JPH05116455A - Phase-change optical recording medium - Google Patents

Phase-change optical recording medium

Info

Publication number
JPH05116455A
JPH05116455A JP3185236A JP18523691A JPH05116455A JP H05116455 A JPH05116455 A JP H05116455A JP 3185236 A JP3185236 A JP 3185236A JP 18523691 A JP18523691 A JP 18523691A JP H05116455 A JPH05116455 A JP H05116455A
Authority
JP
Japan
Prior art keywords
phase
crystal
phase change
recording layer
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3185236A
Other languages
Japanese (ja)
Inventor
Osamu Ueno
修 上野
Hideo Kobayashi
英夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP3185236A priority Critical patent/JPH05116455A/en
Publication of JPH05116455A publication Critical patent/JPH05116455A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain a phase-change optical recording medium having little possibility of an error in reproducing information and a large power margin by a method wherein in an optical recording medium provided with a recording layer made of a phase-change material, an erasing ratio in the recording layer is increased. CONSTITUTION:A recording layer contains a crystalline core material 11, which serves as a crystalline nucleus when a phase-change material 12 changes in phase from an amorphous state to a crystalline state and does not melt when the phase-change material 12 changes either to an amorphous phase or to a crystalline phase. In this manner, the phase-change material is crystallized with a uniform crystal diameter while an erasing ratio is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光記録技術に関し、とく
にアモルファスと結晶間の相変化に伴い光学的性質が変
化する相変化材料の記録層を基板上に設けた相変化光記
録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical recording technique, and more particularly to a phase change optical recording medium in which a recording layer of a phase change material whose optical properties change according to a phase change between amorphous and crystalline is provided on a substrate.

【0002】[0002]

【従来の技術】従来の相変化光記録媒体を図3に示す。
基板1上に、光入射側保護層2、相変化材料の記録層
3、光透過側保護層4、反射層5、表面保護層6を設
け、相変化光記録媒体が形成される。
2. Description of the Related Art FIG. 3 shows a conventional phase change optical recording medium.
A light incident side protective layer 2, a recording layer 3 of a phase change material, a light transmitting side protective layer 4, a reflective layer 5, and a surface protective layer 6 are provided on a substrate 1 to form a phase change optical recording medium.

【0003】かかる相変化光記録媒体を用いた光記録で
は、直径1ミクロン程度に絞った高出力のレーザー光を
記録層上に照射してその照射部位を溶融後急冷すること
によりアモルファス状態に変化させて情報の記録を行
い、また中間出力のレーザー光を記録層上に照射してそ
の照射部位を所定時間結晶化温度以上に保持することに
より結晶状態に変化させて情報の消去を行い、さらに低
出力のレーザー光を記録層上に照射して結晶状態とアモ
ルファス状態の光学的性質の違いを反射光量の差として
検出することにより情報の再生を行う。そして情報に対
応してレーザー光強度を高出力と中間出力とで強度変調
することにより、前の情報の上に新しい情報を重ね書き
することができる。
In optical recording using such a phase-change optical recording medium, a high-power laser beam with a diameter of about 1 micron is irradiated onto the recording layer, and the irradiated portion is melted and rapidly cooled to change to an amorphous state. Then, the information is recorded by irradiating the intermediate layer laser beam on the recording layer and maintaining the irradiated portion at a crystallization temperature or higher for a predetermined time to change the state to a crystalline state to erase the information. Information is reproduced by irradiating the recording layer with low-power laser light and detecting the difference in optical properties between the crystalline state and the amorphous state as the difference in the amount of reflected light. Then, by modulating the intensity of the laser beam with the high output and the intermediate output in accordance with the information, new information can be overwritten on the previous information.

【0004】[0004]

【発明が解決しようとする課題】しかし従来の相変化光
記録材料では、結晶相が形成されるときの加熱冷却過程
の違いにより同一記録層内で結晶粒径が異なるため、重
ね書き前の信号が重ね書き後も幾分残留してしまう(第
51回応用物理学会学術講演会予稿集、1199頁、1
990)。このため前の信号が消える割合(以下「消去
率」という)が25〜30dB程度と小さく、情報の再
生誤りが多くなったり、レーザー光の中間出力(消去レ
ベル)のパワーマージンが小さくなるという問題があっ
た。
However, in the conventional phase change optical recording material, since the crystal grain size is different in the same recording layer due to the difference in heating and cooling process when the crystal phase is formed, the signal before the overwriting is performed. Remains somewhat after overwriting (Proceedings of the 51st JSAP Academic Lecture, 1199, 1)
990). As a result, the rate at which the previous signal disappears (hereinafter referred to as the “erase rate”) is as small as about 25 to 30 dB, so that information reproduction errors increase and the power margin of the intermediate output (erase level) of the laser light decreases. was there.

【0005】この課題を改善する試みとして、レーザー
光を記録層上に照射した後の冷却速度を大きくして結晶
粒径が大きくならないようにする方法もあるが、充分で
なかった。
As an attempt to solve this problem, there is a method of increasing the cooling rate after irradiating the recording layer with a laser beam to prevent the crystal grain size from increasing, but it was not sufficient.

【0006】そこで本発明は、加熱冷却過程の違いによ
っても結晶粒径が大きくならないようにして同一記録層
内で結晶粒径が異なることを防止し、消去率を上げ情報
の再生誤りが少なくまたパワーマージンの大きい相変化
光記録媒体を提供することにある。
In view of the above, the present invention prevents the crystal grain size from increasing in the same recording layer by preventing the crystal grain size from increasing due to the difference in heating / cooling process, thereby increasing the erasing rate and reducing the information reproduction error. An object is to provide a phase change optical recording medium having a large power margin.

【0007】[0007]

【課題を解決するための手段】本発明は、アモルファス
又は結晶のいずれか他方への相変化に伴い光学的性質が
変化する相変化材料の記録層を基板上に設けた相変化光
記録媒体において、前記相変化材料がアモルファスから
結晶へ相変化する際にその結晶の核となりかつ前記相変
化材料がアモルファス又は結晶のいずれへ相変化する際
にも溶融しない結晶核材料を前記記録層中に略一様な分
布で分散させることにより課題を解決する。
The present invention provides a phase change optical recording medium in which a recording layer of a phase change material whose optical properties change with the phase change to either the amorphous or the crystalline is provided on a substrate. In the recording layer, a crystal nucleus material which becomes a nucleus of the crystal when the phase change material undergoes a phase change from amorphous to crystal and which does not melt when the phase change material undergoes a phase change to either amorphous or crystal is formed in the recording layer. The problem is solved by dispersing with a uniform distribution.

【0008】本発明に用いられる相変化材料としては、
従来の光記録媒体に用いられる相変化光記録材料である
Ge−Sb−Te、In−Sb−Te、In−Ge−S
b−Te等を用いてもよいし、また相変化材料自体に結
晶化の核を生成させる必要がないため、結晶化速度が遅
いとされるGeTe等の材料でもよい。
The phase change material used in the present invention includes:
Ge-Sb-Te, In-Sb-Te, In-Ge-S, which are phase change optical recording materials used for conventional optical recording media.
b-Te or the like may be used, or a material such as GeTe, which is considered to have a low crystallization rate, because it is not necessary to generate crystallization nuclei in the phase change material itself.

【0009】一方結晶核材料には次のようなものを用い
ることができる。前記相変化材料の結晶相はいずれも格
子定数約6オングストロームのNaCl型構造を有して
おり、またその融点は600°C程度である。従って、
記録消去時に溶融せず結晶化の際の結晶核となる上記結
晶核材料の性質としては、格子定数が6オングストロー
ム前後のNaCl型の結晶構造を有し、融点が1000
°C程度以上の材料であることが望ましい。
On the other hand, the following materials can be used as the crystal nucleus material. Each of the crystalline phases of the phase change material has a NaCl type structure with a lattice constant of about 6 Å, and its melting point is about 600 ° C. Therefore,
As a property of the above-mentioned crystal nucleus material which does not melt during recording and erasing but becomes a crystal nucleus during crystallization, it has a NaCl type crystal structure with a lattice constant of about 6 Å and a melting point of 1000.
It is desirable that the material be at a temperature of about ° C or higher.

【0010】このような性質を有する結晶核材料とし
て、CeSe、CeTe、DyTe、ErTe、Eu
S、EuSe、HoTe、LaS、LaSe、NdS
e、PrSe、PuTe、SmSe、SrS、TbT
e、ThSe、TmTe、UTe、YTe、YbSe、
CeP、DySb、ErSb、HoSb、LaP、Nd
P、PrP、ThP、ScSb、TbSb、TmSb、
USb、YbSb、CeAs、GeAs、LaAs、N
dAs、PrAs、PuAs、SmAs、TbAs、T
hAs、PbSe等を用いることができる。このうちP
bSe以外は、周期表3A族の元素(希土類元素及びア
クチノイド元素)を含む化合物である。
CeSe, CeTe, DyTe, ErTe, Eu are available as crystal nucleus materials having such properties.
S, EuSe, HoTe, LaS, LaSe, NdS
e, PrSe, PuTe, SmSe, SrS, TbT
e, ThSe, TmTe, UTe, YTe, YbSe,
CeP, DySb, ErSb, HoSb, LaP, Nd
P, PrP, ThP, ScSb, TbSb, TmSb,
USb, YbSb, CeAs, GeAs, LaAs, N
dAs, PrAs, PuAs, SmAs, TbAs, T
hAs, PbSe, etc. can be used. Of these, P
Compounds other than bSe include elements of Group 3A of the periodic table (rare earth elements and actinide elements).

【0011】本発明では、結晶核材料を記録層中に略一
様な分布で分散させることが重要であるが、その分散の
形態としては、図1に模式的に示すように、結晶核材料
11が相変化材料12中に固溶せず一様に分散さしてい
る形態でもよく、あるいは、結晶核材料13が隣接する
保護層上に島状あるいは柱状に形成されており、この結
晶核材料に接して相変化材料14が存在るす形態でも良
い。しかも結晶核材料11の分散密度は相変化材料12
が結晶化したときに粗大結晶粒が成長しない程度に十分
高い密度である。
In the present invention, it is important to disperse the crystal nucleus material in the recording layer in a substantially uniform distribution. The form of the dispersion is as shown in FIG. The phase change material 12 may have a form in which it is not solid-dissolved in the phase change material 12 and is dispersed uniformly, or the crystal nucleus material 13 is formed in an island shape or a columnar shape on the adjacent protective layer. The phase change material 14 may be in contact therewith. Moreover, the dispersion density of the crystal nucleus material 11 is determined by the phase change material 12
Has a sufficiently high density that coarse grains do not grow when crystallization occurs.

【0012】図1のように、結晶核材料を相変化材料中
に固溶せずに混合させるには、結晶核材料のターゲット
と相変化材料のターゲットを同時スパッタリングする方
法のほか、結晶核材料の蒸着源と相変化材料の蒸着源を
用いた同時蒸着法で作製する方法がある。
As shown in FIG. 1, in order to mix the crystal nucleus material in the phase change material without forming a solid solution, in addition to the method of simultaneously sputtering the target of the crystal nucleus material and the target of the phase change material, There is a method of producing by the simultaneous vapor deposition method using the vapor deposition source of and the vapor deposition source of the phase change material.

【0013】また図2のように、結晶核材料を隣接する
保護層面に島状あるいは柱状に形成する場合には、保護
層を形成したのち、スパッタリング法や蒸着法等で結晶
核材料の層をごく薄く形成し、更にその上に上記相変化
材料をスパッタリング法や蒸着法等で積み重ねる方法が
ある。スパッタリング法や蒸着法で層を形成するとき、
ごく薄い状態では島状あるいは柱状になることが知られ
ており、この方法で結晶核材料を島状あるいは柱状に形
成するものである。他の方法としては、スパッタリング
法等で一定厚さの結晶核材料の層を形成したのち、逆ス
パッタリング等の方法でこの結晶核材料の一部を削除
し、島状あるいは柱状の結晶核材料を残し、その上に上
記相変化材料をスパッタリング法や蒸着法で積み重ねて
もよい。また逆に、相変化材料を形成した後、これらの
方法で結晶核材料を島状あるいは柱状になるように形成
しても当然のことながらよい。
Further, as shown in FIG. 2, when the crystal nucleus material is formed in an island shape or a column shape on the adjacent protective layer surface, after forming the protective layer, the crystal nucleus material layer is formed by a sputtering method or a vapor deposition method. There is a method in which the phase change material is formed to be extremely thin, and the phase change material is further stacked thereon by a sputtering method, a vapor deposition method, or the like. When forming a layer by sputtering or vapor deposition,
It is known that when it is extremely thin, it has an island shape or a column shape, and this method forms the crystal nucleus material into an island shape or a column shape. As another method, after forming a layer of a crystal nucleus material having a constant thickness by a sputtering method or the like, a part of the crystal nucleus material is removed by a method such as reverse sputtering, and an island-shaped or columnar crystal nucleus material is removed. Alternatively, the phase change material may be stacked thereon by a sputtering method or a vapor deposition method. On the contrary, after forming the phase change material, the crystal nucleus material may be formed into an island shape or a column shape by these methods.

【0014】[0014]

【作用】本発明においては、相変化材料を有する記録層
中に結晶核材料を略一様な分布で分散させる。そして、
この結晶核材料は前記相変化材料がアモルファスから結
晶へ相変化する際に常にその結晶の核となることによ
り、形成される結晶粒は隣接して形成される結晶粒によ
りその大きさを互いに制限される。その結果、その結晶
粒径は、結晶核材料の分散の密度に応じて略一定とな
る。しかも、結晶核材料は前記相変化材料がアモルファ
ス又は結晶のいずれか他方への相変化をする際にも溶融
しないため、過熱冷却過程が異なっても結晶核材料の分
散の密度は変化しない。従って過熱冷却過程が異なって
も形成される結晶相の結晶粒径は略一定となり、消去率
を改善できる。
In the present invention, the crystal nucleus material is dispersed in the recording layer containing the phase change material in a substantially uniform distribution. And
This crystal nucleus material always serves as a nucleus of the crystal when the phase change material undergoes a phase change from amorphous to crystal, so that the crystal grains formed are mutually limited in size by adjacent crystal grains. To be done. As a result, the crystal grain size becomes substantially constant according to the density of dispersion of the crystal nucleus material. Moreover, since the crystal nucleus material does not melt when the phase change material undergoes phase change to either the amorphous state or the crystal state, the dispersion density of the crystal nucleus material does not change even if the superheat cooling process is different. Therefore, even if the superheat cooling process is different, the crystal grain size of the crystal phase formed becomes substantially constant, and the erasing rate can be improved.

【0015】また、結晶核材料は前記相変化材料がアモ
ルファス又は結晶のいずれか他方への相変化をする際に
も溶融しないため、結晶核材料の密度や分散の状態を変
化させずに記録消去を繰り返すことができ、安定した消
去率の改善を実現するものである。
Further, since the crystal nucleus material does not melt even when the phase change material undergoes a phase change to either the amorphous state or the crystal state, the recording and erasing are performed without changing the density or dispersion state of the crystal nucleus material. Can be repeated, and a stable improvement in the erase rate is realized.

【0016】[0016]

【実施例】以下、本発明の実施例について具体的に説明
する。
EXAMPLES Examples of the present invention will be specifically described below.

【0017】(1)実施例1 第1の実施例では記録層はGe2Sb2Te5を相変化材
料としDyTeを結晶核材料とし、Ge2Sb2Te5
ーゲットとDyTeターゲットを用いて2元同時スパッ
タリング法で作製した。この記録層を用い光記録媒体を
次のように製作した。すなわち厚さ1.2mmのポリカ
ーボネート製基板上に、厚さ160nmの(ZnS)80
(SiO220製の光入射側保護層と、厚さ25nmの
記録層と、厚さ30nmのSiO2製の光透過側保護層
と、厚さ100nmのAl−Ti製の光透過側反射層と
をスパッタリング法で順次形成する。次に、厚さ1.2
mmのポリカーボネート製保護板を紫外線硬化樹脂を用
いて接着してなる表面保護層を形成することより光記録
媒体となる。
(1) Example 1 In the first example, the recording layer was made of Ge 2 Sb 2 Te 5 as a phase change material, DyTe as a crystal nucleus material, and a Ge 2 Sb 2 Te 5 target and a DyTe target. It was produced by the original simultaneous sputtering method. An optical recording medium using this recording layer was manufactured as follows. That is, on a 1.2 mm thick polycarbonate substrate, a 160 nm thick (ZnS) 80
(SiO 2 ) 20 light incident side protective layer, 25 nm thick recording layer, 30 nm thick SiO 2 light transmissive side protective layer, 100 nm thick Al-Ti light transmissive side reflection layer The layer and the layer are sequentially formed by a sputtering method. Next, thickness 1.2
An optical recording medium is obtained by forming a surface protective layer by adhering a polycarbonate protective plate having a thickness of mm with an ultraviolet curable resin.

【0018】この光記録媒体を回転数1800rpmで
回転させると共に、波長830nmの半導体レーザー光
を開口数0.5の対物レンズで記録層上に集束して評価
を行った。レーザー光をピークパワーとバイアスパワー
の2値で強度変調して記録を行った。周波数3.7MH
zの信号を記録した上に、周波数1.39MHzの信号
を重ね書きし、このときの3.7MHzの信号レベルの
減少量を消去率と定義した。
This optical recording medium was rotated at a rotational speed of 1800 rpm, and a semiconductor laser beam having a wavelength of 830 nm was focused on a recording layer by an objective lens having a numerical aperture of 0.5 for evaluation. Recording was performed by intensity-modulating the laser light with two values of peak power and bias power. Frequency 3.7MH
The signal of z was recorded and the signal of the frequency of 1.39 MHz was overwritten, and the reduction amount of the signal level of 3.7 MHz at this time was defined as the erasing rate.

【0019】本実施例の光記録媒体は35dB以上の消
去率が得られ、比較例より消去率が改善されることがわ
かった。3.7MHzの信号を記録を105回記録した
後の消去率も同様の値が得られ、繰返し性も良好であっ
た。
It was found that the optical recording medium of this example provided an erasing rate of 35 dB or more, and that the erasing rate was improved over the comparative example. The same value was obtained for the erasing rate after recording the signal of 3.7 MHz 10 5 times, and the repeatability was also good.

【0020】またこの媒体の記録層を透過電子顕微鏡で
観察したところ、比較例の媒体より結晶粒径が揃ってい
た。
When the recording layer of this medium was observed with a transmission electron microscope, the crystal grain size was more uniform than that of the medium of the comparative example.

【0021】ここで、作製された記録層はGe2Sb2
5とDyTeに相分離し、Ge2Sb2Te5が結晶−ア
モルファス間相変化を行い、DyTeが結晶化の際の結
晶核となり、図1に模式的に示す形態で分散する。Ge
2Sb2Te5は、格子定数6.0オングストロームのN
aCl型の結晶相を有しておりその融点は約600°C
である。一方、DyTeは格子定数6.09オングスト
ロームのNaCl構造を有し、1500°C以上の融点
を有する。そこで記録消去時にDyTeは溶融せず、か
つGe2Sb2Te5が結晶化する際の結晶核になる。
Here, the produced recording layer is Ge 2 Sb 2 T.
Phase-separated into e 5 and DyTe, Ge 2 Sb 2 Te 5 undergoes a crystal-amorphous phase change, and DyTe becomes a crystal nucleus at the time of crystallization and disperses in a form schematically shown in FIG. Ge
2 Sb 2 Te 5 is N with a lattice constant of 6.0 Å.
It has an aCl type crystal phase and its melting point is about 600 ° C.
Is. On the other hand, DyTe has a NaCl structure with a lattice constant of 6.09 angstrom and has a melting point of 1500 ° C. or higher. Therefore, DyTe does not melt at the time of recording and erasing, and it becomes a crystal nucleus when Ge 2 Sb 2 Te 5 is crystallized.

【0022】レーザー光を記録層上に照射してその照射
部位の記録層が所定時間結晶化温度以上に保持される
と、形成される結晶粒は常に結晶核材料11を核として
結晶化する。このとき結晶核材料11は十分高い密度で
一様に分散しているので、形成される結晶粒径は隣接し
て形成される結晶粒により制限され結晶核材料11の密
度に応じほぼ一定に揃い、消去率が大きいのだと考えら
れる。また結晶核材料11は溶融しないためためレーザ
ー光の照射を繰返しても形成される結晶粒径は常に一定
で異なることはなく、繰返し性が良好なのだと考えられ
る。
When the recording layer is irradiated with laser light and the recording layer at the irradiated portion is kept at the crystallization temperature or higher for a predetermined time, the formed crystal grains are always crystallized with the crystal nucleus material 11 as the nucleus. At this time, since the crystal nucleus material 11 is uniformly dispersed at a sufficiently high density, the crystal grain size to be formed is limited by the crystal grains to be formed adjacent to each other, and is almost constant according to the density of the crystal nucleus material 11. It is considered that the erasing rate is high. Further, since the crystal nucleus material 11 does not melt, the crystal grain size that is formed is always constant and does not differ even if the irradiation of laser light is repeated, and it is considered that the repeatability is good.

【0023】(2)実施例2 実施例1と記録層を除き同一の構成の光記録媒体におい
て、その記録層として厚さ5nmのDyTe層をスパッ
タリング法で形成した上に厚さ20nmのGe2Sb2
5層をスパッタリング法で形成した。ここで、DyT
e層は5nmと薄いため図2のように島状あるいは柱状
に分散しており、このDyTeが結晶核材料13とな
り、一方Ge2Sb2Te5が相変化材料14となる。
(2) Example 2 In an optical recording medium having the same structure as in Example 1 except for the recording layer, a DyTe layer having a thickness of 5 nm was formed as a recording layer by a sputtering method and Ge 2 having a thickness of 20 nm was formed. Sb 2 T
The e 5 layer was formed by the sputtering method. Where DyT
Since the e layer is as thin as 5 nm, it is dispersed in an island shape or a column shape as shown in FIG. 2, and this DyTe serves as the crystal nucleus material 13, while Ge 2 Sb 2 Te 5 serves as the phase change material 14.

【0024】この光記録媒体を実施例1と同様にして評
価したところ、比較例より大きな35dB以上の消去率
が得られた。また、実施例1と同様繰返し性も良好であ
った。またこの媒体の記録層を透過電子顕微鏡で観察し
たところ、比較例の媒体より結晶粒径が揃っていた。
When this optical recording medium was evaluated in the same manner as in Example 1, an erasing rate of 35 dB or more, which was higher than that in Comparative Example, was obtained. Further, the repeatability was also good as in Example 1. When the recording layer of this medium was observed with a transmission electron microscope, the crystal grain size was more uniform than that of the medium of the comparative example.

【0025】(3)比較例 比較例として、記録層を厚さ25nmのGe2Sb2Te
5とした以外は実施例1と同様の構造の光記録媒体を、
実施例1と同様の方法で作製した。実施例1と同様の方
法で消去率を測定したところ、本実施例の消去率は約3
0dBと小さかった。また、この媒体の記録層を透過電
子顕微鏡で観察したところ、アモルファスマーク周辺に
リング状の粗大結晶粒が存在しており、また、アモルフ
ァスマークの上を消去したと思われる所に幾分大きな結
晶粒が存在するなど、結晶粒径のばらつきが大きかっ
た。
(3) Comparative Example As a comparative example, the recording layer was formed of Ge 2 Sb 2 Te having a thickness of 25 nm.
5 and with other than the in the optical recording medium of the same structure as in Example 1,
It was manufactured in the same manner as in Example 1. When the erase rate was measured by the same method as in Example 1, the erase rate of this example was about 3
It was as small as 0 dB. In addition, when the recording layer of this medium was observed with a transmission electron microscope, there were ring-shaped coarse crystal grains around the amorphous marks, and some large crystals were found on the amorphous marks where they seemed to be erased. There was a large variation in crystal grain size due to the presence of grains.

【0026】[0026]

【発明の効果】本発明の相変化光記録媒体によれば、記
録層中に結晶核材料を略一様な分布で分散させ、この結
晶核材料が前記相変化材料がアモルファスから結晶へ相
変化する際にその結晶の核となることにより前記記録層
中に前記相変化材料を結晶粒径を揃えて結晶化させると
ともに、前記相変化材料がアモルファス又は結晶のいず
れか他方への相変化をする際にも溶融せず結晶核の数や
混在状態を変化させず記録消去を繰返すことができるこ
とにより安定して高い消去率が得られ、データの再生誤
りが少なく、また、パワーマージンを大きくすることが
できる。
According to the phase-change optical recording medium of the present invention, the crystal nucleus material is dispersed in the recording layer in a substantially uniform distribution, and this crystal nucleus material causes the phase change material to change phase from amorphous to crystalline. In doing so, the phase change material in the recording layer is crystallized with a uniform crystal grain size by becoming a nucleus of the crystal, and the phase change material undergoes a phase change to either the amorphous state or the crystal state to the other side. In this case, the recording and erasing can be repeated without changing the number of crystal nuclei and the mixed state without melting and a stable high erasing rate can be obtained, there are few data reproduction errors, and the power margin can be increased. You can

【0027】また、結晶核の数が変化せず、また、記録
材料の移動が起こりにくいことから、重ね書き回数を多
くすることが可能となる。また、結晶核生成を伴わず結
晶化速度が速いので高速でデータ転送を行うことが可能
となる。
Further, since the number of crystal nuclei does not change and the recording material does not easily move, the number of overwriting can be increased. Further, since the crystallization speed is high without the generation of crystal nuclei, it is possible to transfer data at high speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の記録層の分散の形態を
示す模式図
FIG. 1 is a schematic diagram showing a form of dispersion of a recording layer according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の記録層の分散の形態を
示す模式図
FIG. 2 is a schematic diagram showing a form of dispersion of recording layers according to a second embodiment of the present invention.

【図3】従来の相変化光記録媒体の断面図FIG. 3 is a sectional view of a conventional phase change optical recording medium.

【符号の説明】[Explanation of symbols]

1・・・基板、2・・・光入射側保護層、3・・・記録
層、4・・・光透過側保護層、5・・・反射層、6・・
・表面保護層、11、13・・・結晶核材料、12、1
4・・・相変化材料
1 ... Substrate, 2 ... Light incident side protective layer, 3 ... Recording layer, 4 ... Light transmitting side protective layer, 5 ... Reflective layer, 6 ...
.Surface protective layer, 11, 13 ... Crystal nucleus material, 12, 1
4 ... Phase change material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アモルファス又は結晶のいずれか他方への
相変化に伴い光学的性質が変化する相変化材料の記録層
を基板上に設けた相変化光記録媒体において、前記相変
化材料がアモルファスから結晶へ相変化する際にその結
晶の核となりかつ前記相変化材料がアモルファス又は結
晶のいずれへ相変化する際にも溶融しない結晶核材料を
前記記録層中に略一様な分布で分散させたことを特徴と
する相変化光記録媒体。
1. A phase-change optical recording medium comprising a recording layer of a phase-change material, the optical properties of which change with the phase change to either the amorphous state or the crystalline state, provided on a substrate. A crystal nucleus material that becomes a nucleus of the crystal when the phase changes to a crystal and does not melt when the phase change material changes to an amorphous phase or a crystal is dispersed in the recording layer in a substantially uniform distribution. A phase change optical recording medium characterized by the above.
JP3185236A 1991-06-28 1991-06-28 Phase-change optical recording medium Pending JPH05116455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3185236A JPH05116455A (en) 1991-06-28 1991-06-28 Phase-change optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3185236A JPH05116455A (en) 1991-06-28 1991-06-28 Phase-change optical recording medium

Publications (1)

Publication Number Publication Date
JPH05116455A true JPH05116455A (en) 1993-05-14

Family

ID=16167270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3185236A Pending JPH05116455A (en) 1991-06-28 1991-06-28 Phase-change optical recording medium

Country Status (1)

Country Link
JP (1) JPH05116455A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1003964C2 (en) * 1996-04-13 1998-03-17 Lg Electronics Inc Optical recording medium and a method of manufacturing it.
WO2004085167A1 (en) * 2003-03-24 2004-10-07 Matsushita Electric Industrial Co., Ltd. Information recording medium and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1003964C2 (en) * 1996-04-13 1998-03-17 Lg Electronics Inc Optical recording medium and a method of manufacturing it.
WO2004085167A1 (en) * 2003-03-24 2004-10-07 Matsushita Electric Industrial Co., Ltd. Information recording medium and method for manufacturing same

Similar Documents

Publication Publication Date Title
USRE36383E (en) Optical recording medium and production process for the medium
JP2806274B2 (en) Optical information recording medium
US5652037A (en) Information recording medium
US5395669A (en) Optical record medium
KR20020041430A (en) Optical information medium having separate recording layers
JPH07169094A (en) Optical recording medium
WO2001082297A1 (en) Optical recording medium and use of such optical recording medium
JP2001184725A (en) Optical information recording medium
JPH09293269A (en) Phase transition type optical recording medium and its production
JP2696858B2 (en) Optical information recording / reproduction member
KR20050010809A (en) Recording medium having high melting point recording layer, information recording method thereof, and information reproducing apparatus and method therefor
JPH05159360A (en) Phase shift type optical disk
EP1154419A2 (en) Phase change optical disk
US5206114A (en) Information storage medium containing a recording layer capable of exhibiting a dual phase state
JPH05116455A (en) Phase-change optical recording medium
JPH04212735A (en) Optical disk and method for recording optical information
JP2005537156A (en) Rewritable optical data storage medium and use of such medium
JP3687264B2 (en) Optical information recording medium and manufacturing method thereof
Rubin Material requirements for reversible phase change optical recording
US20030112731A1 (en) Phase-change recording medium, recording method and recorder therefor
JP2639174B2 (en) Optical recording medium
JP4047551B2 (en) Phase change optical recording medium
JP2867701B2 (en) Manufacturing method of optical information recording medium
JP3912517B2 (en) Phase change recording medium and recording apparatus
JPH0916961A (en) Initializing method for information recording medium