JPH05129564A - Semiconductor memory device and fabrication thereof - Google Patents

Semiconductor memory device and fabrication thereof

Info

Publication number
JPH05129564A
JPH05129564A JP3290170A JP29017091A JPH05129564A JP H05129564 A JPH05129564 A JP H05129564A JP 3290170 A JP3290170 A JP 3290170A JP 29017091 A JP29017091 A JP 29017091A JP H05129564 A JPH05129564 A JP H05129564A
Authority
JP
Japan
Prior art keywords
film
gate electrodes
transistor
mio
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3290170A
Other languages
Japanese (ja)
Inventor
Masanori Iwahashi
正憲 岩橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3290170A priority Critical patent/JPH05129564A/en
Publication of JPH05129564A publication Critical patent/JPH05129564A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to arrange a plurality of gate electrodes closely at high density by arranging a plurality of gate electrodes, formed in MIOS structure on a region having same conductivity type between source and drain, closely and linearly in the direction of source and rain. CONSTITUTION:Drain D and source S of n<+> region are provided on an isolated p-type substrate and a p<-> region is formed between the drain D and the source S. A tunnel oxide film 102, a nitride film 103 and an oxide film 104 are formed on the p<-> region and polysilicon gate electrodes CG1-CG8 are provided thereon. The gate electrodes CG1-CG8 are isolated, respectively, through quite thin oxide films. A wiring pattern is formed thereon by means of Al wirings 305a, 305b while interposing an insulation oxide film. According to the invention, memory density is considerably increased and flatness is improved on the top face of the gate electrodes CG1-CG8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、MIOS構造(MON
OS構造,MNOS構造,MAOS構造を含む)をもつ
半導体不揮発性メモリに関し、特に、NAND型のメモ
リセル構造の集積度をさらに高めるのに好適なものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MIO structure (MON
The present invention relates to a semiconductor nonvolatile memory having an OS structure, a MNOS structure, and a MAOS structure), and is particularly suitable for further increasing the integration degree of a NAND type memory cell structure.

【0002】[0002]

【従来の技術】MIOS構造或いはフローティングゲー
ト型構造をもつ半導体不揮発性メモリは、その集積度
(記憶密度)を上げるため、NAND型のメモリセル構
造が考えられている。例えば、前者の例としては、「特
開平2−110966」に図4のようなNAND型のメ
モリセル構造が記載されている。また、後者の例として
は、「特開平2−94197」に図5のようなNAND
型のメモリセル構造が記載されている。
2. Description of the Related Art As a semiconductor non-volatile memory having a MIO structure or a floating gate type structure, a NAND type memory cell structure has been considered in order to increase its integration degree (storage density). For example, as an example of the former, Japanese Patent Laid-Open No. 2-110966 discloses a NAND type memory cell structure as shown in FIG. As an example of the latter, there is a NAND as shown in FIG. 5 in "Japanese Patent Laid-Open No. 2-94197".
Type memory cell structures are described.

【0003】[0003]

【発明が解決しようとする課題】MIOS構造の半導体
不揮発性メモリは、EEPROMと呼ばれ、何度も電気
的に書き替えが可能なため、広い用途への応用が考えら
れている。しかし、現在数キロビット程度の低容量のも
のが実用化され市販されているのが現状であり、より大
容量化,高集積化が望まれている。
A semiconductor non-volatile memory having a MIO structure is called an EEPROM and can be electrically rewritten many times, so that it is considered to be applied to a wide range of purposes. However, at present, a low capacity of several kilobits has been put into practical use and put on the market, and there is a demand for higher capacity and higher integration.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明の半導体記憶装置は、MIOSトランジスタ
(MONOS構造,MNOS構造,MAOS構造を含
む)からなる半導体記憶装置であって、MIOSトラン
ジスタは、そのソース・ドレイン間が同一導電型の領域
となっていて、この領域上にMIOS構造(MONOS
構造,MNOS構造,MAOS構造を含む)で形成され
た複数のゲート電極がソース・ドレイン方向に直線状に
近接配置された構造であることを特徴とする。
In order to solve the above-mentioned problems, a semiconductor memory device of the present invention is a semiconductor memory device including an MIO transistor (including a MONOS structure, a MNOS structure, and a MAOS structure). Has a region of the same conductivity type between its source and drain, and the MIO structure (MONOS) is formed on this region.
(Including a structure, a MNOS structure, and a MAOS structure), a plurality of gate electrodes are arranged linearly close to each other in the source / drain direction.

【0005】また、本発明の半導体記憶装置の製造方法
は、MIOSトランジスタ(MONOS構造,MNOS
構造,MAOS構造を含む)からなる半導体記憶装置の
製造方法であって、酸化膜,第1の窒化膜が順に形成さ
れた基板上に、ポリシリコン膜とこのポリシリコン膜上
に第2の窒化膜とを形成する第1の工程と、ポリシリコ
ン膜と第2の窒化膜とを所定ピッチで交互に除去して、
MIOSトランジスタを構成する一方の群の複数のゲー
ト電極を形成する第2の工程と、一方の群のゲート電極
の側面を酸化して絶縁膜を形成する第3の工程と、一方
の群のゲート電極の間にポリシリコンを堆積させて他方
の群のゲート電極を形成する第4の工程とにより、MI
OSトランジスタのゲートを形成することを特徴とす
る。
Further, a method of manufacturing a semiconductor memory device according to the present invention is a method of manufacturing a MIO transistor (MONOS structure, MNOS).
Structure, including a MAOS structure), a polysilicon film and a second nitride film on the polysilicon film are formed on a substrate on which an oxide film and a first nitride film are sequentially formed. A first step of forming a film and a polysilicon film and a second nitride film are alternately removed at a predetermined pitch,
A second step of forming a plurality of gate electrodes of one group forming the MIO transistor, a third step of oxidizing a side surface of the gate electrodes of the one group to form an insulating film, and a gate of one group A fourth step of depositing polysilicon between the electrodes to form the other group of gate electrodes;
It is characterized in that the gate of the OS transistor is formed.

【0006】さらに、第1の工程は、酸化膜,第1の窒
化膜,酸化膜が順に形成された基板上に、ポリシリコン
膜とこのポリシリコン膜上に第2の窒化膜とを形成する
ことを特徴としても良い。
Further, in the first step, a polysilicon film and a second nitride film are formed on the polysilicon film on a substrate on which an oxide film, a first nitride film and an oxide film are sequentially formed. You may feature that.

【0007】[0007]

【作用】本発明の半導体記憶装置では、ソース・ドレイ
ン間の複数のゲート電極により、そのゲート電極近傍の
MIOS構造の窒化膜・酸化膜の表面準位に電荷が蓄積
される。これにより、ひとつのMIOSトランジスタで
そのゲート電極の数のビット数のデータが記憶される。
ソース・ドレイン間は同一導電型の領域として複数のゲ
ート電極を高密度に近接配置されており、NAND型の
メモリセル構造となっている。
In the semiconductor memory device of the present invention, the plurality of gate electrodes between the source and the drain accumulate charges on the surface level of the nitride / oxide film of the MIO structure near the gate electrodes. As a result, one MIO transistor stores data of the number of bits corresponding to the number of gate electrodes.
A plurality of gate electrodes are closely arranged at high density as regions of the same conductivity type between the source and the drain to form a NAND type memory cell structure.

【0008】本発明の半導体記憶装置の製造方法では、
第2の工程で形成されたゲート電極の側面に絶縁膜が形
成され、そのゲート電極の間にさらにゲート電極が形成
されるため、ゲート電極が高密度に近接配置され得る。
According to the method of manufacturing the semiconductor memory device of the present invention,
Since the insulating film is formed on the side surface of the gate electrode formed in the second step and the gate electrode is further formed between the gate electrodes, the gate electrodes can be closely arranged at high density.

【0009】[0009]

【実施例】本発明の実施例を図面を参照して説明する。
図1は、本発明の半導体記憶装置を構成するMONOS
構造のMIOSトランジスタ(メモリセル)を示したも
のである。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a MONOS constituting a semiconductor memory device of the present invention.
3 shows an MIOS transistor (memory cell) having a structure.

【0010】このMIOSトランジスタは、素子分離さ
れたp型基板上にn+ 領域のドレインD,ソースSが設
けられ、このドレインD,ソースS間はp- 領域になっ
ている。このp- 領域上には、トンネル酸化膜(SiO
2 )102,窒化膜(SiN)103,酸化膜(SiO
2 )104が形成され、ポリシリコンのゲート電極CG
1〜CG8が設けられている。各ゲート電極CG1〜C
G8は、それらの間の非常に薄い酸化膜で絶縁されてい
る。そして、絶縁用の酸化膜をはさんでAl配線305
a,305bによる配線パターンが形成されている。
In this MIO S transistor, a drain D and a source S in an n + region are provided on a p-type substrate separated from each other, and a p region is provided between the drain D and the source S. On this p region, a tunnel oxide film (SiO 2
2 ) 102, nitride film (SiN) 103, oxide film (SiO
2 ) 104 is formed and polysilicon gate electrode CG
1 to CG8 are provided. Each gate electrode CG1 to C
G8 is insulated with a very thin oxide film between them. Then, the Al wiring 305 is sandwiched by the insulating oxide film.
A wiring pattern of a and 305b is formed.

【0011】図1のMIOSトランジスタは、前述の図
4または図5のものと同様、等価的に図2の符号Q1の
ような多数のゲートを持つMIOSトランジスタとして
あらわされる(図2は、8つの電極をもつものを例示し
た。)。前述の図4のものと比較してドレインD,ソー
スS間にはn+ 領域がなく、ゲート電極CG1〜CG8
の間隔が非常に狭くなっている点に特徴を有している。
そのため、記憶密度の非常に高く、ゲート電極CG1〜
CG8の上面は平坦性が良いものになっている。
The MIOS transistor of FIG. 1 is equivalently expressed as a MIOS transistor having a large number of gates such as Q1 of FIG. 2 like the one of FIG. 4 or FIG. Illustrated those with electrodes). There is no n + region between the drain D and the source S as compared with the one shown in FIG. 4, and the gate electrodes CG1 to CG8
It is characterized by the fact that the intervals between are very narrow.
Therefore, the memory density is very high, and the gate electrodes CG1 to CG1
The upper surface of CG8 has good flatness.

【0012】図1のMIOSトランジスタの動作につい
て図2の回路を用いて説明する。
The operation of the MIOS transistor of FIG. 1 will be described with reference to the circuit of FIG.

【0013】まず、書き込み読みだし動作の例として、
ゲート電極CG5に書き込むものとする。このとき、ゲ
ート電極AG1,CG1〜CG4をロー(0V)とし
て、トランジスタQ2とトランジスタQ1のゲート電極
CG1〜CG4までをオフにする。ゲート電極AG2,
CG6〜CG8をハイ(5V)として、トランジスタQ
3とトランジスタQ1のゲート電極CG6〜CG8まで
をオンにする。ゲート電極CG5に20Vの電圧を所定
の時間印加し、この電極近傍のトンネル酸化膜102・
窒化膜103の表面準位に負電荷を蓄積して記憶させ
る。
First, as an example of the write / read operation,
It is assumed that writing is performed on the gate electrode CG5. At this time, the gate electrodes AG1, CG1 to CG4 are set to low (0 V) to turn off the gate electrodes CG1 to CG4 of the transistor Q2 and the transistor Q1. Gate electrode AG2
CG6 to CG8 are set to high (5V) and the transistor Q
3 and the gate electrodes CG6 to CG8 of the transistor Q1 are turned on. A voltage of 20 V is applied to the gate electrode CG5 for a predetermined time, and the tunnel oxide film 102.
Negative charges are accumulated and stored in the surface level of the nitride film 103.

【0014】このゲート電極CG5のデータを読み出す
時は、トランジスタQ1のゲート電極CG1〜CG4,
CG6〜CG8(CG5以外のもの)をハイにする。負
電荷がゲート電極CG5近傍に蓄積されているのといな
いのとでは、閾値電圧Vthが異なっている。閾値電圧V
thの違いを検出することでデータが読み出される。
When reading data from the gate electrode CG5, the gate electrodes CG1 to CG4 of the transistor Q1 are read.
Bring CG6-CG8 (other than CG5) high. The threshold voltage V th is different between that the negative charge is accumulated in the vicinity of the gate electrode CG5 and that it is not. Threshold voltage V
The data is read by detecting the difference in th .

【0015】このMIOSトランジスタのゲートの形成
工程を、図3を用いて説明する。
The step of forming the gate of this MIO transistor will be described with reference to FIG.

【0016】通常のLOCOS工程で素子分離をした
後、基板101上にトンネル酸化膜102,窒化膜10
3,酸化膜104を形成する(図3(a)の工程)。こ
こで、トンネル酸化膜102はセ氏900度で希釈酸化
し20オングストローム程度形成する。窒化膜103は
セ氏700度で窒化し150オングストローム程度形成
する。酸化膜104はセ氏950度で酸化し80オング
ストローム程度形成する。つぎに、ポリシリコン膜10
5及び窒化膜106を形成する(図3(b)の工程)。
これらのポリシリコン膜105及び窒化膜106をパタ
ーニングする(図3 (c)の工程)。ここでのエッチ
ングにはRIEを用い、微細でかつ方向性の良いエッチ
ングを行なう。ポリシリコン膜105及び窒化膜106
は所定ピッチで交互に除去され、一方の群のゲート電極
105aを形成している。
After element isolation by a normal LOCOS process, a tunnel oxide film 102 and a nitride film 10 are formed on a substrate 101.
3, the oxide film 104 is formed (step of FIG. 3A). Here, the tunnel oxide film 102 is diluted and oxidized at 900 degrees Celsius to form about 20 angstroms. The nitride film 103 is nitrided at 700 degrees Celsius to form about 150 angstroms. The oxide film 104 is oxidized at 950 ° C. to form about 80 angstrom. Next, the polysilicon film 10
5 and the nitride film 106 are formed (step of FIG. 3B).
The polysilicon film 105 and the nitride film 106 are patterned (step in FIG. 3C). RIE is used for etching here, and fine etching with good directionality is performed. Polysilicon film 105 and nitride film 106
Are alternately removed at a predetermined pitch to form one group of gate electrodes 105a.

【0017】レジスト107を除去後、ドライ熱酸化
し、ゲート電極105aの側面に薄い酸化膜108を形
成する(図3(d)の工程)。つぎに、CVD法でポリ
シリコンを堆積させて、他方の群のゲート電極105b
を形成する(図3(e)の工程)。ここで、ポリシリコ
ンはSiN上には堆積せず、窒化膜106のないゲート
電極105aの間に堆積する。ゲート電極105aとゲ
ート電極105bが、薄い酸化膜108を介して交互に
同じ幅でならんでおり、高密度にゲート電極が形成され
ている。
After removing the resist 107, dry thermal oxidation is performed to form a thin oxide film 108 on the side surface of the gate electrode 105a (step of FIG. 3D). Next, by depositing polysilicon by the CVD method, the gate electrode 105b of the other group is deposited.
Are formed (step of FIG. 3E). Here, polysilicon is not deposited on SiN but is deposited between the gate electrodes 105a without the nitride film 106. The gate electrodes 105a and the gate electrodes 105b are alternately arranged with the same width via the thin oxide film 108, and the gate electrodes are formed with high density.

【0018】この後は、通常の拡散工程,配線工程で図
1のMIOSトランジスタを構成する。ゲート電極10
5a,105b上に酸化膜を設ける際に、窒化膜106
は電気的な動作には関係しないので、除去してもしなく
ても良い。
After that, the MIOS transistor of FIG. 1 is formed by the usual diffusion process and wiring process. Gate electrode 10
When forming an oxide film on 5a and 105b, the nitride film 106
May or may not be removed since it is not related to electrical operation.

【0019】本発明は前述の実施例に限らず様々な変形
が可能である。
The present invention is not limited to the above-mentioned embodiment, but various modifications can be made.

【0020】例えば、半導体記憶装置のMIOSトラン
ジスタは、MONOS構造のものを示したが、MNOS
構造,MAOS構造などでもよく、動作はほぼ同等であ
る。このとき、MIOSトランジスタのゲートの形成工
程の基板は、これらの構造にあった絶縁膜(MAOS構
造の場合、トンネル酸化膜,アルミナ膜)を予め形成さ
せておけばよい。
For example, the MIOS transistor of the semiconductor memory device has the MONOS structure.
A structure, a MAOS structure, or the like may be used, and the operations are almost the same. At this time, the insulating film (tunnel oxide film, alumina film in the case of the MAOS structure) suitable for these structures may be formed in advance on the substrate in the step of forming the gate of the MIOS transistor.

【0021】[0021]

【発明の効果】以上の通り本発明の半導体記憶装置によ
れば、MIOSトランジスタのソース・ドレイン間は同
一導電型の領域となっていて、複数のゲート電極を高密
度に近接配置し得るので、それらの電極上は平坦性が良
く、また、非常に記憶密度の高い半導体記憶装置とする
ことができる。
As described above, according to the semiconductor memory device of the present invention, since the source and drain of the MIO transistor are regions of the same conductivity type, a plurality of gate electrodes can be closely arranged at high density. A semiconductor memory device having excellent flatness on those electrodes and a very high memory density can be obtained.

【0022】また、本発明の半導体記憶装置の製造方法
によれば、ゲート電極の間にさらにゲート電極が形成さ
れるため、ゲート電極が高密度とすることができるた
め、本発明の半導体記憶装置をつくることができる。
Further, according to the method of manufacturing a semiconductor memory device of the present invention, since the gate electrode is further formed between the gate electrodes, the density of the gate electrode can be increased, and therefore the semiconductor memory device of the present invention. Can be made.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体記憶装置を構成するMIOSト
ランジスタの構成図。
FIG. 1 is a configuration diagram of a MIO transistor which constitutes a semiconductor memory device of the present invention.

【図2】図1のMIOSトランジスタの応用回路図。FIG. 2 is an application circuit diagram of the MIOs transistor of FIG.

【図3】図1のMIOSトランジスタのゲートの形成工
程図。
FIG. 3 is a process drawing of forming a gate of the MIO transistor shown in FIG.

【図4】MIOS構造のNAND型のメモリセル構造
図。
FIG. 4 is a structural diagram of a NAND type memory cell having a MIO structure.

【図5】フローティングゲート型のメモリセル構造図。FIG. 5 is a structural diagram of a floating gate type memory cell.

【符号の説明】[Explanation of symbols]

101…基板,102…トンネル酸化膜,103…窒化
膜,104…酸化膜,105…ポリシリコン膜,105
a,105b…ゲート電極,106…窒化膜,108…
薄い酸化膜,CG1〜CG4…ゲート電極,D…ソー
ス,S…ドレイン,Q1…MIOSトランジスタ
101 ... Substrate, 102 ... Tunnel oxide film, 103 ... Nitride film, 104 ... Oxide film, 105 ... Polysilicon film, 105
a, 105b ... Gate electrode, 106 ... Nitride film, 108 ...
Thin oxide film, CG1 to CG4 ... Gate electrode, D ... Source, S ... Drain, Q1 ... MIOS transistor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 MIOSトランジスタからなる半導体記
憶装置であって、 前記MIOSトランジスタは、そのソース・ドレイン間
が同一導電型の領域となっていて、この領域上にMIO
S構造で形成された複数のゲート電極が前記ソース・ド
レイン方向に直線状に近接配置された構造であることを
特徴とする半導体記憶装置。
1. A semiconductor memory device comprising an MIO transistor, wherein the MIO transistor has a region of the same conductivity type between its source and drain, and the MIO is formed on this region.
A semiconductor memory device having a structure in which a plurality of gate electrodes formed of an S structure are linearly arranged close to each other in the source / drain direction.
【請求項2】 MIOSトランジスタからなる半導体記
憶装置の製造方法であって、 酸化膜,第1の窒化膜が順に形成された基板上に、ポリ
シリコン膜とこのポリシリコン膜上に第2の窒化膜とを
形成する第1の工程と、 前記ポリシリコン膜と前記第2の窒化膜とを所定ピッチ
で交互に除去して、前記MIOSトランジスタを構成す
る一方の群の複数のゲート電極を形成する第2の工程
と、 前記一方の群のゲート電極の側面を酸化して絶縁膜を形
成する第3の工程と、 前記一方の群のゲート電極の間にポリシリコンを堆積さ
せて他方の群のゲート電極を形成する第4の工程とによ
り、 前記MIOSトランジスタのゲートを形成することを特
徴とする半導体記憶装置の製造方法。
2. A method of manufacturing a semiconductor memory device comprising a MIO transistor, comprising: a polysilicon film on a substrate on which an oxide film and a first nitride film are sequentially formed; and a second nitride film on the polysilicon film. A first step of forming a film, and the polysilicon film and the second nitride film are alternately removed at a predetermined pitch to form a plurality of gate electrodes of one group forming the MIO transistor. A second step; a third step of oxidizing a side surface of the gate electrode of the one group to form an insulating film; and a step of depositing polysilicon between the gate electrodes of the one group to form an insulating film. A fourth step of forming a gate electrode, the gate of the MIO transistor is formed, and the method for manufacturing a semiconductor memory device.
【請求項3】 前記第1の工程は、酸化膜,第1の窒化
膜,酸化膜が順に形成された基板上に、ポリシリコン膜
とこのポリシリコン膜上に第2の窒化膜とを形成するこ
とを特徴とする請求項2記載の半導体記憶装置の製造方
法。
3. In the first step, a polysilicon film and a second nitride film are formed on the polysilicon film on a substrate on which an oxide film, a first nitride film, and an oxide film are sequentially formed. The method of manufacturing a semiconductor memory device according to claim 2, wherein
JP3290170A 1991-11-06 1991-11-06 Semiconductor memory device and fabrication thereof Pending JPH05129564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3290170A JPH05129564A (en) 1991-11-06 1991-11-06 Semiconductor memory device and fabrication thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3290170A JPH05129564A (en) 1991-11-06 1991-11-06 Semiconductor memory device and fabrication thereof

Publications (1)

Publication Number Publication Date
JPH05129564A true JPH05129564A (en) 1993-05-25

Family

ID=17752659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3290170A Pending JPH05129564A (en) 1991-11-06 1991-11-06 Semiconductor memory device and fabrication thereof

Country Status (1)

Country Link
JP (1) JPH05129564A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005508094A (en) * 2001-10-31 2005-03-24 サンディスク コーポレイション Multi-state non-volatile IC memory system using dielectric storage elements
EP1265289A3 (en) * 2001-06-06 2005-10-26 Interuniversitair Micro-Elektronica Centrum Electrically erasable and programmable memory device
JP2006024923A (en) * 2004-07-06 2006-01-26 Macronix Internatl Co Ltd Memory array containing multigate charge trap nonvolatile cell
JP2006024922A (en) * 2004-07-06 2006-01-26 Macronix Internatl Co Ltd Charge trap nonvolatile memory and its operating method
US7460405B2 (en) 2005-07-15 2008-12-02 Nec Electronics Corporation Method for controlling nonvolatile memory device
US7834392B2 (en) 2001-10-31 2010-11-16 Sandisk Corporation Multi-state non-volatile integrated circuit memory systems that employ dielectric storage elements

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1265289A3 (en) * 2001-06-06 2005-10-26 Interuniversitair Micro-Elektronica Centrum Electrically erasable and programmable memory device
JP2005508094A (en) * 2001-10-31 2005-03-24 サンディスク コーポレイション Multi-state non-volatile IC memory system using dielectric storage elements
US7834392B2 (en) 2001-10-31 2010-11-16 Sandisk Corporation Multi-state non-volatile integrated circuit memory systems that employ dielectric storage elements
JP4846979B2 (en) * 2001-10-31 2011-12-28 サンディスク コーポレイション Multi-state nonvolatile memory using dielectric storage element and method for storing charge level
JP2006024923A (en) * 2004-07-06 2006-01-26 Macronix Internatl Co Ltd Memory array containing multigate charge trap nonvolatile cell
JP2006024922A (en) * 2004-07-06 2006-01-26 Macronix Internatl Co Ltd Charge trap nonvolatile memory and its operating method
US7460405B2 (en) 2005-07-15 2008-12-02 Nec Electronics Corporation Method for controlling nonvolatile memory device

Similar Documents

Publication Publication Date Title
US6605839B2 (en) Multi-level type nonvolatile semiconductor memory device
US6596590B1 (en) Method of making multi-level type non-volatile semiconductor memory device
TWI387059B (en) Integrated non-volatile memory and peripheral circuitry fabrication
JP3914142B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
JP2002280465A (en) Nonvolatile semiconductor memory and its fabricating method
JP3233998B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPH118325A (en) Nonvolatile semiconductor device, its manufacturing method, its writing method, its reading method, storage medium and semiconductor device
JP2003100914A (en) Nonvolatile semiconductor memory, its operating method and method for manufacturing semiconductor device
US7358129B2 (en) Nonvolatile semiconductor memory device and a method of the same
JP2864547B2 (en) Large-scale EPROM memory and manufacturing method thereof
TWI241016B (en) Nonvolatile semiconductor memory
JPH05129564A (en) Semiconductor memory device and fabrication thereof
US7026683B2 (en) Nonvolatile semiconductor memory device having grooves isolating the floating electrodes of memory cells and method of manufacturing the nonvolatile semiconductor memory device
KR20060085921A (en) Nrom flash memory with self-aligned structural charge separation
JPH08130258A (en) Semiconductor nonvolatile memory element
JP2002009181A (en) Non-volatile semiconductor storage device and its manufacturing method
JP3173907B2 (en) Nonvolatile memory element and method of manufacturing the same
JP3251699B2 (en) Non-volatile storage device
JP3856559B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
JP5002172B2 (en) Nonvolatile semiconductor memory device
JP3690921B2 (en) Semiconductor device
JPS6367783A (en) Semiconductor storage device
JPH11289021A (en) Semiconductor integrated-circuit device and its manufacture as well as microcomputer
JP2989205B2 (en) Method of manufacturing nonvolatile semiconductor memory device
JPH0878544A (en) Nonvolatile semiconductor memory