JPH05124115A - Optical formation apparatus and formation method - Google Patents

Optical formation apparatus and formation method

Info

Publication number
JPH05124115A
JPH05124115A JP3313086A JP31308691A JPH05124115A JP H05124115 A JPH05124115 A JP H05124115A JP 3313086 A JP3313086 A JP 3313086A JP 31308691 A JP31308691 A JP 31308691A JP H05124115 A JPH05124115 A JP H05124115A
Authority
JP
Japan
Prior art keywords
laser beam
optical modeling
dimensional image
beam irradiation
irradiation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3313086A
Other languages
Japanese (ja)
Inventor
Naohiro Suzuki
直弘 鈴木
Akira Nishikawa
昭 西川
Yukio Morita
由紀夫 森田
Ryoichi Furuhashi
寮一 古橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kiwa Giken KK
Original Assignee
Kiwa Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kiwa Giken KK filed Critical Kiwa Giken KK
Priority to JP3313086A priority Critical patent/JPH05124115A/en
Publication of JPH05124115A publication Critical patent/JPH05124115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To provide an apparatus and method of efficiently forming high accurate solid images in the art of forming a three dimensional solid image by applying laser beams on the liquid level of an optical setting fluid substance. CONSTITUTION:A tank 120 is filled with an optical setting fluid substance 130. In the tank, a vertically movable table 160 is provided. By a first rectilinear guide surface 200 and a second rectilinear guide surface 210 intersecting the liquid level within the parallel surface in the tank, an irradiating device 300 is directed to an arbitrary position within the horizontal surface. Into the irradiating device 300, laser from a laser oscillating device is supplied via an optical fiber 410. The irradiating device 300 has a function of applying laser beams perpendicularly on the liquid level and also has a function of applying laser beams by varying angles about the perpendicular line. The high accurate and efficient formation can be achieved by the use of these functions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光硬化性流動物質に光
を照射して所望形状の固体を形成する装置及び方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for irradiating a photocurable fluid material with light to form a solid having a desired shape.

【0002】[0002]

【従来の技術】光エネルギーを吸収することにより硬化
する流動物質に対して光ビームを照射して所望の形状を
有する固体を形成する光学的造形技術が提案されてい
る。例えば特公平2−48422号公報は、容器内に光
硬化性流動物質を充填し、容器内を昇降する作業面上の
物質に光を照射して二次元の固体層を形成し、作業面を
順次降下させて固体層を積層することにより三次元の固
体を形成する方法及び装置が開示されている。
2. Description of the Related Art An optical shaping technique has been proposed in which a fluid material which is cured by absorbing light energy is irradiated with a light beam to form a solid having a desired shape. For example, Japanese Examined Patent Publication No. 2-48422 discloses that a container is filled with a photocurable fluid substance, and a substance on a work surface that moves up and down in the container is irradiated with light to form a two-dimensional solid layer. A method and apparatus for forming a three-dimensional solid by sequentially descending and stacking solid layers is disclosed.

【0003】図11は、従来の加工装置の概要を示す説
明図である。タンク10に充填された光硬化性流動物質
である樹脂20の液面に平行な平面上で直交するX軸、
Y軸に沿ってレーザビームの照射装置30はNC装置4
0によりサーボ装置42、44を介して制御される。照
射装置30からのレーザビーム35を受けた樹脂20は
硬化して二次元の固体像50を形成する。固体像の上面
に樹脂を流し、同様の光硬化処理をくり返すことで、所
望の三次元像を得ることができる。この装置にあって
は、レーザビーム35は、樹脂液面に対して常に垂直に
照射されるので、描画の精度は高い。しかしながら、照
射装置30を機械的に駆動させているために、描画速度
に限界がある。
FIG. 11 is an explanatory view showing the outline of a conventional processing apparatus. An X-axis that is orthogonal to a plane parallel to the liquid surface of the resin 20 that is a photocurable fluid substance filled in the tank 10,
The laser beam irradiation device 30 along the Y-axis is the NC device 4
0 is controlled via the servo devices 42 and 44. The resin 20 that receives the laser beam 35 from the irradiation device 30 cures to form a two-dimensional solid image 50. A desired three-dimensional image can be obtained by pouring resin on the upper surface of the solid image and repeating the same photo-curing treatment. In this apparatus, the laser beam 35 is always irradiated perpendicularly to the resin liquid surface, so that the drawing accuracy is high. However, since the irradiation device 30 is mechanically driven, the drawing speed is limited.

【0004】次に、図12、図13は、従来の他の装置
を示す説明図である。この装置にあっては、タンク10
内に光硬化樹脂20が充填され、樹脂液面上部にレーザ
ビームの照射装置32が配設される。照射装置32は、
平面上を移動することにかえて、直交する2軸a、bの
まわりに旋回する。NC装置45はサーボ装置47、4
8を介して2軸の旋回角度を制御する。照射装置32か
らのレーザビーム36は樹脂液面上に任意の二次元像5
2を描画することができる。この装置にあっては、レー
ザビーム36は、樹脂液面に対する垂直線から角度θ
1、θ2をもって照射されるので、液面上に投影される
ビームスポット36A、36Bの形状が変化する。した
がって、樹脂の硬化寸法も変化し、描画精度も低下す
る。さらに、照射装置の旋回角速度を一定にして制御す
ると、ビームスポットの移動速度が変化してしまい、エ
ネルギー照射量の変化によって硬化状態も変化する。こ
のために、二次元像を安定して形成することが困難とな
る。実際には、レーザビームを集光するレンズ系を制御
して上述した変化量を補正する必要がある。しかしなが
ら、この補正には複雑な制御を必要とする。
Next, FIGS. 12 and 13 are explanatory views showing another conventional device. In this device, the tank 10
The inside is filled with the photo-curable resin 20, and a laser beam irradiation device 32 is disposed above the liquid surface of the resin. The irradiation device 32 is
Instead of moving on a plane, it turns around two orthogonal axes a and b. NC device 45 is servo device 47, 4
The turning angle of the two axes is controlled via 8. The laser beam 36 from the irradiation device 32 is applied to the arbitrary two-dimensional image 5 on the liquid surface of the resin.
2 can be drawn. In this device, the laser beam 36 forms an angle θ from a line perpendicular to the resin liquid surface.
Since the irradiation is performed with 1 and θ2, the shapes of the beam spots 36A and 36B projected on the liquid surface change. Therefore, the cured dimension of the resin also changes, and the drawing accuracy also decreases. Further, if the irradiation angular velocity of the irradiation device is controlled to be constant, the moving speed of the beam spot changes, and the curing state also changes due to changes in the energy irradiation amount. For this reason, it becomes difficult to form a two-dimensional image stably. Actually, it is necessary to control the lens system for condensing the laser beam to correct the above-mentioned amount of change. However, this correction requires complicated control.

【0005】[0005]

【発明が解決しようとする課題】本発明は以上に説明し
た従来の不具合を解消して、加工精度が高く、しかも加
工能率も高い光学的造形装置及び方法を提供するもので
ある。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and provides an optical modeling apparatus and method with high processing accuracy and high processing efficiency.

【0006】[0006]

【課題を解決するための手段】本発明は基本的な手段と
して、光硬化性流動物質を充填したタンクと、光硬化性
流動物質の液面に平行な面内の直交する2軸に沿って制
御されるレーザビームの照射装置と、照射装置にレーザ
を供給するレーザ発振装置とを有し、照射装置はレーザ
ビームが光硬化性流動物質の液面に対して垂直に照射さ
れる第1のレーザビーム照射手段と、レーザビームが光
硬化性流動物質の液面に対して垂直な線を中心として鋭
角度内で角度が変化して照射される第2のレーザビーム
照射手段を備えている。
As a basic means of the present invention, a tank filled with a photocurable fluid substance and two axes orthogonal to each other in a plane parallel to the liquid surface of the photocurable fluid substance are provided. The irradiation device includes a controlled laser beam irradiation device and a laser oscillation device that supplies a laser to the irradiation device. The irradiation device includes a first laser beam that is irradiated perpendicularly to the liquid surface of the photocurable fluid substance. A laser beam irradiating unit and a second laser beam irradiating unit for irradiating the laser beam with an angle changed within an acute angle about a line perpendicular to the liquid surface of the photocurable fluid substance are provided.

【0007】[0007]

【作用】照射装置の第1のレーザビーム照射手段と、第
2のレーザビーム照射手段とを適宜に作動させることに
より、高精度の造形物を効率よく形成することができ
る。
By properly operating the first laser beam irradiating means and the second laser beam irradiating means of the irradiating device, a highly accurate modeled object can be efficiently formed.

【0008】[0008]

【実施例】図1、図2及び図3は本発明装置の概要を示
す説明図である。光学的造形装置100は、ベース11
0の上部に平行した2本の直動案内面200を備え、こ
の2本の案内面200上に水平直交する直動案内面21
0がX軸方向に案内制御される。この案内面210上に
垂直直交するヘッド290が摺動する。駆動機構として
はボールねじ等が利用され、サーボモータにより移動速
度と移動量が制御される。直動案内面210に対してヘ
ッド290はY軸方面に摺動される。駆動速度、移動量
はサーボモータにより制御される。ヘッド290にはレ
ーザ照射装置300が取り付けられ、このレーザ照射装
置はサーボモータにより上下方向に位置制御される。V
軸は、液面の上下方向の焦点合わせと硬化幅を変更す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1, 2 and 3 are explanatory views showing the outline of the device of the present invention. The optical modeling apparatus 100 includes a base 11
0 is provided with two linear motion guide surfaces 200 parallel to each other, and the linear motion guide surfaces 21 that are horizontally orthogonal to each other on the two guide surfaces 200.
0 is guided and controlled in the X-axis direction. A head 290 perpendicularly orthogonal to the guide surface 210 slides. A ball screw or the like is used as the drive mechanism, and the moving speed and the moving amount are controlled by the servo motor. The head 290 slides in the Y-axis direction with respect to the linear motion guide surface 210. The driving speed and movement amount are controlled by the servo motor. A laser irradiation device 300 is attached to the head 290, and the position of the laser irradiation device is vertically controlled by a servomotor. V
The axis changes the vertical focus of the liquid level and the cure width.

【0009】ベース110内側には自立したタンク12
0が載置され、タンク120内に光硬化性流動物質13
0が充填される。タンク120内にはコラム150によ
り垂直方向(Z軸方向)に沿って移動するテーブル16
0が配設される。テーブル160の上面を光硬化性流動
物質の液面よりわずかに下(0.2mm程度)に位置決め
し、レーザ照射装置300をX、Y方向に移動しつつレ
ーザビームを液面に照射して二次元の固体層を形成す
る。1つの層が完成すると、テーブル160を降下し、
形成された固体上面を光硬化性流動物質で覆い、同様の
操作により二次元の固体層を形成する。以下、この操作
を繰り返して所望の三次元固体を形成する。レーザ照射
装置300は導光管410を介してレーザ発振器400
に連結される。レーザ発振器400はレーザ電源405
からの電力を受けてレーザビームを発振し、レーザ照射
装置300へ送る。
A self-standing tank 12 is provided inside the base 110.
0 is placed, and the photocurable fluid material 13 is stored in the tank 120.
0 is filled. A table 16 that moves in the tank 120 along a vertical direction (Z-axis direction) by a column 150.
0 is allocated. The upper surface of the table 160 is positioned slightly below (about 0.2 mm) the liquid surface of the photocurable fluid substance, and the laser beam is irradiated onto the liquid surface while moving the laser irradiation device 300 in the X and Y directions. Form a solid layer of dimensions. When one layer is completed, descend the table 160,
The upper surface of the formed solid is covered with a photocurable fluid substance, and a two-dimensional solid layer is formed by the same operation. Hereinafter, this operation is repeated to form a desired three-dimensional solid. The laser irradiation device 300 includes a laser oscillator 400 via a light guide tube 410.
Connected to. The laser oscillator 400 is a laser power source 405.
The laser beam is oscillated by receiving electric power from the laser beam and sent to the laser irradiation device 300.

【0010】図3は、照射装置300の制御装置の詳細
を示す。全体を符号300で示す照射装置は、光ファイ
バ410から供給されるレーザ光420を集束するレン
ズ系350を備え、集束レンズ360をZ軸方向へ移動
する機構を有する。集束レンズ360を通過したレーザ
光430は第1のミラー320で反射される。第1のミ
ラー320はアクチュエータ310によりa軸まわりに
旋回する。反射光440は第2のミラー340で反射さ
れる。第2のミラー340はアクチュエータ330によ
りb軸まわりに旋回する。NC装置500は、集束レン
ズ360をZ軸に沿って移動する駆動装置550、a軸
の旋回駆動装置560、b軸の旋回駆動装置570を制
御する。本発明の光学的造形装置は以上の構成を備える
ことにより、照射位置300をX軸、Y軸に沿って制御
し、光硬化樹脂の液面に垂直なレーザビーム600Aに
よる第1の描画手段と、照射装置300をX軸、Y軸上
で停止させて、a軸、b軸、Z軸を制御して照射角度を
変えるレーザビーム600Bによる第2の描画手段のい
ずれをも選択することができるし、または両者を複合し
て使用することもできる。
FIG. 3 shows the details of the control device of the irradiation device 300. The irradiation device indicated by reference numeral 300 includes a lens system 350 that focuses the laser light 420 supplied from the optical fiber 410, and has a mechanism that moves the focusing lens 360 in the Z-axis direction. The laser light 430 that has passed through the focusing lens 360 is reflected by the first mirror 320. The first mirror 320 is rotated about the a-axis by the actuator 310. The reflected light 440 is reflected by the second mirror 340. The second mirror 340 is rotated about the b axis by the actuator 330. The NC device 500 controls a driving device 550 that moves the focusing lens 360 along the Z axis, an a-axis turning drive device 560, and a b-axis turning drive device 570. By providing the optical modeling apparatus of the present invention with the above configuration, the irradiation position 300 is controlled along the X axis and the Y axis, and the first drawing means by the laser beam 600A perpendicular to the liquid surface of the photocurable resin is provided. Any of the second drawing means using the laser beam 600B that changes the irradiation angle by controlling the a-axis, the b-axis, and the Z-axis by stopping the irradiation device 300 on the X-axis and the Y-axis can be selected. Alternatively, both can be used in combination.

【0011】図4は第1の描画手段によりワーク700
を形成する方法を示す。ワーク700は、二次元の平面
像710を高さ方向に順次積層して形成する。平面像7
10は、外周の輪郭線720と、輪郭線で囲まれた内周
部730で構成される。輪郭線720の精度はワーク7
00の外形精度に直接に影響するので、高精度に描画す
ることが必要である。内周部730は、ワークの形状を
維持するだけの硬化樹脂で充填されればよいので、輪郭
線ほどの描画精度を必要としない。そこで、輪郭線72
0を第1の描画手段によりレーザビーム600Aで高精
度に描画した後は、図5に示すように第2の描画手段に
より照射位置300を旋回し、レーザビーム600Bで
内周部730を光硬化させる。レーザビーム600Bの
描画速度は早いので、内周部730を効率的に硬化させ
ることができる。なお、輪郭線720と内周部730の
描画工程を逆にして加工することも可能である。
FIG. 4 shows the work 700 by the first drawing means.
A method of forming the is shown. The workpiece 700 is formed by sequentially stacking two-dimensional plane images 710 in the height direction. Plane image 7
10 is composed of an outer peripheral contour line 720 and an inner peripheral portion 730 surrounded by the contour line. The accuracy of the contour line 720 is the workpiece 7.
Since it directly affects the outer shape accuracy of 00, it is necessary to draw with high accuracy. The inner peripheral portion 730 need only be filled with a hardened resin that maintains the shape of the work, and therefore does not require drawing accuracy as high as the contour line. Therefore, the contour line 72
After 0 is drawn with high precision by the laser beam 600A by the first drawing means, the irradiation position 300 is rotated by the second drawing means as shown in FIG. 5, and the inner peripheral portion 730 is photo-cured by the laser beam 600B. Let Since the drawing speed of the laser beam 600B is high, the inner peripheral portion 730 can be efficiently hardened. The contour line 720 and the inner peripheral portion 730 may be processed by reversing the drawing process.

【0012】図6は、本発明装置の機能を活用して同一
形状のものを多数描画する場合を示す。照射装置300
をX軸、Y軸上で制御して第1の位置P1に位置決め
し、その位置を中心としてレーザビーム600Bで第1
の描画760Aを実行する。次に照射装置300を第2
の位置まで移動し、その位置でレーザビーム600Bで
第2の描画760Bを実行する。第3の位置P3におい
ても同様の描画760Cを実行する。描画760A、7
60B、760Cがいずれも同一の形状である場合に
は、照射装置300を移動するだけで同一のプログラム
により均一な精度の光硬化を能率良く達成することがで
きる。
FIG. 6 shows a case where a large number of objects of the same shape are drawn by utilizing the function of the device of the present invention. Irradiation device 300
Is controlled on the X-axis and the Y-axis to position at the first position P1, and the laser beam 600B makes
Drawing 760A is executed. Next, the irradiation device 300
And the second drawing 760B is performed with the laser beam 600B at that position. The same drawing 760C is executed also at the third position P3. Drawing 760A, 7
When both 60B and 760C have the same shape, it is possible to efficiently achieve uniform photocuring by the same program simply by moving the irradiation device 300.

【0013】図7は、ワーク770の形状を幅が変化す
る直線又は曲線の集合ととらえて描画する場合を示す。
全体構成を部分770A、770B、770C、770
D、770Eに分解し、それぞれの中心線に沿って、照
射装置300を平面上で移動しつつレーザビーム中心線
に直角方向に振って描画を実行する。図8は、曲線に沿
って幅が変化するワーク780を形成する方法を示す。
照射装置300を描画形状の中心線780Aに沿って移
動しつつ、照射装置300を旋回動させて、幅の変化に
対応した描画を行なう。照射角度は垂直線から小さいの
で、精度の高い硬化を効率よく達成できる。
FIG. 7 shows a case where the shape of the work 770 is drawn by considering it as a set of straight lines or curves whose width changes.
The entire structure is divided into parts 770A, 770B, 770C, 770.
D and 770E are disassembled, and the irradiation device 300 is moved on a plane along each center line and shaken in a direction perpendicular to the laser beam center line to perform drawing. FIG. 8 illustrates a method of forming a work piece 780 that varies in width along a curve.
While moving the irradiation device 300 along the center line 780A of the drawing shape, the irradiation device 300 is swung to perform drawing corresponding to the change in width. Since the irradiation angle is small from the vertical line, highly accurate curing can be efficiently achieved.

【0014】図9は本発明の他の実施例装置を示す。本
装置においては、レーザビームの照射装置300は、第
1の直線案内面200のX軸に沿って案内されるビーム
部材210に固定されていて、ミラー320がa軸まわ
りに旋回し、集束レンズ360がZ軸に沿って制御され
る構成を有する。レーザ光はレーザ発振器400から光
ファイバー410を介して供給される。NC装置500
は、X軸駆動装置510、a軸駆動装置560、Z軸駆
動装置550を介して各制御軸を制御する。図10は本
装置によりワーク790を形成する場合を示し、照射装
置300をX軸に沿って移動しつつ、a軸まわりに旋回
させてレーザビーム600Cにより描画を実行する。
FIG. 9 shows an apparatus according to another embodiment of the present invention. In this device, the laser beam irradiation device 300 is fixed to the beam member 210 guided along the X axis of the first linear guide surface 200, the mirror 320 pivots around the a axis, and the focusing lens. 360 has a configuration that is controlled along the Z axis. Laser light is supplied from a laser oscillator 400 via an optical fiber 410. NC device 500
Controls each control axis via the X-axis driving device 510, the a-axis driving device 560, and the Z-axis driving device 550. FIG. 10 shows a case where the work 790 is formed by the present apparatus. The irradiation apparatus 300 is rotated along the X axis and is rotated around the a axis to perform drawing by the laser beam 600C.

【0015】[0015]

【発明の効果】本発明は以上のように、光硬化性流動物
質にレーザビームを照射して三次元の固体像を形成する
装置と方法において、レーザビームの照射装置を流動物
質の液面と平行な面に沿って移動させる手段と、レーザ
ビームを流体物質の液面に垂直な線を中心として照射角
度を変えて照射する手段とを備えたものである。この装
置を適宜に活用することにより、二次元像を高精度に、
しかも短時間で硬化造形することができる。また、同一
の平面上に同形状の像を多数描画する際にも、高精度な
像を能率よく造形することができる等の効果を有する。
INDUSTRIAL APPLICABILITY As described above, the present invention provides an apparatus and method for irradiating a photocurable fluid material with a laser beam to form a three-dimensional solid image. It is provided with means for moving along parallel planes and means for irradiating the laser beam while changing the irradiation angle centering on a line perpendicular to the liquid surface of the fluid substance. By appropriately utilizing this device, a two-dimensional image with high accuracy,
Moreover, it is possible to perform curing and molding in a short time. Further, even when a large number of images of the same shape are drawn on the same plane, there is an effect that a highly accurate image can be efficiently modeled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の装置の概要を示す説明図。FIG. 1 is an explanatory diagram showing an outline of an apparatus of the present invention.

【図2】本発明の装置の概要を示す説明図。FIG. 2 is an explanatory diagram showing an outline of an apparatus of the present invention.

【図3】レーザビーム照射装置の制御を示す説明図。FIG. 3 is an explanatory diagram showing control of a laser beam irradiation device.

【図4】光造形の方法を示す説明図。FIG. 4 is an explanatory diagram showing a method of stereolithography.

【図5】光造形の他の方法を示す説明図。FIG. 5 is an explanatory diagram showing another method of stereolithography.

【図6】同一の形状を多数造形する場合を示す説明図。FIG. 6 is an explanatory diagram showing a case where a large number of identical shapes are formed.

【図7】光造形の他の方法を示す説明図。FIG. 7 is an explanatory diagram showing another method of stereolithography.

【図8】光造形の他の方法を示す説明図。FIG. 8 is an explanatory diagram showing another method of stereolithography.

【図9】本発明の他の実施例装置の概要を示す説明図。FIG. 9 is an explanatory diagram showing an outline of an apparatus according to another embodiment of the present invention.

【図10】図9の装置による光造形方法を示す説明図。FIG. 10 is an explanatory view showing a stereolithography method by the apparatus of FIG.

【図11】従来の例を示す説明図。FIG. 11 is an explanatory diagram showing a conventional example.

【図12】従来の他の例を示す説明図。FIG. 12 is an explanatory view showing another conventional example.

【図13】図12の作用を示す説明図。FIG. 13 is an explanatory diagram showing the operation of FIG. 12.

【符号の説明】[Explanation of symbols]

120 タンク 130 光硬化性樹脂 300 照射装置 320 ミラー 340 ミラー 350 光束レンズ系 400 レーザ発振装置 410 光ファイバー 500 NC装置 600A、600B、600C レーザビーム 700 ワーク 120 tank 130 photocurable resin 300 irradiation device 320 mirror 340 mirror 350 luminous flux lens system 400 laser oscillator 410 optical fiber 500 NC device 600A, 600B, 600C laser beam 700 work

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古橋 寮一 愛知県名古屋市瑞穂区松月町3丁目7番地 キワ技研株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryoichi Furuhashi 3-7 Matsuzuki-cho, Mizuho-ku, Nagoya-shi, Aichi Kiwa Giken Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光硬化性流動物質を充填したタンクと、
光硬化性流動物質の液面に平行な面内の直線移動軸に沿
って制御されるレーザビームの照射装置と、照射装置に
レーザを供給するレーザ発振装置とを有し、照射装置は
レーザビームが光硬化性流動物質の液面に対して垂直な
線を中心として直線移動軸に直交する方向に鋭角度内で
角度が変化して照射される照射手段を備えてなる光学的
造形装置。
1. A tank filled with a photocurable fluid substance,
The irradiation device has a laser beam irradiation device that is controlled along a linear movement axis in a plane parallel to the liquid surface of the photocurable fluid substance, and a laser oscillation device that supplies a laser to the irradiation device. An optical modeling apparatus comprising: an irradiation means for irradiating the photocurable fluid substance with an angle that is changed within an acute angle in a direction orthogonal to a linear movement axis about a line perpendicular to the liquid surface.
【請求項2】 請求項1記載の光学的造形装置による光
学的造形方法であって、硬化させようとする二次元像の
外周の輪郭線を第1のレーザビーム照射手段により描画
する工程と、描画された輪郭線の内周部を第2のレーザ
ビーム照射手段により硬化する工程からなる光学的造形
方法。
2. An optical modeling method using the optical modeling apparatus according to claim 1, wherein a contour line of the outer periphery of the two-dimensional image to be cured is drawn by the first laser beam irradiation means, An optical modeling method comprising a step of curing an inner peripheral portion of a drawn contour line by a second laser beam irradiation means.
【請求項3】 請求項1記載の光学的造形装置による光
学的造形方法であって、硬化させようとする二次元像の
輪郭線の内周部を第2のレーザビーム照射手段により硬
化する工程と、二次元像の輪郭線を第1のレーザビーム
照射手段により描画する工程からなる光学的造形方法。
3. An optical modeling method using the optical modeling apparatus according to claim 1, wherein the inner peripheral portion of the contour line of the two-dimensional image to be cured is cured by the second laser beam irradiation means. And an optical modeling method including the step of drawing the contour line of the two-dimensional image by the first laser beam irradiation means.
【請求項4】 請求項1記載の光学的造形装置による光
学的造形方法であって、照射装置を平面上の第1の位置
において第2のレーザビーム照射手段により第1の二次
元像を描画する工程と、照射装置を平面上の第2の位置
に移動して第2のレーザビーム照射手段により第1の二
次元像と同一の第2の二次元像を描画する工程と、以下
同じ工程をくり返して同一の二次元像を複数個描画する
工程からなる光学的造形方法。
4. The optical modeling method by the optical modeling apparatus according to claim 1, wherein the irradiation device draws a first two-dimensional image by a second laser beam irradiation means at a first position on a plane. And the step of moving the irradiation device to a second position on the plane and drawing a second two-dimensional image that is the same as the first two-dimensional image by the second laser beam irradiation means. An optical modeling method comprising the steps of repeating the same to draw a plurality of identical two-dimensional images.
【請求項5】 請求項1記載の光学的造形装置による光
学的造形方法であって、描画すべき二次元像を複数の単
純な図形の組合せに分解する工程と、分解された図形の
中心線に沿って照射位置を移動しつつ第2のレーザビー
ム照射手段により所望の図形を描画する工程からなる光
学的造形方法。
5. An optical modeling method using the optical modeling apparatus according to claim 1, wherein a step of decomposing a two-dimensional image to be drawn into a combination of a plurality of simple figures, and a centerline of the decomposed figures An optical modeling method comprising a step of drawing a desired figure by the second laser beam irradiation means while moving the irradiation position along the line.
JP3313086A 1991-11-01 1991-11-01 Optical formation apparatus and formation method Pending JPH05124115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3313086A JPH05124115A (en) 1991-11-01 1991-11-01 Optical formation apparatus and formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3313086A JPH05124115A (en) 1991-11-01 1991-11-01 Optical formation apparatus and formation method

Publications (1)

Publication Number Publication Date
JPH05124115A true JPH05124115A (en) 1993-05-21

Family

ID=18037014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3313086A Pending JPH05124115A (en) 1991-11-01 1991-11-01 Optical formation apparatus and formation method

Country Status (1)

Country Link
JP (1) JPH05124115A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811051A (en) * 1993-12-03 1998-09-22 Komatsu Ltd. Method and apparatus for continuously draw-molding fiber reinforced plastic rod formed with spiral groove
CN103009632A (en) * 2012-12-18 2013-04-03 浙江大学 Microarray die-free forming device based on surface acoustic wave and forming method
CN106346780A (en) * 2016-11-11 2017-01-25 苏州市慧通塑胶有限公司 3D printer with replaceable connector
JP2018514648A (en) * 2015-03-30 2018-06-07 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Additive manufacturing apparatus and method
US11123799B2 (en) 2013-06-11 2021-09-21 Renishaw Plc Additive manufacturing apparatus and method
US11478856B2 (en) 2013-06-10 2022-10-25 Renishaw Plc Selective laser solidification apparatus and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811051A (en) * 1993-12-03 1998-09-22 Komatsu Ltd. Method and apparatus for continuously draw-molding fiber reinforced plastic rod formed with spiral groove
CN103009632A (en) * 2012-12-18 2013-04-03 浙江大学 Microarray die-free forming device based on surface acoustic wave and forming method
US11478856B2 (en) 2013-06-10 2022-10-25 Renishaw Plc Selective laser solidification apparatus and method
US11123799B2 (en) 2013-06-11 2021-09-21 Renishaw Plc Additive manufacturing apparatus and method
JP2018514648A (en) * 2015-03-30 2018-06-07 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Additive manufacturing apparatus and method
US11446863B2 (en) 2015-03-30 2022-09-20 Renishaw Plc Additive manufacturing apparatus and methods
US11780161B2 (en) 2015-03-30 2023-10-10 Renishaw Plc Additive manufacturing apparatus and methods
CN106346780A (en) * 2016-11-11 2017-01-25 苏州市慧通塑胶有限公司 3D printer with replaceable connector

Similar Documents

Publication Publication Date Title
JP2715527B2 (en) 3D shape forming method
EP1935620B1 (en) Optical modeling apparatus and optical modeling method
JP4957242B2 (en) Stereolithography equipment
JPH0342233A (en) Optical shaping method
KR101798533B1 (en) Molding apparatus and method by the 3d printer
JPH054898B2 (en)
JP2012240216A (en) Three-dimensional modeling apparatus, modeled object, and method for manufacturing modeled object
JP2009113294A (en) Optical modeling apparatus and optical modeling method
JPH05124115A (en) Optical formation apparatus and formation method
JP2007021705A (en) Three-dimensional molding method and device
JP2919982B2 (en) 3D shape forming method
JPH01237123A (en) Light flux scanning method in optical shaping method
JP2003145629A (en) Method and apparatus for photo-fabrication
JPS63141725A (en) Apparatus for forming three dimensional shape
KR20040102531A (en) Micro-stereolithography method and apparatus
JPH08238678A (en) Optically molding machine
JPH09141746A (en) Three-dimensional modeling device
JPH02108519A (en) Formation of three-dimensional shape and device therefor
JP3170832B2 (en) Optical molding method
KR102271074B1 (en) System for processing surface of 3D printed sintered product using multiaxial joint robot
KR100606458B1 (en) Harden Device of Three-Dimensional Prototyping System
KR200365481Y1 (en) Laser marking robot operating with desk-top robot
JP6844217B2 (en) Information processing equipment, modeling equipment, information processing methods, and programs
JPH04126225A (en) Three-dimensionally shaping device
JPH07232383A (en) Three-dimensional optical shaping method and apparatus