JPH05132768A - Double refraction sheet and its manufacture - Google Patents

Double refraction sheet and its manufacture

Info

Publication number
JPH05132768A
JPH05132768A JP29740091A JP29740091A JPH05132768A JP H05132768 A JPH05132768 A JP H05132768A JP 29740091 A JP29740091 A JP 29740091A JP 29740091 A JP29740091 A JP 29740091A JP H05132768 A JPH05132768 A JP H05132768A
Authority
JP
Japan
Prior art keywords
transparent substrate
metal oxide
film
oxide film
birefringent plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29740091A
Other languages
Japanese (ja)
Inventor
Wasaburo Ota
和三郎 太田
Masashi Nakazawa
政志 中沢
Kazuhiro Umeki
和博 梅木
Yuji Onodera
祐二 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Optical Industries Co Ltd
Ricoh Co Ltd
Original Assignee
Ricoh Optical Industries Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Optical Industries Co Ltd, Ricoh Co Ltd filed Critical Ricoh Optical Industries Co Ltd
Priority to JP29740091A priority Critical patent/JPH05132768A/en
Publication of JPH05132768A publication Critical patent/JPH05132768A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a thin film of high density, high in a double refractive index and mechanical strength on a transparent substrate with tight adhesion, at the time of manufacturing a double refraction sheet by vapor-depositing a metallic oxide thin film on a transparent substrate by a plasma vapor depositing method, by radiating the material to be vapor-deposited at a specified angle to the substrate. CONSTITUTION:In a vacuum tank of a plasma vapor-depositing apparatus, a transparent substrate 1 in which an SiO2 undercoat film has been formed on the surface is arranged; then, the inside of the vacuum tank is evacuated; an active gas or an inert gas is introduced; and its state is regulated to a pressure-reduced one of <=9X10<-5>Torr. A vapor deposition source 3 constituted of specified metallic oxide is heated and evaporated, and the evaporated material is flied in a direction 4 at which the inclination theta to the surface of the substrate 1 will be regulated to 40 to 80 degrees, by which a film 2 of metallic oxide high in a double refractive index, density and mechanical strength can be formed on the surface of the transparent substrate 1 with tight adhesion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は複屈折板およびその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a birefringent plate and its manufacturing method.

【0002】[0002]

【従来の技術】複屈折板は、直線偏光・円偏光間の変換
や直線偏光方位角の変換を行なう光学素子として種々の
光学系に広く使用されている。複屈折板は、天然の水晶
や方解石を薄く研磨したものが知られているが、これら
は高価であるため、近来、「透明基板の表面に金属酸化
膜を斜め蒸着した」人工のものが提案されている。
2. Description of the Related Art A birefringent plate is widely used in various optical systems as an optical element for converting between linearly polarized light and circularly polarized light and for converting azimuth of linearly polarized light. The birefringent plate is known to be thinly polished natural quartz or calcite, but these are expensive, so recently an artificial one is proposed in which a metal oxide film is obliquely deposited on the surface of a transparent substrate. Has been done.

【0003】透明基板表面に斜め蒸着により形成された
金属酸化膜は、蒸着粒子の繋がりが方向によって異なり
複屈折を示す。しかし、この方法で製造される複屈折板
は、形成された金属酸化膜の密度が十分には高くなく、
そのため高い複屈折性を実現するのが難しい。また、形
成された金属酸化膜の透明基板への密着性や、膜自体の
強度もあまり強くなく、このため複屈折板に白濁等の不
具合が生じたり、あるいは量産性に乏しい工程となると
いう問題もある。
A metal oxide film formed by oblique vapor deposition on the surface of a transparent substrate shows birefringence because the connection of vapor deposition particles varies depending on the direction. However, in the birefringent plate manufactured by this method, the density of the formed metal oxide film is not high enough,
Therefore, it is difficult to realize high birefringence. In addition, the adhesion of the formed metal oxide film to the transparent substrate and the strength of the film itself are not so strong, which causes a problem such as clouding on the birefringent plate or a process with poor mass productivity. There is also.

【0004】[0004]

【発明が解決しようとする課題】この発明は上述した事
情に鑑みてなされたものであって、複屈折性が高く、大
きさに対する制限が緩く、任意のリターデーションを得
ることができ、高密度で透明基板への密着性・機械強度
が強く、耐環境正に優れた金属酸化膜を有し、安価に実
現できる新規な複屈折板とその製造方法の提供を目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has high birefringence, loose restrictions on size, and arbitrary retardation, and high density. It is an object of the present invention to provide a novel birefringent plate that has a metal oxide film that has high adhesion to a transparent substrate, high mechanical strength, and excellent environmental resistance, and can be realized at low cost, and a manufacturing method thereof.

【0005】[0005]

【課題を解決するための手段】この発明の複屈折板は、
透明基板表面に金属酸化膜を形成したものであるが、請
求項1の製造方法は「透明基板表面に対して40〜80
度傾いた方向から蒸発物質が飛来するように透明基板表
面と蒸発源との位置関係を設定し、導入ガスの圧力を9
×10~5Torr以上とした状態で、プラズマ蒸着法に
より金属酸化物の薄膜を所望の膜厚に形成する」点を特
徴とする。
The birefringent plate of the present invention comprises:
The metal oxide film is formed on the surface of the transparent substrate. The manufacturing method according to claim 1 is "40 to 80 relative to the surface of the transparent substrate."
The positional relationship between the transparent substrate surface and the evaporation source is set so that the evaporated material may fly from a tilted direction, and the pressure of the introduced gas may be set to 9
In the state of × 10 to 5 Torr or more, a thin film of a metal oxide is formed to a desired film thickness by a plasma vapor deposition method ”.

【0006】蒸発源から蒸発する蒸発物質の飛行方向
は、蒸発源を中心とする放射状であるから透明基板表面
に対する蒸発物質の飛来方向は一義的でない。そこで
「透明基板表面に対して40〜80度傾いた方向から蒸
発物質が飛来する」とは、電界や磁界がない状態で、透
明基板表面の中央部近傍に飛来してくる蒸着物質の飛来
方向が透明基板表面に対して40〜80度傾いていると
いう意味であるとする。
Since the flight direction of the evaporation material evaporated from the evaporation source is radial with the evaporation source as the center, the flight direction of the evaporation material with respect to the transparent substrate surface is not unique. Therefore, the phrase “evaporation material comes in from a direction inclined by 40 to 80 degrees with respect to the transparent substrate surface” means that the evaporation material comes in near the center of the transparent substrate surface in the absence of an electric field or magnetic field. Is inclined by 40 to 80 degrees with respect to the surface of the transparent substrate.

【0007】「導入ガス」は、活性ガスおよび/または
不活性ガスである。「プラズマ蒸着法」は、特公閉1−
53351号公報に開示された蒸着法で、以下の如くに
実施される。即ち、被蒸着基板は対向電極に保持されて
蒸発源に対向させられる。蒸発源と対向電極との間には
グリッドが配備され、このグリッドから上記対向電極へ
向かう電界が形成される。また熱電子放出用のフィラメ
ントが設けられ、ベルジャー内には、活性ガスおよび/
または不活性ガスが導入ガスとして導入される。
The "introduced gas" is an active gas and / or an inert gas. "Plasma deposition method" is closed
The vapor deposition method disclosed in Japanese Patent No. 53351 is carried out as follows. That is, the deposition target substrate is held by the counter electrode and is opposed to the evaporation source. A grid is provided between the evaporation source and the counter electrode, and an electric field is formed from the grid toward the counter electrode. In addition, a filament for thermionic emission is provided, and active gas and / or
Alternatively, an inert gas is introduced as the introduction gas.

【0008】蒸着時にはフィラメントから熱電子を放出
し、導入ガスをイオン化してベルジャー内にプラズマを
発生させ、この状態で蒸発源から蒸発物質を蒸発させ
る。蒸発物質の粒子は導入ガスのイオンや熱電子との衝
突によりイオン化され、グリッドと対向電極との間に形
成されている電界により加速されて被蒸着基板の表面に
高速で衝突し、膜を形成する。
At the time of vapor deposition, thermoelectrons are emitted from the filament, the introduced gas is ionized to generate plasma in the bell jar, and in this state, the evaporation material is evaporated from the evaporation source. The particles of the vaporized substance are ionized by collision with ions of the introduced gas and thermoelectrons, accelerated by the electric field formed between the grid and the counter electrode, and collide with the surface of the deposition target substrate at high speed to form a film. To do.

【0009】上記のように、この発明の複屈折板製造方
法においては、蒸発物質の飛来方向に対する透明基板表
面の「傾き角」の範囲が40〜80度に設定されるが、
複屈折性の高い薄膜を形成する上で特に好ましい傾き角
は、略70度である(請求項2)。透明基板表面の蒸着
面積が比較的小さい場合には、「蒸発物質の主飛行線と
透明基板表面との交点において透明基板表面に立てた法
線と主飛行線とを含む平面に直交する方向をA方向とす
るとき、上記主飛行線の方向を蒸発物質の基準の飛来方
向として、蒸発源と透明基板とをA方向において相対的
に変位させつつ、プラズマ蒸着法により金属酸化膜を所
望の膜厚に形成する」のが望ましく、この場合「蒸発源
と透明基板とのA方向における相対的な移動範囲」は蒸
発源から見て主飛行線の両側の30度以下の範囲が好適
である(請求項3)。
As described above, in the method for manufacturing a birefringent plate of the present invention, the range of the "tilt angle" of the surface of the transparent substrate with respect to the flying direction of the vaporized substance is set to 40 to 80 degrees.
A particularly preferable tilt angle for forming a thin film having high birefringence is about 70 degrees (claim 2). When the deposition area on the surface of the transparent substrate is relatively small, "the direction perpendicular to the plane including the normal line and the main flight line standing on the transparent substrate surface at the intersection of the main flight line of the evaporated substance and the transparent substrate surface is When the direction A is taken, the direction of the main flight line is taken as the reference flying direction of the evaporation material, and the evaporation source and the transparent substrate are relatively displaced in the direction A, and the metal oxide film is formed into a desired film by the plasma deposition method. It is desirable to form "thickness", and in this case, the "relative movement range of the evaporation source and the transparent substrate in the A direction" is preferably 30 degrees or less on both sides of the main flight line when viewed from the evaporation source ( Claim 3).

【0010】上記「主飛行線」は以下のように定義され
る。電界・磁界が存在しない状態で蒸発源から蒸発物質
を蒸発させると、蒸発物質の粒子は蒸発源を源として広
がり角を持って放射状に飛行する。この放射状の広がり
は、蒸発源を通る特定の直線に関して線対称的である。
この特定の直線を主飛行線と称するのである。透明基板
としてはガラス板や透明プラスチック板を用いることが
できる。透明プラスチック板を用いる場合、金属酸化膜
を形成する側の面に「酸化珪素系のアンダーコート膜」
を形成したものを基板とすることができる(請求項
4)。透明基板表面にプラズマ蒸着法により形成する金
属酸化膜は斜め蒸着により複屈折を生じるものであれば
良いが、Ta25,WO3,MoO3,Bi23,Nb2
3,CeO2,ZrO2,TiO2,SnO2等の膜は特
に好適である(請求項5)。
The above "main flight line" is defined as follows. When the evaporation material is evaporated from the evaporation source in the absence of an electric field or magnetic field, the particles of the evaporation material spread from the evaporation source as a source and fly radially with an angle. This radial extent is axisymmetric with respect to a particular straight line through the evaporation source.
This particular straight line is called the main flight line. A glass plate or a transparent plastic plate can be used as the transparent substrate. When using a transparent plastic plate, a "silicon oxide-based undercoat film" is formed on the surface on which the metal oxide film is formed.
The substrate on which the above is formed can be used (claim 4). The metal oxide film formed on the surface of the transparent substrate by the plasma vapor deposition method may be any one as long as it causes birefringence by oblique vapor deposition, but Ta 2 O 5 , WO 3 , MoO 3 , Bi 2 O 3 , Nb 2
A film of O 3 , CeO 2 , ZrO 2 , TiO 2 , SnO 2 or the like is particularly preferable (claim 5).

【0011】請求項6の複屈折板は、上記請求項1ない
し5の方法で製造される複屈折板である。この複屈折板
は、金属酸化膜の表面に、「金属酸化膜との組合せで反
射防止効果を発揮する反射防止膜」を成膜形成すること
ができる(請求項7)。
The birefringent plate of claim 6 is the birefringent plate manufactured by the method of claims 1 to 5. In this birefringent plate, "an antireflection film that exhibits an antireflection effect in combination with the metal oxide film" can be formed on the surface of the metal oxide film (claim 7).

【0012】[0012]

【作用】図1において、符号1は透明基板、符号2は金
属酸化膜、符号3は蒸発源を示している。図のように、
透明基板1の表面に平行にX,Y方向を定め、上記表面
に直交させてZ方向をとる。符号4は蒸着源からの蒸発
物質の「飛来方向」を示す。従って図の角:θは透明基
板1の表面の飛来方向4に対する傾き角を表す。
In FIG. 1, reference numeral 1 is a transparent substrate, reference numeral 2 is a metal oxide film, and reference numeral 3 is an evaporation source. As shown
The X and Y directions are defined in parallel with the surface of the transparent substrate 1, and the Z direction is taken orthogonal to the surface. Reference numeral 4 indicates the "flying direction" of the evaporated substance from the vapor deposition source. Therefore, the angle in the figure: θ represents the tilt angle of the surface of the transparent substrate 1 with respect to the flying direction 4.

【0013】図1の状態で、蒸発源3から透明基板1に
対して「斜め」に蒸発物質を飛ばして金属酸化膜の蒸着
を行なうと、所謂「セルフ・シャドウ効果」により蒸着
粒子の成長方向が規制されるため、「粒子間の繋がり」
はX方向に生じ易く、Y方向に生じ難い。このため形成
された金属酸化膜2における密度はX方向の密度がY方
向の密度よりも高くなる。そして、金属酸化膜2におけ
る微視的な粒子配列構造が光の波長に比して十分に小さ
いため、X方向の屈折率:Nxが、Y方向の屈折率Ny
よりも高くなり、複屈折が生じる。上記飛来方向4は形
成された金属酸化膜2の結晶構造における光学軸の方向
となる。
In the state shown in FIG. 1, when the metal oxide film is vapor-deposited from the vaporization source 3 obliquely to the transparent substrate 1, the metal oxide film is vapor-deposited by the so-called "self-shadow effect". Is controlled, so "connection between particles"
Is likely to occur in the X direction and is unlikely to occur in the Y direction. Therefore, the density of the formed metal oxide film 2 is higher in the X direction than in the Y direction. Since the microscopic particle array structure in the metal oxide film 2 is sufficiently smaller than the wavelength of light, the refractive index Nx in the X direction is equal to the refractive index Ny in the Y direction.
Higher than that, and birefringence occurs. The flying direction 4 is the direction of the optical axis in the crystal structure of the formed metal oxide film 2.

【0014】図1に示す金属酸化膜2に光をZ方向へ透
過させると、光は位相速度の最も遅いX方向の直線偏光
成分と、位相速度の最も早いY方向の直線偏光成分に分
かれて進む。従って、図2(A)に示すような、X方向
の直線偏光成分40とY方向の直線偏光成分50とから
なる光が金属酸化膜2をZ方向に透過すると、透過光に
おいては、図2(B)に示すように、Y方向の直線偏光
成分50に対して、X方向の直線偏光成分40はΓだけ
遅れることになる。この遅延量:Γはリターデーション
と呼ばれる。リターデーション:Γは、金属酸化膜2の
厚みをdとすると、前述の屈折率Nx,Nyを用いて次
のように表される。 Γ=(Nx−Ny)d 従って、金属酸化膜2の厚さ:dを調整することによ
り、λ/2波長板,λ/4波長板,λ/8波長板等の作
用を持つ複屈折板を得ることができる。
When light is transmitted through the metal oxide film 2 shown in FIG. 1 in the Z direction, the light is divided into a linearly polarized light component in the X direction having the slowest phase velocity and a linearly polarized light component in the Y direction having the fastest phase velocity. move on. Therefore, as shown in FIG. 2A, when the light composed of the linearly polarized light component 40 in the X direction and the linearly polarized light component 50 in the Y direction is transmitted through the metal oxide film 2 in the Z direction, the transmitted light is as shown in FIG. As shown in (B), the linear polarization component 40 in the X direction is delayed by Γ with respect to the linear polarization component 50 in the Y direction. This delay amount: Γ is called retardation. Retardation: Γ is expressed as follows using the above-mentioned refractive indices Nx and Ny, where d is the thickness of the metal oxide film 2. Γ = (Nx−Ny) d Therefore, by adjusting the thickness: d of the metal oxide film 2, a birefringent plate having the functions of a λ / 2 wave plate, a λ / 4 wave plate, a λ / 8 wave plate, etc. Can be obtained.

【0015】また金属酸化膜2の光学軸方向に対して+
45度方向即ち、X,Y量方向に対して45度傾いた方
向に直線偏光している光を透過させると、X,Y方向の
振動成分の位相差が最も大きくなるため、直線偏光の光
を円偏光にする等の偏光効果は最も大きくなる。
Further, with respect to the optical axis direction of the metal oxide film 2, +
When the light linearly polarized in the direction of 45 degrees, that is, in the direction inclined by 45 degrees with respect to the X and Y amount directions is transmitted, the phase difference of the vibration components in the X and Y directions becomes the largest, so that the linearly polarized light The effect of polarization such as circular polarization is maximized.

【0016】図1に示す金属酸化膜2の蒸着を真空蒸着
で行なうと、蒸発物質の飛行軌跡は実質的に直線となる
ため、透明基板表面への蒸発粒子の入射角は透明基板1
のX,Y方向の幅に応じて、傾き角:θの周りにかなり
変化するが、この発明におけるように「プラズマ蒸着
法」により斜め蒸着を行なうと、透明基板1の背後には
対向電極があり、前述したグリッドから対向電極に向か
う電界の電気力線は透明基板方面に略直交する状態とな
り、蒸発物質の粒子は上記電界により加速されるので、
透明基板表面に入射してくる粒子は本来の飛来方向か
ら、やや上記表面に直交する方向へ偏向されることにな
り、これが上記傾き角の変化を有効に緩和することにな
る。このため、この発明の方法で形成される金属酸化膜
では、光軸の位置的な変動が小さい。
When the vapor deposition of the metal oxide film 2 shown in FIG. 1 is performed by vacuum vapor deposition, the flight trajectory of the vaporized substance becomes substantially a straight line, so the incident angle of the vaporized particles on the transparent substrate surface is the transparent substrate 1.
According to the widths in the X and Y directions of the above, the tilt angle: changes considerably around θ. However, when oblique deposition is performed by the “plasma deposition method” as in the present invention, a counter electrode is formed behind the transparent substrate 1. The electric field lines of the electric field directed from the grid to the counter electrode are substantially orthogonal to the direction of the transparent substrate, and the particles of the evaporated substance are accelerated by the electric field.
The particles incident on the surface of the transparent substrate are deflected from the original flying direction to a direction slightly orthogonal to the surface, which effectively alleviates the change in the tilt angle. Therefore, in the metal oxide film formed by the method of the present invention, the positional variation of the optical axis is small.

【0017】さらに、請求項3の方法で金属酸化膜を形
成すると、蒸発源と透明基板とが図1のY方向に相対的
に変位するため、蒸発物質の飛来方向のY方向における
変化が平均化されて、より良好な複屈折性を示す金属酸
化膜を形成できる。
Further, when the metal oxide film is formed by the method of claim 3, since the evaporation source and the transparent substrate are relatively displaced in the Y direction of FIG. 1, the change in the flying direction of the evaporated substance in the Y direction is average. It is possible to form a metal oxide film having better birefringence.

【0018】[0018]

【実施例】図3の符号10は、この発明の複屈折板製造
方法を実施するためのプラズマ蒸着装置の1例を略示し
ている。符号7で示すベルジャー内には、蒸発源3、フ
ィラメント5、グリッド6、対向電極8等が設けられて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference numeral 10 in FIG. 3 schematically shows an example of a plasma vapor deposition apparatus for carrying out the method for manufacturing a birefringent plate of the present invention. An evaporation source 3, a filament 5, a grid 6, a counter electrode 8 and the like are provided in a bell jar indicated by reference numeral 7.

【0019】対向電極8は、そのグリッド6側の面に透
明基板1を保持する。対向電極8は図3の図面に直交す
る方向に平行で電極表面中央部を通る直線を軸として揺
動的に態位を調整でき、符号4Aで示す主飛行線を基準
の飛来方向として、この飛来方向に対する透明基板表面
の傾き角:θが70度となるように上記態位を調整され
ている。
The counter electrode 8 holds the transparent substrate 1 on its grid 6 side surface. The counter electrode 8 can adjust its position in a swinging manner with a straight line that is parallel to the direction orthogonal to the drawing of FIG. 3 and that passes through the central portion of the electrode surface as an axis, and the main flight line indicated by reference numeral 4A is the reference flight direction. The posture is adjusted so that the inclination angle θ of the transparent substrate surface with respect to the flying direction is 70 degrees.

【0020】図4は、図3に示すプラズマ蒸着装置を、
図3の左方から見た状態を示している。対向電極8は、
透明基板1を保持した状態で図の左右方向(方向Aとい
う。図3の図面に直交する方向に対応)へ変位可能にな
っている。符号9はじゃま板を示す。このじゃま板9が
あるため、対向電極8に保持した透明基板1を方向Aへ
変位させつつプラズマ蒸着を行なうと、方向Aにおける
蒸発物質の飛来方向は主飛行線4の両側に角:αだけ変
化する。この角:αの大きさは30度以下に設定され
る。
FIG. 4 shows the plasma deposition apparatus shown in FIG.
The state seen from the left side of FIG. 3 is shown. The counter electrode 8 is
With the transparent substrate 1 held, it can be displaced in the left-right direction of the figure (referred to as the direction A, which corresponds to the direction orthogonal to the drawing of FIG. 3). Reference numeral 9 indicates a baffle plate. Because of this baffle plate 9, when plasma deposition is performed while displacing the transparent substrate 1 held by the counter electrode 8 in the direction A, the flying direction of the vaporized substance in the direction A is only on the both sides of the main flight line 4 by the angle: α. Change. The size of this angle: α is set to 30 degrees or less.

【0021】前述のように、蒸発物質の「飛来方向」
は、電界や磁界のない状態で透明基板表面の中央部近傍
に入射する蒸発物質の飛行軌跡の方向として定義される
から、説明中の例のように、透明基板1がA方向へ変位
されつつ斜め蒸着が行なわれると、飛来方向自体も変化
することになる。飛来方向として設定された主飛行線の
方向を「基準の飛来方向」と呼ぶのは、この点を考慮し
て、透明基板表面の傾き角等を主飛行線を基準として設
定することを意味する。
As described above, the "arrival direction" of the vaporized substance
Is defined as the direction of the flight trajectory of the vaporized material that is incident near the central portion of the transparent substrate surface in the absence of an electric field or magnetic field, so that the transparent substrate 1 is displaced in the A direction as in the example in the description. When oblique vapor deposition is performed, the flying direction itself also changes. The direction of the main flight line set as the flight direction is referred to as the "reference flight direction", and in consideration of this point, it means that the inclination angle of the transparent substrate surface is set with the main flight line as the reference. ..

【0022】以下具体的な実施例を説明する。 実施例1 図3,4に説明したプラズマ蒸着装置10の対向電極8
に、50mm×50mmのガラス板を透明基板1として
支持し、主飛行線4Aに対する傾き角を70度に設定し
た。蒸発源3には金属Snを入れた。図4に示す角:α
を30度に設定し、対向電極8を図4の矢印方向(A方
向)へ移動しつつ、プラズマ蒸着法で斜め蒸着を行なっ
た。
Specific examples will be described below. Example 1 Counter electrode 8 of plasma deposition apparatus 10 described in FIGS.
Further, a 50 mm × 50 mm glass plate was supported as the transparent substrate 1, and the inclination angle with respect to the main flight line 4A was set to 70 degrees. Metal Sn was put in the evaporation source 3. Angle shown in FIG. 4: α
Was set to 30 degrees, and the oblique deposition was performed by the plasma deposition method while moving the counter electrode 8 in the arrow direction (direction A) in FIG.

【0023】ベルジャー7内は排気ポンプにより10~6
Torr以下の真空度にされ、導入ガスとして反応性O
2ガスが9×10~5Torr以上の圧力に導入されてい
る。グリッド6と対向電極8の間には、グリッド6から
対向電極8へ向かう電界が発生するように電圧が印加さ
れ、フィラメント5から熱電子を放出して、O2ガスを
イオン化してプラズマを生成する。蒸発物質Snを電子
ビームで局所的に加熱して蒸発させ、プラズマ蒸着によ
り酸化錫の薄膜を膜厚1.6μmに形成した。
Inside the bell jar 7 is 10 to 6 by an exhaust pump.
The degree of vacuum is set to Torr or lower, and reactive O is used as an introduced gas.
Two gases are introduced at a pressure of 9 × 10 to 5 Torr or more. A voltage is applied between the grid 6 and the counter electrode 8 so that an electric field from the grid 6 to the counter electrode 8 is generated, and thermoelectrons are emitted from the filament 5 to ionize O 2 gas and generate plasma. To do. The evaporated substance Sn was locally heated by an electron beam to be evaporated, and a tin oxide thin film was formed to a thickness of 1.6 μm by plasma deposition.

【0024】このようにして製造された複屈折板はλ/
4波長板として使用できる。
The birefringent plate manufactured in this manner has a wavelength of λ /
It can be used as a four-wave plate.

【0025】実施例2 実施例1で製造された複屈折板の酸化錫薄膜の上に、S
iO2を約195nmの厚さに成膜して、反射防止層と
した。このようにして、光量効率の高い複屈折板を製造
できた。なお、反射防止膜の材料としてはMgF2も好
適である。
Example 2 On the tin oxide thin film of the birefringent plate manufactured in Example 1, S
A film of iO 2 was formed to a thickness of about 195 nm to form an antireflection layer. In this way, a birefringent plate with high light efficiency could be manufactured. MgF 2 is also suitable as the material of the antireflection film.

【0026】実施例3 プラズマ蒸着装置10の蒸着源3に酸化錫:SnO2
入れ、図4の角:αを20度とし、あとは実施例1と同
様にして斜め蒸着を行ない、透明基板上に厚さ0.8μ
mの酸化錫の薄膜を形成した。このようにして製造され
た複屈折板は、λ/8波長板として使用できる。
Example 3 Tin oxide: SnO 2 was put into the vapor deposition source 3 of the plasma vapor deposition apparatus 10 and the angle α in FIG. 4 was set to 20 degrees. Then, oblique vapor deposition was carried out in the same manner as in Example 1 to obtain a transparent substrate. 0.8μ thickness on top
m thin film of tin oxide was formed. The birefringent plate manufactured in this way can be used as a λ / 8 wave plate.

【0027】実施例4 プラズマ蒸着装置10の蒸着源に5酸化タンタル:Ta
25を入れ、図4の角:αを20度とし、あとは実施例
1と同様にして斜め蒸着を行ない、透明基板上に厚さ
1.5μmの5酸化タンタル膜を形成した。このように
して製造された複屈折板は、λ/4波長板として使用で
きる。
Example 4 Tantalum pentoxide: Ta was used as a vapor deposition source of the plasma vapor deposition apparatus 10.
2 O 5 was added, the angle α in FIG. 4 was set to 20 °, and then oblique vapor deposition was carried out in the same manner as in Example 1 to form a tantalum pentoxide film with a thickness of 1.5 μm on the transparent substrate. The birefringent plate manufactured in this way can be used as a λ / 4 wavelength plate.

【0028】実施例5 プラズマ蒸着装置10の蒸着源3にタングステン:Wを
入れ、図4の角:αを20度とし、あとは実施例1と同
様にして斜め蒸着を行ない、透明基板上に厚さ0.9μ
mの酸化タングステン膜を形成した。このようにして製
造された複屈折板は、λ/8波長板として使用できる。
Example 5 Tungsten: W was put into the vapor deposition source 3 of the plasma vapor deposition apparatus 10 and the angle α in FIG. 4 was set to 20 °. Then, oblique vapor deposition was carried out in the same manner as in Example 1 to form a transparent substrate. Thickness 0.9μ
m tungsten oxide film was formed. The birefringent plate manufactured in this way can be used as a λ / 8 wave plate.

【0029】実施例3,4,5で製造された複屈折板の
金属酸化膜上にも、SiO2もしくはMgF2を略195
nmの厚さに成膜して反射防止膜とすることができる。
On the metal oxide film of the birefringent plate manufactured in Examples 3, 4 and 5, SiO 2 or MgF 2 is added to about 195.
An antireflection film can be formed by forming a film with a thickness of nm.

【0030】これら実施例1〜5の複屈折板は何れも、
金属酸化膜がプラズマ蒸着法で斜め蒸着されているた
め、真空蒸着による斜め蒸着で形成した薄膜に比して金
属酸化膜の密度が高く、透明基板への密着性や膜自体の
機械強度も強く、ボイドも少ない。またこれら実施例1
ないし5の複屈折板の金属酸化膜である酸化錫、5酸化
タンタル、酸化タングステンの薄膜は、複屈折性薄膜と
して知られたSiO2やTiO2の薄膜に比して複屈折性
が高く、複屈折性のバラツキが非常に小さいために膜厚
を薄く構成でき、複屈折性が安定している。さらにこれ
らの実施例1〜5のように、高精度に制御された蒸着角
度で蒸着を行なうことにより、形成された金属酸化膜の
光学軸に対して45度方向に光を入射させると、複屈折
板を傾けることなく入射光の偏向を実現できる。
Each of the birefringent plates of Examples 1 to 5 is
Since the metal oxide film is obliquely deposited by the plasma deposition method, the density of the metal oxide film is higher than that of the thin film formed by oblique deposition by vacuum deposition, and the adhesion to the transparent substrate and the mechanical strength of the film itself are stronger. There are also few voids. In addition, these Example 1
The thin films of tin oxide, tantalum pentoxide, and tungsten oxide, which are the metal oxide films of the birefringent plates of Nos. 5 to 5, have higher birefringence than the thin films of SiO 2 and TiO 2 known as birefringent thin films, Since the birefringence variation is very small, the film thickness can be made thin and the birefringence is stable. Further, as in Examples 1 to 5, when vapor deposition is performed at a vapor deposition angle controlled with high precision, light is incident in a direction of 45 degrees with respect to the optical axis of the formed metal oxide film. The incident light can be deflected without tilting the refraction plate.

【0031】また、実施例2,3,4のように、蒸発物
質として「透明基板上に形成する金属酸化膜と同じ酸化
物」を用いると、蒸発物質として金属自体を用いる場合
に比して蒸着時の圧力調整が容易であり、酸素との反応
は蒸発時に酸素から解離した材料金属原子に対して補助
的に必要となるだけであるので、成膜の速度を大きくで
き、製造の能率性が良い。
When the same oxide as the metal oxide film formed on the transparent substrate is used as the evaporation material as in Examples 2, 3 and 4, compared with the case where the metal itself is used as the evaporation material. The pressure during vapor deposition is easy to adjust, and the reaction with oxygen only needs to be supplementary to the material metal atoms dissociated from oxygen during vaporization, so the rate of film formation can be increased and manufacturing efficiency can be improved. Is good.

【0032】[0032]

【発明の効果】以上のように、この発明によれば新規な
複屈折板およびその製造方法を提供できる。この発明の
複屈折板は、透明基板表面に形成される金属酸化物の薄
膜がプラズマ蒸着法により成膜されるので密度が高く、
従って複屈折性が高い。また金属酸化膜の基板への密着
性や機械強度も強いので機械的な取扱が容易である。
As described above, according to the present invention, a novel birefringent plate and a method for manufacturing the same can be provided. The birefringent plate of the present invention has a high density because the metal oxide thin film formed on the transparent substrate surface is formed by the plasma deposition method,
Therefore, the birefringence is high. Further, the metal oxide film has a strong adhesion to the substrate and a high mechanical strength, which facilitates mechanical handling.

【0033】また請求項7の複屈折板のように、金属酸
化膜の表面に反射防止膜を設けることにより、複屈折板
を用いる光学装置における光の利用効率を高くできる。
Further, by providing an antireflection film on the surface of the metal oxide film as in the birefringent plate of the seventh aspect, it is possible to increase the light utilization efficiency in the optical device using the birefringent plate.

【0034】なお、透明基板としては、上に説明したも
のの他、光学レンズを用いることができる。即ち金属酸
化膜は、光学レンズのレンズ面に直接形成しても良い。
この場合は、レンズ作用を持った波長板を実現できる。
As the transparent substrate, an optical lens can be used in addition to those described above. That is, the metal oxide film may be directly formed on the lens surface of the optical lens.
In this case, a wave plate having a lens effect can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】斜め蒸着を説明するための図である。FIG. 1 is a diagram for explaining oblique vapor deposition.

【図2】複屈折を説明するための図である。FIG. 2 is a diagram for explaining birefringence.

【図3】この発明の複屈折板製造方法を実施するための
プラズマ蒸着装置の1例を説明するための図である。
FIG. 3 is a diagram for explaining an example of a plasma deposition apparatus for carrying out the method for manufacturing a birefringent plate of the present invention.

【図4】図3の装置を図3の左方から見た状態を説明す
る図である。
FIG. 4 is a diagram illustrating a state of the apparatus of FIG. 3 viewed from the left side of FIG.

【符号の説明】[Explanation of symbols]

1 透明基板 2 金属酸化膜 3 蒸発源 4 蒸発物質の飛来方向 1 transparent substrate 2 metal oxide film 3 evaporation source 4 direction of evaporation material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅木 和博 岩手県花巻市大畑第10地割109番地・リコ ー光学株式会社内 (72)発明者 小野寺 祐二 岩手県花巻市若葉町3−5−7・ハイムエ ーグル2−1号室 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kazuhiro Umeki, Kazuhiro Umeki, 10th District, Ohata, Hanamaki City, Iwate Prefecture, 109, Rico Optical Co., Ltd. (72) Yuji Onodera, 3-5-7 Wakaba Town, Hanamaki City, Iwate Prefecture・ Heimeagle Room 2-1

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】透明基板表面に対して40〜80度傾いた
方向から蒸発物質を飛来させるように透明基板表面と蒸
発源の位置関係を設定し、導入ガスの圧力を9×10~5
Torr以上とした状態で、プラズマ蒸着法により金属
酸化物の薄膜を所望の膜厚に形成することを特徴とする
複屈折板の製造方法。
1. The positional relationship between the transparent substrate surface and the evaporation source is set so that the evaporated substance may fly from a direction inclined by 40 to 80 degrees with respect to the transparent substrate surface, and the pressure of the introduced gas is set to 9 × 10 to 5.
A method of manufacturing a birefringent plate, which comprises forming a thin film of a metal oxide to a desired thickness by a plasma deposition method in a state of Torr or more.
【請求項2】請求項1において、 蒸発物質の飛来方向に対する透明基板表面の傾き角が、
略70度であることを特徴とする複屈折板の製造方法。
2. The tilt angle of the surface of the transparent substrate with respect to the incoming direction of the vaporized material according to claim 1,
A method of manufacturing a birefringent plate, wherein the birefringent plate is about 70 degrees.
【請求項3】請求項1または2において、 蒸発物質の主飛行線と透明基板表面との交点において透
明基板表面に立てた法線と上記主飛行線とを含む平面に
直交する方向をA方向とするとき、上記主飛行線の方向
を蒸発物質の飛来方向として、蒸発源と透明基板とをA
方向において相対的に変位させつつ、プラズマ蒸着法に
より金属酸化膜を所望の膜厚に形成する方法であって、 蒸発源と透明基板とのA方向における相対的な移動範囲
が、蒸発源から見て上記主飛行線の両側の30度以下の
範囲に設定されたことを特徴とする、複屈折板の製造方
法。
3. A direction perpendicular to a plane including the normal line standing on the transparent substrate surface and the main flight line at the intersection of the main flight line of the vaporized substance and the transparent substrate surface, as defined in claim 1 or 2. In this case, the direction of the main flight line is defined as the incoming direction of the evaporation material, and the evaporation source and the transparent substrate are
A method of forming a metal oxide film to a desired film thickness by plasma vapor deposition while relatively displacing it in the direction A, in which the relative range of movement of the evaporation source and the transparent substrate in the A direction is seen from the evaporation source. And a range of 30 degrees or less on both sides of the main flight line.
【請求項4】請求項1または2又は3において、 透明基板が、透明プラスチック板の表面に酸化珪素系の
アンダーコート膜を形成したものであることを特徴とす
る、複屈折板の製造方法。
4. The method for producing a birefringent plate according to claim 1, 2 or 3, wherein the transparent substrate is a transparent plastic plate on which a silicon oxide-based undercoat film is formed.
【請求項5】請求項1または2または3または4におい
て、 プラズマ蒸着法により形成される金属酸化膜が、Ta2
5,WO3,MoO3,Bi23,Nb23,CeO2
ZrO2,TiO2,SnO2の何れかの膜であることを
特徴とする、複屈折板の作製方法。
5. The metal oxide film according to claim 1, 2 or 3 or 4, wherein the metal oxide film formed by plasma deposition is Ta 2
O 5 , WO 3 , MoO 3 , Bi 2 O 3 , Nb 2 O 3 , CeO 2 ,
A method for producing a birefringent plate, which is a film of any one of ZrO 2 , TiO 2 , and SnO 2 .
【請求項6】請求項1または2または3または4または
5の方法により製造される、複屈折板。
6. A birefringent plate manufactured by the method according to claim 1, 2 or 3 or 4 or 5.
【請求項7】請求項6において、 金属酸化膜の表面に、金属酸化膜との組合せで反射防止
効果を発揮する反射防止膜が成膜形成されていることを
特徴とする複屈折板。
7. The birefringent plate according to claim 6, wherein an antireflection film exhibiting an antireflection effect in combination with the metal oxide film is formed on the surface of the metal oxide film.
JP29740091A 1991-11-13 1991-11-13 Double refraction sheet and its manufacture Pending JPH05132768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29740091A JPH05132768A (en) 1991-11-13 1991-11-13 Double refraction sheet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29740091A JPH05132768A (en) 1991-11-13 1991-11-13 Double refraction sheet and its manufacture

Publications (1)

Publication Number Publication Date
JPH05132768A true JPH05132768A (en) 1993-05-28

Family

ID=17846009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29740091A Pending JPH05132768A (en) 1991-11-13 1991-11-13 Double refraction sheet and its manufacture

Country Status (1)

Country Link
JP (1) JPH05132768A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188060A (en) * 2005-12-06 2007-07-26 Jds Uniphase Corp Thin-film optical retarder
JP2011059715A (en) * 2010-12-08 2011-03-24 Fujifilm Corp Method of manufacturing biaxial birefringent material
US8605241B2 (en) 2007-09-21 2013-12-10 Fujifilm Corporation Biaxial birefringent component, liquid crystal projector, and method for manufacturing biaxial birefringent component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188060A (en) * 2005-12-06 2007-07-26 Jds Uniphase Corp Thin-film optical retarder
US8605241B2 (en) 2007-09-21 2013-12-10 Fujifilm Corporation Biaxial birefringent component, liquid crystal projector, and method for manufacturing biaxial birefringent component
JP2011059715A (en) * 2010-12-08 2011-03-24 Fujifilm Corp Method of manufacturing biaxial birefringent material

Similar Documents

Publication Publication Date Title
Martin Ion-based methods for optical thin film deposition
US5958155A (en) Process for producing thin film
KR100278135B1 (en) Method for manufacturing a reflection reducing coating on a lens and apparatus therefor
Mohan et al. A review of ion beam assisted deposition of optical thin films
WO2010018639A1 (en) Deposition apparatus and method for manufacturing thin-film device
US5393574A (en) Method for forming light absorbing aluminum nitride films by ion beam deposition
JPS61223719A (en) Optical controlling element
JP4009044B2 (en) Thin-film birefringent element and method and apparatus for manufacturing the same
JPS6135401A (en) Reflection mirror
JPH05132768A (en) Double refraction sheet and its manufacture
US6494997B1 (en) Radio frequency magnetron sputtering for lighting applications
US20070224342A1 (en) Apparatus and method for forming antireflection film
JP2008026093A (en) Multilayer film reflection mirror and method for manufacturing it
JPH1123840A (en) Double refractive plate
JPH05134115A (en) Double refraction member
US20200165716A1 (en) Film forming method and film forming apparatus
JPH05323119A (en) Double refraction optical element and its production
Strauss et al. Mechanical stress in thin SiO2 and Ta2O5 films produced by reactive-low-voltage-ion-plating (RLVIP)
JPS61280927A (en) Multilayer article containing crystallization preventive layer and manufacture thereof
JP2787956B2 (en) Thin film formation method
JPS63203760A (en) Method and device for forming inorganic film to glass substrate surface
JPH08211198A (en) Neutron reflector
JPH0631850A (en) High gas barrier transparent conductive film
JPS5997105A (en) Interference type polarizer
KR100232147B1 (en) Polarization device and its manufacturing method