the throttle valve 20, passage loss in the intake pipe, and engine suction, the differential pressure Δ
Air flows to the fuel injection valve 1 by Pa. Further, since the differential pressure ΔPa is small when the throttle valve is fully opened, the air pump 21 may be provided.

【0035】この場合、空気旋回用オリフィス11Bで
空気の速度を大きくするため、吸気管内との差圧を0.
5気圧以上にするのが好ましい。また、全ての噴射弁1
の空気旋回用オリフィスの総面積よりも、空気分配器1
7への共通の空気導管16´を大きくする。また、空気
分配器17からの分岐配管16を1つあたりの噴射弁1
の空気旋回用オリフィス11Bの面積より大きくする。
このようにしないと、通路の途中で空気の流れが絞られ
てしまい。空気旋回用オリフィス11Bで高速の空気流
を形成できない。
In this case, in order to increase the velocity of the air at the air swirling orifice 11B, the differential pressure between the inside of the intake pipe and the inside of the intake pipe is set to 0.
The pressure is preferably 5 atm or more. Also, all injection valves 1
Air distributor 1 than the total area of the air swirling orifice of
Enlarge common air conduit 16 'to 7. In addition, each branch pipe 16 from the air distributor 17 is connected to one injection valve 1
The area is larger than the area of the air swirling orifice 11B.
If this is not done, the air flow will be throttled in the middle of the passage. The air swirling orifice 11B cannot form a high-speed air flow.

【0036】図14に燃料微粒化用空気供給系の別の例
を示す。本例も図13の空気供給系同様にエアクリーナ
18,エアフローメータ19の下流で絞り弁20上流で
空気を取り込み、共通配管16´,ポンプ21,空気分
配器17,分岐配管16を介して空気を燃料噴射弁1の
空気旋回用オリフィス11Bに導くが、空気分配器17
中の圧力を一定に保つため、空気圧レギュレータ22を
空気分配器17に取付ける。
FIG. 14 shows another example of the fuel atomizing air supply system. Also in this example, as in the air supply system of FIG. 13, air is taken in at the downstream of the air cleaner 18, the air flow meter 19 and at the upstream of the throttle valve 20, and the air is taken in via the common pipe 16 ′, the pump 21, the air distributor 17, and the branch pipe 16. Although it is guided to the air swirling orifice 11B of the fuel injection valve 1, the air distributor 17
An air pressure regulator 22 is attached to the air distributor 17 to keep the pressure inside constant.

【0037】これにより、微粒化用空気の圧力を一定に
保つことができるので、燃料の微粒化を常に安定して行
うことができる。また、万一、空気旋回用オリフィス1
1Bに至る通路系(例えば溝11A)に目づまりした場
合でも圧力分配器17の圧力が異常に上がりすぎること
を防止する。
As a result, the pressure of the atomizing air can be kept constant, and the atomization of fuel can always be stably performed. In the unlikely event that the air swirling orifice 1
Even when the passage system reaching 1B (for example, the groove 11A) is clogged, the pressure of the pressure distributor 17 is prevented from rising abnormally excessively.

【0038】図15に燃料微粒化用空気供給系及び燃料
供給系の別の例を示す。本実施例も微粒化用空気は、エ
アクリーナ18,エアフローメータ19の下流で絞り弁
20上流から取り込まれ、共通配管16´,ポンプ2
1,空気分配器17,分岐配管16を介して燃料噴射弁
1の空気旋回用オリフィス11Bに導かれる。さらに、
燃料供給系は次のように構成される。
FIG. 15 shows another example of the fuel atomizing air supply system and the fuel supply system. Also in this embodiment, the atomizing air is taken in from the downstream of the air cleaner 18 and the air flow meter 19 and from the upstream of the throttle valve 20, and the common pipe 16 ′ and the pump 2 are used.
1, the air distributor 17, and the branch pipe 16 to guide the air swirling orifice 11B of the fuel injection valve 1. further,
The fuel supply system is configured as follows.

【0039】すなわち、燃料は燃料供給配管24に設け
た燃料ポンプ25により加圧され、この燃料圧力が燃料
圧力レギュレータ26で燃料噴出部(空気旋回用オリフ
ィス11B)の圧力Pxに対応して補正される。
That is, the fuel is pressurized by the fuel pump 25 provided in the fuel supply pipe 24, and this fuel pressure is corrected by the fuel pressure regulator 26 in accordance with the pressure Px of the fuel injection portion (air swirling orifice 11B). It

【0040】燃料圧力レギュレータ26は、図16に示
すように、本体内部にチェック弁27付きダイアフラム
28,ばね29が内装され、作動室26A側に圧力導管
23を介して絞り弁20下流の圧力及び空気分配器17
内の供給空気圧力Paが導かれる。燃料噴出部11Bの
圧力Pxは、次式で表されるように、吸気管内に圧力P
bと微粒化用空気の供給圧力Paの両方に依存するの
で、
As shown in FIG. 16, the fuel pressure regulator 26 includes a diaphragm 28 with a check valve 27 and a spring 29 inside the main body, and the pressure downstream of the throttle valve 20 via the pressure conduit 23 on the working chamber 26A side. Air distributor 17
The supply air pressure Pa therein is introduced. The pressure Px of the fuel injection portion 11B is equal to the pressure Px in the intake pipe as expressed by the following equation.
Since it depends on both b and the supply pressure Pa of atomizing air,

【0041】[0041]

【数1】Px=X・Pa+Y・Pb X,Yは重み係数である。## EQU1 ## Px = X.Pa + Y.Pb X, Y is a weighting coefficient.

【0042】Pxに対して所定の差圧を保つよう燃料圧
力レギュレータ26が作動する。また、このレギュレー
タ26の作動室26AにPa,Pbを導く各導管23に
はそれぞれ絞り23a,23bが入れて、燃料流量が吸
気管内の圧力と微粒化用空気の圧力に依存しないように
調整したものである。
The fuel pressure regulator 26 operates so as to maintain a predetermined differential pressure with respect to Px. Further, throttles 23a and 23b are placed in the respective conduits 23 for guiding Pa and Pb to the working chamber 26A of the regulator 26 so that the fuel flow rate is adjusted not to depend on the pressure in the intake pipe and the pressure of the atomizing air. It is a thing.

【0043】図17は本発明の第2実施例に係る要部断
面図である。
FIG. 17 is a cross-sectional view of essential parts according to the second embodiment of the present invention.

【0044】本実施例の燃料噴射弁1は、エンジンの各
気筒に吸気弁が複数(例えば2個)配設されるタイプの
ものに適用するものである。噴射弁の駆動機構は上記各
実施例のものと同様で、計量オリフィス9上流に燃料旋
回子7を配設する。計量オリフィス下流の空気旋回子
(チップ)11に形成される空気旋回用オリフィス11
Bはストレートで、その下流に噴射燃料を分配させる分
岐用チップ30が配設してある。この分岐用チップ30
には、各吸気弁対応の分岐オリフィス30A,30Bが
形成される。
The fuel injection valve 1 of this embodiment is applied to a type in which a plurality of (for example, two) intake valves are arranged in each cylinder of the engine. The drive mechanism of the injection valve is similar to that of each of the above-described embodiments, and the fuel swirler 7 is arranged upstream of the metering orifice 9. Air swirling orifice 11 formed in air swirler (chip) 11 downstream of the metering orifice
B is straight, and a branching tip 30 for distributing the injected fuel is disposed downstream of the straight tip. This branching tip 30
In this, branch orifices 30A and 30B corresponding to the intake valves are formed.

【0045】本実施例では、空気旋回用オリフィス11
Bの下部で燃料と空気が混合するが、さらに分岐オリフ
ィス30A,30Bがオリフィス11Bより細く絞った
ことで、この分岐オリフィスで微粒化燃料と空気の混合
が促進され、その結果、より一層の微粒化促進が図られ
る。この分岐オリフィス30A,30Bが空気・燃料の
混合促進用オリフィスを兼用する。
In this embodiment, the air swirling orifice 11 is used.
Although the fuel and air are mixed in the lower part of B, the branch orifices 30A and 30B are narrowed down more narrowly than the orifice 11B, so that the mixing of the atomized fuel and air is promoted in this branch orifice, and as a result, further fine particles are obtained. Promotion is promoted. The branch orifices 30A and 30B also serve as orifices for promoting air / fuel mixing.

【0046】分岐オリフィス30A,30Bはその入口
が接してもよいが、これらの入口の一部が重なり合って
もよい。
The inlets of the branch orifices 30A and 30B may be in contact with each other, but the inlets may partially overlap each other.

【0047】図18に分岐オリフィス30A,30Bの
オリフィス径Dと噴霧粒径との関係を示す。空気量が少
ない場合、寸法Dが大きいほど粒径が小さくなる。これ
は、噴霧が分岐部に付着しないで噴出するためである。
空気が少ないときは、燃料噴射弁の燃料旋回による微粒
化に依存するので、分岐部に燃料が付着しない方がよ
い。一方、空気量が多いときには、寸法Dが小さいほど
空気と燃料が充分混合され、微粒化がよい。以上を考慮
して、適宜の寸法Dを設定する。
FIG. 18 shows the relationship between the orifice diameter D of the branch orifices 30A and 30B and the spray particle size. When the amount of air is small, the particle size becomes smaller as the dimension D becomes larger. This is because the spray is ejected without adhering to the branch portion.
When the amount of air is small, it depends on the atomization by the fuel swirling of the fuel injection valve, so it is better that the fuel does not adhere to the branch portion. On the other hand, when the amount of air is large, the smaller the dimension D is, the more the air and the fuel are mixed, and the better the atomization. Considering the above, an appropriate dimension D is set.

【0048】同様に、分岐オリフィスの長さlを長くす
ると、空気の少ないときに噴霧の粒径が大きくなり、空
気が多いときに粒径が小さくなる。図19に分岐オリフ
ィスの径Dと噴霧角θ1の関係を示す。Dが大きくなる
と、噴霧角θ1が大きくなる。また、分岐オリフィスの
長さlが2mm以下では、空気を導入すると噴霧角が大
きくなりすぎ、2つの方向に噴霧を形成することができ
ない。このためlを2mm以上とする必要がある。この
点は、空気微粒化で2つ以上の方向に噴霧を形成する上
で重要である。この噴射弁では、D=2.5mm,l=
4mm程度がよい。
Similarly, if the length 1 of the branch orifice is increased, the particle size of the spray becomes large when the amount of air is small, and becomes small when the amount of air is large. FIG. 19 shows the relationship between the diameter D of the branch orifice and the spray angle θ1. As D increases, the spray angle θ 1 increases. If the length 1 of the branch orifice is 2 mm or less, the spray angle becomes too large when air is introduced, and the spray cannot be formed in two directions. Therefore, l needs to be 2 mm or more. This point is important in forming the spray in two or more directions by air atomization. With this injection valve, D = 2.5 mm, l =
4 mm is preferable.

【0049】図20に上記実施例の噴霧の状況を示す。
噴霧は2つの方向に形成される。2つの噴霧の方向θ
は、分岐オリフィスの角度により任意に変えることがで
きる。
FIG. 20 shows the spraying condition of the above embodiment.
The spray is formed in two directions. Two spray directions θ
Can be arbitrarily changed by the angle of the branch orifice.

【0050】図21に本発明の第3実施例を示す。FIG. 21 shows a third embodiment of the present invention.

【0051】本実施例と図17の第2実施例との異なる
点は、計量オリフィス9の直ぐ下の下流に燃料分岐用チ
ップ(第1の分岐オリフィス)32を配設し、その下に
空気旋回子と燃料分岐を兼ねるチップ33を配設したこ
とにある。チップ33には、第2の分岐オリフィス33
A,33Bが配設され、図22に示すようにその上面
(図22の(イ)では右側)に分岐オリフィス33A,
33Bに対してオフセット配置された空気通路溝34を
配設してある。空気通路溝34は、環状空気通路13か
らの空気を導入し、分岐オリフィス33A,33Bに空
気旋回流を発生させる。2つの噴霧を形成する望ましい
寸法として、D=2mm,l=5mmである。
The difference between this embodiment and the second embodiment shown in FIG. 17 is that a fuel branching tip (first branching orifice) 32 is arranged just below the metering orifice 9 and downstream of the metering orifice 9. This is because the tip 33 that doubles as a swirler and a fuel branch is provided. The tip 33 has a second branch orifice 33
A and 33B are arranged, and as shown in FIG. 22, a branch orifice 33A, on its upper surface (right side in FIG. 22A).
An air passage groove 34 that is offset with respect to 33B is provided. The air passage groove 34 introduces air from the annular air passage 13 and generates an air swirling flow in the branch orifices 33A and 33B. The preferred dimensions for forming the two sprays are D = 2 mm and l = 5 mm.

【0052】本実施例では、旋回燃料は燃料分岐用チッ
プ32で分岐された後、分岐オリフィス33A,33B
にて旋回空気流と衝突するが、この分岐オリフィス33
A,33Bが微粒化燃料と空気を効率良く混合させる。
In this embodiment, after the swirling fuel is branched by the fuel branching tip 32, the branching orifices 33A, 33B are provided.
Collides with the swirling air flow at the branch orifice 33.
A and 33B efficiently mix the atomized fuel and air.

【0053】図23に燃料分岐用チップ32の他の態様
を示す。
FIG. 23 shows another mode of the fuel branching tip 32.

【0054】本実施例では、2つの分岐用オリフィス3
2A,32Bと、これらのオリフィスをつなぐスリット
32Cよりなる。燃料旋回子7により旋回力を付与され
た燃料は、計量オリフィス9から噴出するが、上記構成
をなす燃料分岐用チップ32によって旋回流を損失なく
2つの噴霧に導くことができる。このため、空気をこの
燃料とは逆方向に旋回させると、空気と燃料の相対的な
旋回速度が大きくなり、少ない空気で微粒化が可能であ
る。
In this embodiment, two branch orifices 3 are provided.
2A and 32B, and a slit 32C connecting these orifices. The fuel to which the swirling force is applied by the fuel swirler 7 is ejected from the metering orifice 9, but the swirling flow can be guided to the two sprays without loss by the fuel branching tip 32 having the above configuration. Therefore, when the air is swirled in the direction opposite to this fuel, the relative swirling speed of the air and the fuel is increased, and atomization can be performed with less air.

【0055】図24に上記した燃料分岐用チップ32と
空気旋回子兼燃料分岐用チップ33との配置関係を示
す。燃料が旋回しているため、燃料分岐用チップ32の
各オリフィス32A,32Bから噴出する燃料の方向
は、スリット32Cの方向とは一致せず、θ3だけ角度
がずれる。以上を配慮して、本実施例では、損失なく燃
料をオリフィス33A,33Bに導くため角度θ3だけ
オリフィス33A,33Bをずらしてある。
FIG. 24 shows the positional relationship between the fuel branching tip 32 and the air swirler / fuel branching tip 33 described above. Since the fuel is swirling, the direction of the fuel ejected from the orifices 32A and 32B of the fuel branching tip 32 does not match the direction of the slit 32C, and the angle deviates by θ3. In consideration of the above, in this embodiment, the orifices 33A and 33B are displaced by the angle θ3 in order to guide the fuel to the orifices 33A and 33B without loss.

【0056】図25に図17に用いた燃料分岐用チップ
30の他の形状を示す。燃料計量オリフィス9からの燃
料を旋回の損失なく2つの方向に分けるため、燃料分岐
用チップ30の分岐オリフィス30A,30Bを、旋回
燃料の進行方向に合わせてその出口をそれぞれ角度をθ
3だけオフセットしたものである。これによって、旋回
された燃料をその損失をほとんどなくして分岐するの
で、特に空気量の少ないときでも噴霧の粒径を小さくで
きる。
FIG. 25 shows another shape of the fuel branching tip 30 used in FIG. In order to divide the fuel from the fuel metering orifice 9 into two directions without the loss of swirling, the branch orifices 30A and 30B of the fuel branching tip 30 are aligned with the advancing direction of the swirling fuel, and their outlets have respective angles of θ.
It is offset by 3. As a result, the swirled fuel is branched with almost no loss, so that the particle size of the spray can be reduced even when the amount of air is small.

【0057】図26に図21における空気旋回用オリフ
ィス33の他の形状を示す。燃料分岐用チップ32から
の燃料を旋回の損失なく2つに分けるため、燃料分岐・
空気旋回用オリフィス33の各オリフィス33A,33
Bを旋回燃料の進行方向に合わせてその出口をそれぞれ
角度をθ3だけずらしたものである。この場合にも、旋
回された燃料が損失なく2つに分岐されるので、特に空
気量の少ないときでも噴霧の粒径を小さくできる利点が
ある。
FIG. 26 shows another shape of the air swirling orifice 33 in FIG. In order to divide the fuel from the fuel branch tip 32 into two without turning loss,
Each orifice 33A, 33 of the air swirling orifice 33
B is aligned with the advancing direction of the swirling fuel, and the outlets thereof are each shifted in angle by θ3. Also in this case, the swirled fuel is branched into two without loss, so that there is an advantage that the particle size of the spray can be made small even when the amount of air is small.

【0058】[0058]

【発明の効果】第1の課題解決手段によれば、燃料を計
量オリフィス上流で旋回させ、その下流で燃料の旋回方
向とは逆方向に燃料を旋回、衝突させ、さらにその下流
に空気旋回用オリフィスより細径の混合促進用オリフィ
スを設けることで、少ない空気量で効率の良い燃料の微
粒化を図ることができる。
According to the first means for solving the problems, the fuel is swirled upstream of the metering orifice, swirled and collided with the fuel in the direction opposite to the swirling direction of the fuel downstream thereof, and further swirling air downstream thereof. By providing the mixing promoting orifice having a smaller diameter than the orifice, it is possible to efficiently atomize the fuel with a small amount of air.

【0059】このため、エンジンの空燃比制御が容易で
あり、アイドル運転時に回転数が上昇してしまうことも
ない。また、空気圧を作るエアポンプを用いる場合に
は、ポンプの容量を小さくできる。
Therefore, the air-fuel ratio control of the engine is easy, and the number of revolutions does not increase during idle operation. Further, when an air pump for producing air pressure is used, the capacity of the pump can be reduced.

【0060】第2,第3の課題解決手段によれば、上記
第1の課題解決手段同様の効果を得るほかに、1気筒あ
たり複数吸気弁仕様のエンジンに対しても対応できる。
According to the second and third problem solving means, in addition to the same effect as the first problem solving means, it is possible to cope with an engine having a plurality of intake valves per cylinder.

【0061】以上により、エンジンに微細な燃料を供給
できるので、空気と念労の混合が促進され、排気浄化
時、特に未燃炭化水素を低減できる。また加減速時の燃
料の供給が速くなり、補償燃料を減らすことができる。
As described above, since a fine fuel can be supplied to the engine, mixing of air and effort is promoted, and unburned hydrocarbons can be reduced especially during exhaust gas purification. In addition, the fuel supply during acceleration / deceleration becomes faster, and the compensating fuel can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る燃料噴射弁の要部拡
大断面図。
FIG. 1 is an enlarged cross-sectional view of a main part of a fuel injection valve according to a first embodiment of the present invention.

【図2】上記実施例の縦断面図。FIG. 2 is a vertical sectional view of the above embodiment.

【図3】上記実施例に用いる空気旋回用オリフィスの平
面図及びそのA−A線断面図。
FIG. 3 is a plan view of an air swirling orifice used in the above embodiment and a cross-sectional view taken along line AA thereof.

【図4】上記実施例の動作説明図。FIG. 4 is an operation explanatory diagram of the above embodiment.

【図5】上記実施例の本発明品と従来技術との微粒化用
空気量−噴霧粒径特性のデータを示す線図。
FIG. 5 is a diagram showing the data of atomizing air amount-spray particle size characteristics of the product of the present invention of the above-described example and the prior art.

【図6】従来の空気衝突式オリフィスを備えた燃料噴射
弁の部分断面図。
FIG. 6 is a partial sectional view of a conventional fuel injection valve having an air collision type orifice.

【図7】燃料と微粒化用空気流とを逆旋回及び順旋回さ
せて衝突させた場合の微粒化用空気量−噴霧粒径特性の
データを示す線図。
FIG. 7 is a diagram showing the data of atomization air amount-atomization particle size characteristics when the fuel and the atomization air flow are swirled in the reverse swirl direction and the forward swirl direction to collide.

【図8】燃料と微粒化用空気流とを逆旋回させて衝突さ
せた場合で、燃料を計量オリフィスの上流,下流で旋回
させた場合、及び燃料を旋回させない場合の微粒化用空
気量−噴霧粒径特性のデータを示す線図。
FIG. 8 is an amount of atomizing air when the fuel and the atomizing air flow are swirled in the opposite direction to collide with each other, the fuel is swirled upstream and downstream of the metering orifice, and when the fuel is not swirled- The figure which shows the data of a spray particle diameter characteristic.

【図9】上記実施例の空気旋回式と従来の空気衝突式の
燃料微粒化方式を用いた場合の径方向の微粒化分布を示
す線図。
FIG. 9 is a diagram showing the atomization distribution in the radial direction when using the fuel swirl type of the air swirl type of the embodiment and the conventional air collision type.

【図10】上記実施例の空気旋回用オリフィスの径を変
えたときの微粒化用空気量−噴霧粒径特性のデータを示
す線図。
FIG. 10 is a diagram showing the data of atomizing air amount-spray particle size characteristics when the diameter of the air swirling orifice of the above embodiment is changed.

【図11】図10の条件を前提として燃料の噴射パルス
幅−燃料流量特性のデータを示す線図。
11 is a diagram showing fuel injection pulse width-fuel flow rate characteristic data under the condition of FIG.

【図12】微粒化用供給空気の圧力と燃料噴射弁の出口
圧力の差圧△Pa−噴霧粒径特性のデータを示す線図。
FIG. 12 is a diagram showing the data of the differential pressure ΔPa between the pressure of atomizing supply air and the outlet pressure of the fuel injection valve-spray particle size characteristics.

【図13】上記実施例の微粒化用空気供給系の一例を示
す説明図。
FIG. 13 is an explanatory view showing an example of an atomizing air supply system of the above embodiment.

【図14】上記実施例の微粒化用空気供給系の他の例を
示す説明図。
FIG. 14 is an explanatory view showing another example of the atomizing air supply system of the above embodiment.

【図15】上記実施例の微粒化用空気供給系の他の例を
燃料供給系と併せて示す説明図。
FIG. 15 is an explanatory view showing another example of the atomizing air supply system of the above embodiment together with the fuel supply system.

【図16】図15に用いる燃料圧力レギュレータの一例
を示す縦断面図。
16 is a vertical cross-sectional view showing an example of a fuel pressure regulator used in FIG.

【図17】本発明の第2実施例に係る燃料噴射弁の要部
拡大断面図。
FIG. 17 is an enlarged sectional view of a main part of a fuel injection valve according to a second embodiment of the present invention.

【図18】第2実施例の分岐オリフィス出口径φDと噴
霧粒径との関係を示す線図。
FIG. 18 is a diagram showing a relationship between the outlet diameter φD of the branch orifice and the atomized particle diameter in the second embodiment.

【図19】第2実施例の分岐オリフィス出口径φdと噴
霧角との関係を示す線図。
FIG. 19 is a diagram showing a relationship between a branch orifice outlet diameter φd and a spray angle in the second embodiment.

【図20】第2実施例の噴霧の状況を示す説明図。FIG. 20 is an explanatory view showing the situation of spraying of the second embodiment.

【図21】本発明の第3実施例に係る燃料噴射弁の要部
拡大断面図。
FIG. 21 is an enlarged cross-sectional view of main parts of a fuel injection valve according to a third embodiment of the present invention.

【図22】第3実施例に用いる空気旋回・燃料分岐オリ
フィスの縦断面図及び平面図。
FIG. 22 is a vertical sectional view and a plan view of an air swirling / fuel branching orifice used in the third embodiment.

【図23】第3実施例に用いる部品の一部及びその動作
状態を示す説明図。
FIG. 23 is an explanatory view showing a part of components used in the third embodiment and their operating states.

【図24】第3実施例に用いる燃料分岐オリフィスと空
気旋回・燃料分岐オリフィスの配置関係の一例を示す説
明図。
FIG. 24 is an explanatory diagram showing an example of the positional relationship between the fuel branch orifice and the air swirl / fuel branch orifice used in the third embodiment.

【図25】第2実施例に用いる分岐オリフィスの一例を
示す平面図。
FIG. 25 is a plan view showing an example of a branch orifice used in the second embodiment.

【図26】第3実施例に用いる空気旋回・燃料分岐オリ
フィスの一例を示す平面図。
FIG. 26 is a plan view showing an example of an air swirl / fuel branch orifice used in the third embodiment.

【符号の説明】[Explanation of symbols]

1…燃料噴射弁、4…計量弁、7…燃料旋回子、7A…
旋回力付与用の燃料通路溝、7B…空気旋回用オリフィ
ス、8…弁座、9…計量オリフィス、11…空気旋回
子、11A…旋回力付与用の空気通路溝、11B…空気
旋回用オリフィス、12…カバー、13…空気通路、1
4…燃料・空気混合促進用オリフィス、16…空気導
管、16´…空気共通導管、17…空気分配器、19…
エアフローメータ、20…絞り弁、21…ポンプ、22
…空気圧力レギュレータ、24…燃料供給配管、25…
燃料ポンプ、26…燃料圧力レギュレータ、30…分岐
用チップ、30A,30B…燃料分岐用オリフィス、3
2…燃料分岐用オリフィス、33…分岐用チップ、33
A,33B…空気旋回・燃料分岐用オリフィス。
1 ... Fuel injection valve, 4 ... Metering valve, 7 ... Fuel swirler, 7A ...
Fuel passage groove for imparting swirl force, 7B ... Orifice for air swirl, 8 ... Valve seat, 9 ... Metering orifice, 11 ... Air swirler, 11A ... Air passage groove for imparting swirl force, 11B ... Orifice for air swirl, 12 ... Cover, 13 ... Air passage, 1
4 ... Orifice for promoting fuel / air mixing, 16 ... Air conduit, 16 '... Air common conduit, 17 ... Air distributor, 19 ...
Air flow meter, 20 ... Throttle valve, 21 ... Pump, 22
… Air pressure regulator, 24… Fuel supply piping, 25…
Fuel pump, 26 ... Fuel pressure regulator, 30 ... Branch tip, 30A, 30B ... Fuel branch orifice, 3
2 ... Orifice for fuel branching, 33 ... Tip for branching, 33
A, 33B ... Orifices for air swirling and fuel branching.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 燃料の計量オリフィスの上流に燃料を旋
回させるための燃料旋回用オリフィスを設け、前記計量
オリフィス下流には空気流を導入しつつこの空気流に燃
料の旋回方向と逆方向に旋回力を付与する空気旋回用オ
リフィスを設け、この空気旋回用オリフィスにて旋回空
気と前記計量オリフィスを通して噴射された旋回燃料と
を衝突させるよう設定し、且つ、前記空気旋回用オリフ
ィスの下流には該空気旋回用オリフィスよりも細径にし
た燃料・空気混合促進用オリフィスを設けたことを特徴
とするエンジンの燃料噴射弁。
1. A fuel swirling orifice for swirling fuel is provided upstream of a fuel metering orifice, and an air flow is introduced downstream of the metering orifice while swirling in the direction opposite to the fuel swirling direction. An air swirling orifice for applying force is provided, the swirling air is set to collide with the swirling fuel injected through the metering orifice at the air swirling orifice, and the air swirling orifice is provided downstream of the air swirling orifice. A fuel injection valve for an engine, which is provided with a fuel / air mixing promoting orifice having a diameter smaller than that of the air swirling orifice.
【請求項2】 請求項1において、前記空気旋回用オリ
フィスは少なくともその下流側が円錐状に絞られて前記
燃料・空気混合促進用オリフィスに通じる通路構造とし
たことを特徴とするエンジンの燃料噴射弁。
2. The fuel injection valve for an engine according to claim 1, wherein the air swirling orifice has a passage structure in which at least a downstream side thereof is conically narrowed and communicates with the fuel / air mixing promotion orifice. ..
【請求項3】 請求項1又は請求項2において、前記空
気旋回用オリフィスを前記計量オリフィスに近接させて
配置したことを特徴とするエンジンの燃料噴射弁。
3. The fuel injection valve for an engine according to claim 1, wherein the air swirling orifice is arranged close to the metering orifice.
【請求項4】 燃料の計量オリフィスの上流に燃料を旋
回させるための燃料旋回用オリフィスを設け、前記計量
オリフィス下流には空気流を導入しつつこの空気流に燃
料の旋回方向と逆方向に旋回力を付与する空気旋回用オ
リフィスを設け、この空気旋回用オリフィスにて旋回空
気と前記計量オリフィスを通して噴射された旋回燃料と
を衝突させるよう設定し、且つ、前記空気旋回用オリフ
ィスの下流には該空気旋回用オリフィスよりも細径にし
た燃料・空気混合促進用オリフィスをエンジンの1気筒
あたり複数吸気弁に対応して分岐形成したことを特徴と
するエンジンの燃料噴射弁。
4. A fuel swirling orifice for swirling fuel is provided upstream of the fuel metering orifice, and an air flow is introduced downstream of the metering orifice while swirling in the direction opposite to the fuel swirling direction. An air swirling orifice for applying force is provided, the swirling air is set to collide with the swirling fuel injected through the metering orifice at the air swirling orifice, and the air swirling orifice is provided downstream of the air swirling orifice. A fuel injection valve for an engine, characterized in that a fuel / air mixing promotion orifice having a smaller diameter than the air swirling orifice is formed in a branched manner corresponding to a plurality of intake valves per cylinder of the engine.
【請求項5】 請求項4において前記燃料・空気混合促
進用オリフィス(分岐オリフィス)は、その出口側が旋
回燃料の進路方向に合わせてオフセットしていることを
特徴とするエンジンの燃料噴射弁。
5. The fuel injection valve for an engine according to claim 4, wherein an outlet side of the fuel / air mixing promotion orifice (branch orifice) is offset in accordance with a traveling direction of swirling fuel.
【請求項6】 燃料の計量オリフィスの上流に燃料を旋
回させるための燃料旋回用オリフィスを設け、前記計量
オリフィス下流には、噴射される旋回燃料をエンジンの
1気筒あたり複数吸気弁に対応して分配させる第1の分
岐オリフィス(ここで分岐オリフィスとは分岐要素たる
複数オリフィスの集合体を指す)を設け、さらにこの第
1の分岐オリフィスの下流には、前記第1の分岐オリフ
ィス同様に分岐された第2の分岐オリフィスを設け、こ
の第2の分岐オリフィスの各オリフィスにて空気流を導
入しつつこの空気流に燃料の旋回方向と逆方向に旋回力
を付与して、旋回空気と旋回燃料とを衝突させるよう設
定したことを特徴とするエンジンの燃料噴射弁。
6. A fuel swirling orifice for swirling the fuel is provided upstream of the fuel metering orifice, and the swirling fuel to be injected is provided downstream of the metering orifice in correspondence with a plurality of intake valves per cylinder of the engine. A first branch orifice for distribution (herein, “branch orifice refers to an assembly of a plurality of orifices serving as branch elements”) is provided, and further downstream of the first branch orifice, the branch is made in the same manner as the first branch orifice. And a swirling force is imparted to the air flow in the direction opposite to the swirling direction of the fuel while introducing the air flow into each of the second branch orifices. A fuel injection valve for an engine, characterized in that it is set to collide with.
【請求項7】 請求項6において、前記第2の分岐オリ
フィスは、その出口側が旋回燃料の進路方向に合わせて
オフセットしていることを特徴とするエンジンの燃料噴
射弁。
7. The fuel injection valve for an engine according to claim 6, wherein an outlet side of the second branch orifice is offset in accordance with a course direction of the swirling fuel.
【請求項8】 請求項1ないし請求項7のいずれか1項
において、前記燃料噴射弁が各マニホールドごとに配置
され、各燃料噴射弁が備える前記空気旋回用オリフィス
又は前記第2の分岐オリフィスには、エンジン吸気通路
のエアフローメータ下流で絞り弁上流から空気をとりこ
れを空気分配器を介して導くよう設定したことを特徴と
するエンジンの燃料噴射弁。
8. The fuel injection valve according to any one of claims 1 to 7, wherein the fuel injection valve is arranged for each manifold, and the air swirling orifice or the second branch orifice provided in each fuel injection valve is provided. Is a fuel injection valve for an engine, characterized in that air is taken from an upstream side of a throttle valve downstream of an air flow meter in an engine intake passage and is guided through an air distributor.
【請求項9】 請求項8において、前記空気旋回用オリ
フィス又は前記第2の分岐オリフィスには、エアフロー
メータ下流で絞り弁上流の空気をポンプを介して導くよ
うにしたことを特徴とするエンジンの燃料噴射弁。
9. The engine according to claim 8, wherein air upstream of the throttle valve downstream of the air flow meter is introduced into the air swirling orifice or the second branch orifice via a pump. Fuel injection valve.
【請求項10】 請求項9において、前記空気分配器に
空気圧調整器を設けたことを特徴とするエンジンの燃料
噴射弁。
10. The fuel injection valve for an engine according to claim 9, wherein the air distributor is provided with an air pressure regulator.
【請求項11】 請求項1ないし請求項10のいずれか
1項において、前記燃料噴射弁に燃料を供給する燃料ポ
ンプ付きの燃料供給配管には、前記計量オリフィスの出
口付近の燃料噴射空間の圧力に対し燃料圧力を所定差圧
に保つための燃料圧力調整レギュレータを設けたことを
特徴とするエンジンの燃料噴射弁。
11. The fuel supply pipe with a fuel pump for supplying fuel to the fuel injection valve according to any one of claims 1 to 10, wherein the pressure of the fuel injection space near the outlet of the metering orifice. On the other hand, the fuel injection valve of the engine is provided with a fuel pressure adjusting regulator for maintaining the fuel pressure at a predetermined differential pressure.
【請求項12】 請求項1ないし請求項11のいずれか
1項において、燃料の計量弁、燃料旋回用オリフィス、
計量オリフィス、空気旋回用オリフィス、分岐オリフィ
ス、燃料・空気混合促進用オリフィスにはニッケルめっ
きを施したことを特徴とするエンジンの燃料噴射弁。
12. The fuel metering valve according to claim 1, a fuel swirling orifice,
A fuel injection valve for an engine, characterized in that the metering orifice, the air swirling orifice, the branch orifice, and the fuel / air mixing promoting orifice are plated with nickel.
【請求項13】 請求項1ないし請求項11のいずれか
1項において、燃料の計量弁、燃料旋回用オリフィス、
計量オリフィス、空気旋回用オリフィス、分岐オリフィ
ス、燃料・空気混合促進用オリフィスをセラミック或い
はシリコンのマイクロマシニングで加工成形したことを
特徴とするエンジンの燃料噴射弁。
13. The fuel metering valve, fuel swirling orifice according to claim 1,
A fuel injection valve for an engine, characterized in that a metering orifice, an air swirling orifice, a branch orifice, and a fuel / air mixing promoting orifice are processed and molded by ceramic or silicon micromachining.
JP03298884A 1991-11-14 1991-11-14 Engine fuel injection valve Expired - Fee Related JP3112038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03298884A JP3112038B2 (en) 1991-11-14 1991-11-14 Engine fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03298884A JP3112038B2 (en) 1991-11-14 1991-11-14 Engine fuel injection valve

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2000235284A Division JP2001065433A (en) 2000-07-31 2000-07-31 Fuel injection valve of and fuel injection system of engine
JP2000235283A Division JP2001059468A (en) 2000-01-01 2000-07-31 Fuel injection valve

Publications (2)

Publication Number Publication Date
JPH05133306A true JPH05133306A (en) 1993-05-28
JP3112038B2 JP3112038B2 (en) 2000-11-27

Family

ID=17865418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03298884A Expired - Fee Related JP3112038B2 (en) 1991-11-14 1991-11-14 Engine fuel injection valve

Country Status (1)

Country Link
JP (1) JP3112038B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050005A1 (en) * 2003-11-18 2005-06-02 Hitachi, Ltd. Fuel injection valve

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617539U (en) * 1992-08-17 1994-03-08 タキゲン製造株式会社 Equipment for adjusting equipment
JP2014156794A (en) * 2013-02-14 2014-08-28 Toyota Motor Corp Fuel injection valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050005A1 (en) * 2003-11-18 2005-06-02 Hitachi, Ltd. Fuel injection valve

Also Published As

Publication number Publication date
JP3112038B2 (en) 2000-11-27

Similar Documents

Publication Publication Date Title
JP2996525B2 (en) Fuel injection valve
US5570841A (en) Multiple disk swirl atomizer for fuel injector
JP3183156B2 (en) Fluid injection nozzle
US6974095B2 (en) Fluid injection nozzle
JP2559515B2 (en) Fuel injection valve device and manufacturing method thereof
US5516047A (en) Electromagnetically actuated fuel injection valve
JPS6154948B2 (en)
JPH08502203A (en) Gas / liquid mixing device
JPS6350667A (en) Nozzle structure for electromagnetic type fuel injection valve
EP0740069B1 (en) Fuel injection apparatus for an internal combustion engine
JPH04362272A (en) Fuel injection device for internal combustion engine
JP3112038B2 (en) Engine fuel injection valve
JPH0681754A (en) Fuel injection valve
JPH05209572A (en) Electromagnetically actuating injection valve
JP3079794B2 (en) Electromagnetic fuel injection valve, fuel swivel member for electromagnetic fuel injection valve, and fuel injection device using this valve
JP2001065433A (en) Fuel injection valve of and fuel injection system of engine
JP2001059468A (en) Fuel injection valve
JPH10281040A (en) Fuel injection nozzle
JPH05133300A (en) Fuel injection device
JP2503551Y2 (en) Fuel injection device for internal combustion engine
JP2018162792A (en) Fuel injection valve and injection hole plate
JPH07103100A (en) Fuel injection valve
JP2564373B2 (en) Electromagnetic fuel injection valve
JPH0514560U (en) Fuel injection valve
JP3129188B2 (en) Fuel injection device for internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees