JPH05111461A - Opthalmorefractometer - Google Patents

Opthalmorefractometer

Info

Publication number
JPH05111461A
JPH05111461A JP3297902A JP29790291A JPH05111461A JP H05111461 A JPH05111461 A JP H05111461A JP 3297902 A JP3297902 A JP 3297902A JP 29790291 A JP29790291 A JP 29790291A JP H05111461 A JPH05111461 A JP H05111461A
Authority
JP
Japan
Prior art keywords
light
eye
moving lens
light source
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3297902A
Other languages
Japanese (ja)
Inventor
Yoshi Kobayakawa
嘉 小早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3297902A priority Critical patent/JPH05111461A/en
Publication of JPH05111461A publication Critical patent/JPH05111461A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To provide the ophthalmorefractometer which is relatively simple in operation, is small in size and does not require image processing. CONSTITUTION:An IR luminous flux I is reflected by a beam splitting member 3 when an IR light source 5 emits light. This luminous flux transmits a moving lens 2 which is movable in an optical path direction and is reflected by a dichroic mirror 1. The reflected light is made incident at the luminous flux larger than the pupil diameter on an eye E to be examined. The eyeground reflected light L which is transmitted through the pupil Ep and is reflected by the eyeground Er is reflected by the dichroic mirror 1 transmits the moving lens 2 and the beam splitting member 3 and images on a photodetecting element 4. The refractive power of the eye E to be examined is decided from the relation between the brightness distribution on the photodetecting element 4 and the position of the moving lens 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、眼科医院や眼鏡店で便
用されている眼屈折計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eye refractometer used in ophthalmology clinics and eyeglass stores.

【0002】[0002]

【従来の技術】従来から用いられている所謂マックスウ
ェル視光学系型の眼屈折計は、対物レンズの瞳孔共役位
置に絞りを配置して、瞳孔よりも小さな光束を正確に瞳
孔中心に投影し、眼底反射光から眼屈折力を測定してい
る。この型式の眼屈折計は光束を正確に瞳孔内に投影し
なければならないため、被検者の顔を固定する固定台や
微小に光束を上下左右に移動させるための摺動機能を必
要とし、据置型とされているのが一般的である。また、
被検者と50cm〜1.5m程度の距離だけ離れて眼屈
折測定ができるホトレフラクション装置も知られてい
る。
2. Description of the Related Art A so-called Maxwell optics type eye refractometer which has been conventionally used has an aperture arranged at a pupil conjugate position of an objective lens to accurately project a light beam smaller than a pupil onto the center of the pupil. , The eye refractive power is measured from the fundus reflected light. Since this type of eye refractometer needs to accurately project the light flux into the pupil, it requires a fixed base for fixing the subject's face and a sliding function for minutely moving the light flux vertically and horizontally. It is generally a stationary type. Also,
There is also known a photorefraction device capable of performing eye refraction measurement at a distance of about 50 cm to 1.5 m from a subject.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、マック
スウェル視光学系型の眼屈折計は顔を顔受台に固定する
必要があるため、乳幼児に使用することはなかなか困難
である。また、ホトレフラクション装置は装置が大型で
画像処理が必要であり、測定可能な屈折力の範囲が狭い
等の問題点もある。更に、両装置は大型であるため、手
持ちの眼屈折計や自己測定のできるものに応用すること
は困難である。
However, since it is necessary to fix the face to the face cradle in the Maxwell optics type eye refractometer, it is difficult to use it for infants. Further, the photorefraction device has problems that the device is large and image processing is required, and the measurable refractive power range is narrow. Furthermore, since both devices are large in size, it is difficult to apply them to a hand-held eye refractometer or a device capable of self-measurement.

【0004】本発明の目的は、操作が比較的簡単で、小
型でかつ画像処理を必要とせず、必要に応じて手持ち測
定や自己眼測定も可能な眼屈折計を提供することにあ
る。
It is an object of the present invention to provide an eye refractometer which is relatively easy to operate, is small in size, does not require image processing, and is capable of handheld measurement and self-eye measurement as needed.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係る眼屈折計は、光源から出て光分割部材
と移動レンズを介して瞳孔径よりも大きい光束によって
被検眼を照明する照明光学系と、前記光分割部材に関し
て前記光源と共役な位置に配置した光検出器を備えた受
光系とを有し、前記移動レンズと前記光検出器からの情
報とを基に被検眼の眼屈折力を求めることを特徴とする
ものである。
In order to achieve the above object, an eye refractometer according to the present invention illuminates an eye to be inspected with a light beam emitted from a light source and passing through a light splitting member and a moving lens and having a diameter larger than a pupil diameter. An illumination optical system, and a light receiving system including a photodetector arranged at a position conjugate with the light source with respect to the light splitting member, and the eye to be inspected based on the information from the moving lens and the photodetector. It is characterized in that the eye's refractive power is calculated.

【0006】[0006]

【作用】上述の構成を有する眼屈折計は、被検眼からの
眼底反射光の受光状態が、移動レンズの状態に対応して
変化し、受光状態と移動レンズの状態から被検眼の眼屈
折値を算出する。
In the eye refractometer having the above-described structure, the light receiving state of the fundus reflected light from the eye to be examined changes in accordance with the state of the moving lens, and the eye refraction value of the eye to be examined is changed from the state of the light receiving state and the state of the moving lens. To calculate.

【0007】[0007]

【実施例】本発明を図示の実施例に基づいて詳細に説明
する。図1は第1の実施例の構成図である。被検眼Eの
視線方向には赤外光を反射し可視光を透過するダイクロ
イックミラー1が配設され、ダイクロイックミラー1の
反射方向には前後に可動な移動レンズ2、光分割部材
3、受光素子4が配置され、更に光分割部材3の反射方
向には赤外光を発生する赤外光源5が配設されている。
図2、図3は受光素子4と赤外光源5の正面図である。
受光素子4は受光面が円形で7分割されており、中心は
円形の要素センサ4a、その周りの周辺部4aは6等分
された要素センサ4b〜4gとされている。また、赤外
光源5は円形の発光素子で面上からは均等に赤外光を放
射する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail based on the illustrated embodiments. FIG. 1 is a block diagram of the first embodiment. A dichroic mirror 1 that reflects infrared light and transmits visible light is arranged in the line-of-sight direction of the eye E to be inspected, and a movable lens 2, a light splitting member 3, and a light-receiving element that are movable back and forth in the reflection direction of the dichroic mirror 1. 4 is arranged, and further, an infrared light source 5 for generating infrared light is arranged in the reflection direction of the light splitting member 3.
2 and 3 are front views of the light receiving element 4 and the infrared light source 5.
The light-receiving element 4 has a circular light-receiving surface and is divided into seven parts. The center of the light-receiving element 4 is a circular element sensor 4a, and the peripheral portion 4a around the light-receiving element 4 is divided into six equal element sensors 4b to 4g. The infrared light source 5 is a circular light emitting element and radiates infrared light uniformly from the surface.

【0008】測定時には、検者はダイクロイックミラー
1の後方から被検眼Eの位置合わせを行い、図示しない
測定釦を押すと赤外光源5が発光し、光分割部材3で反
射された入射光束Iは移動レンズ2を透過しダイクロイ
ックミラー1で反射されて被検眼Eに到達する。光束I
の太さは瞳孔Epに対して十分大きいので、位置合わせの
多少のずれに拘らず瞳孔Epを透過した光束が眼底Erに到
達する。眼底反射光Lは同じ経路を戻り、光分割部材3
を透過して受光素子4に入射する。
At the time of measurement, the examiner aligns the eye E to be examined from the rear of the dichroic mirror 1, presses a measurement button (not shown), the infrared light source 5 emits light, and the incident light flux I reflected by the light splitting member 3 is measured. Passes through the moving lens 2 and is reflected by the dichroic mirror 1 to reach the eye E to be inspected. Luminous flux I
Is sufficiently large with respect to the pupil Ep, so that the light flux transmitted through the pupil Ep reaches the fundus Er regardless of a slight misalignment in alignment. The fundus reflected light L returns along the same path, and the light splitting member 3
And is incident on the light receiving element 4.

【0009】移動レンズ2の位置と受光素子4の受光量
の比の関係は図4に示す通りである。受光素子4の中央
部の要素センサ4aの出力と、径線m上にある両側の要
素センサ4c、4fの出力和との比は移動レンズ2の所
定位置でピークとなる。径線mに対しそれぞれ60°、
120°回転した径線l、nでは移動レンズ2の位置に
対する受光量のピークがそれぞれ相対的にずれている。
このずれは被検眼Eの眼屈折力に依存するので、移動レ
ンズ2を移動して3つの径線m、l、nに対し光量比が
最大になる移動レンズ2の位置を求め、これにより被検
眼Eの屈折力を判定することができる。
The relationship between the position of the moving lens 2 and the ratio of the amount of light received by the light receiving element 4 is as shown in FIG. The ratio of the output of the element sensor 4a at the center of the light receiving element 4 and the sum of the outputs of the element sensors 4c and 4f on both sides on the radial line m has a peak at a predetermined position of the moving lens 2. 60 ° to the radial line m,
In the radial lines 1 and n rotated by 120 °, the peaks of the amount of received light relative to the position of the moving lens 2 are relatively deviated.
Since this deviation depends on the eye refractive power of the eye E to be inspected, the moving lens 2 is moved to find the position of the moving lens 2 having the maximum light amount ratio with respect to the three radial lines m, l, and n. The refractive power of the optometry E can be determined.

【0010】なお、入射光束Iは瞳孔Epに比べて十分大
きいため、光束が多少ずれても入射光束Iは眼底Erに入
射し、位置合わせの許容範囲は大きい。また、移動レン
ズ2の基準位置は受光素子4の光量比から決定されるた
め、光源5の輝度や外部からの散乱光による測定誤差に
対する影響が少ない。
Since the incident light flux I is sufficiently larger than the pupil Ep, the incident light flux I is incident on the fundus Er even if the light flux deviates to some extent, and the allowable alignment range is large. Further, since the reference position of the moving lens 2 is determined from the light quantity ratio of the light receiving element 4, the influence on the luminance of the light source 5 and the measurement error due to scattered light from the outside is small.

【0011】この実施例を手持ちレフラクトメータに使
用する場合には、検者はダイクロイックミラー1を通し
て被検眼Eを観察しながら屈折力を測定する。また、自
己測定に使用する場合には、被検者が見る視標をダイク
ロイックミラー1の方向に設けておけばよい。
When this embodiment is used in a hand-held refractometer, the examiner measures the refractive power while observing the eye E to be examined through the dichroic mirror 1. Further, when used for self-measurement, the visual target viewed by the subject may be provided in the direction of the dichroic mirror 1.

【0012】図5は他の型式の受光素子4’の正面図、
図6は赤外光源5’の正面図である。この実施例では赤
外光源5’は方形であり、これに対応して受光素子4’
は中心部に要素センサ4h、十字方向に方形の要素セン
サ4i〜4lが配設されている。この場合には、縦横2
方向の眼屈折力を求めることができる。
FIG. 5 is a front view of a light receiving element 4'of another type,
FIG. 6 is a front view of the infrared light source 5 '. In this embodiment, the infrared light source 5'is rectangular, and the light receiving element 4'corresponding to this is square.
Is provided with an element sensor 4h in the center and rectangular element sensors 4i to 4l in the cross direction. In this case, 2
The eye refractive power in the direction can be obtained.

【0013】図7は第1の実施例を応用したホロプタの
正面図であり、ホロプタ部6に他覚屈折測定ユニット7
が付加されている。ホロプタ部6にはレンズターレット
が収納され、内側下部に覗き窓8a、8bを有するレン
ズ部9a、9bと、被検者Sの瞳孔間隔距離に応じてレ
ンズ部9a、9bを上方から調節可能に保持する保持部
10とから構成されている。他覚屈折測定ユニット7は
第1の実施例と同じ構成を有し、縦長で下部にダイクロ
イックミラー1が設けられ、保持部10に滑動可能に支
持され、左右眼に合わせてその位置を変えられるように
なっている。
FIG. 7 is a front view of a horopter to which the first embodiment is applied. The objective refraction measuring unit 7 is attached to the horopter section 6.
Has been added. A lens turret is housed in the horopter unit 6, and lens units 9a and 9b having viewing windows 8a and 8b in the inner lower portion and the lens units 9a and 9b can be adjusted from above according to the pupil distance of the subject S. It is composed of a holding unit 10 for holding. The objective refraction measuring unit 7 has the same configuration as that of the first embodiment, is vertically long and is provided with the dichroic mirror 1 at the bottom, is slidably supported by the holding portion 10, and its position can be changed according to the left and right eyes. It is like this.

【0014】例えば、右目の眼屈折測定時には、覗き窓
8aと他覚屈折測定ユニット7のダイクロイックミラー
1を一致させ、第1の実施例と同様の操作により測定を
行う。覗き窓8aにレンズがある場合には、レンズから
の反射光が生じノイズになるが、屈折力は受光素子4に
おける光量の相対比から判定されるため問題はない。ま
た、他覚屈折測定ユニット7は左右のレンズ部9a、9
bに独立に設けてもよい。なお、測定を行わないときに
は、他覚屈折測定ユニット7をスライドさせて横に退避
しておくことが望ましい。
For example, at the time of right eye ocular refraction measurement, the observation window 8a and the dichroic mirror 1 of the objective refraction measuring unit 7 are aligned with each other and the measurement is performed by the same operation as in the first embodiment. When the viewing window 8a has a lens, reflected light from the lens causes noise, but there is no problem because the refracting power is determined from the relative ratio of the light amounts in the light receiving element 4. In addition, the objective refraction measurement unit 7 includes the left and right lens parts 9a, 9a.
It may be independently provided in b. When the measurement is not performed, it is desirable that the objective refraction measuring unit 7 be slid and retracted laterally.

【0015】図8は第2の実施例の構成図である。光源
11から被検眼Eに至る光路上には、光軸方向に可動で
中央部分に遮光黒点12aを有する黒点板33、光分割
部材13、移動レンズ14が順次に配置され、被検眼E
の眼底Erに光源11の像を投影できるようになってい
る。眼底反射光の光分割部材13の透過方向には、中央
部に反射面15aを有する光分割プリズム15、レンズ
16、接眼レンズ17から成るファインダ光学系が設け
られている。また、反射面15aの反射方向には、移動
レンズ14に対して光源11と共役な位置関係にある受
光素子18が配置されている。
FIG. 8 is a block diagram of the second embodiment. On the optical path from the light source 11 to the eye E to be inspected, a black spot plate 33 movable in the optical axis direction and having a light-shielding black spot 12a in the central portion, a light splitting member 13, and a moving lens 14 are sequentially arranged.
The image of the light source 11 can be projected onto the fundus Er of the eye. A finder optical system including a light splitting prism 15 having a reflecting surface 15a at its center, a lens 16, and an eyepiece 17 is provided in the transmission direction of the fundus reflected light through the light splitting member 13. Further, in the reflection direction of the reflection surface 15a, a light receiving element 18 having a positional relationship with the light source 11 with respect to the movable lens 14 is arranged.

【0016】図9は光源11の正面図、図10は受光素
子18の正面図であり、光源11の発光面は方形であ
り、受光素子18の受光面は縦に3分割された要素セン
サ18a、18b、18cから構成されている。この受
光素子18は水平と垂直で屈折力が異なる時に中央の要
素センサ18aと両側の要素センサ18b、18cの出
力と出力比を求め、これらと移動レンズ14の位置から
水平垂直方向の屈折値を算出する。
FIG. 9 is a front view of the light source 11, and FIG. 10 is a front view of the light receiving element 18. The light emitting surface of the light source 11 is a square, and the light receiving surface of the light receiving element 18 is vertically divided into three element sensors 18a. , 18b, 18c. The light receiving element 18 obtains outputs and output ratios of the element sensor 18a at the center and the element sensors 18b and 18c on both sides when the refracting powers are different from each other in the horizontal and vertical directions. calculate.

【0017】検眼eが接眼レンズ17を覗き込み、被検
眼Eがほぼ中央にあることを確認し、図示しない測定釦
を押すと測定が行われる。光源11から出射した光束は
黒点板33、光分割部材13、移動レンズ14を経て被
検眼Eの眼底Er上に光源像を投影する。眼底反射光は同
じ光路を戻り、光分割部材13、光分割プリズム15を
経て受光素子18に入射する。次いで、移動レンズ14
は手動或いは自動で光路方向に移動して、受光素子18
の信号が合焦状態になった時の移動レンズ14の位置か
ら被検眼Eの屈折力が求められる。黒点板33の遮光黒
点12aは、移動レンズ14の反射光が受光素子18に
入射してノイズになることを防止している。
The eye optometry e looks into the eyepiece lens 17, confirms that the eye E to be inspected is substantially at the center, and a measurement button (not shown) is pressed to perform the measurement. The light flux emitted from the light source 11 passes through the black spot plate 33, the light splitting member 13, and the moving lens 14 to project a light source image on the fundus Er of the eye E to be examined. The fundus reflected light returns through the same optical path and enters the light receiving element 18 via the light splitting member 13 and the light splitting prism 15. Then, the moving lens 14
Is manually or automatically moved in the optical path direction to
The refractive power of the eye E to be inspected can be obtained from the position of the moving lens 14 when the signal of 1 is in focus. The light-shielding black dots 12a of the black dot plate 33 prevent the reflected light of the moving lens 14 from entering the light receiving element 18 and becoming noise.

【0018】また、この実施例では縦方向の受光素子1
8を用いているが、前述の図2、図5に示す受光素子
4、4’を用いれば、乱視を含む眼屈折力を求めること
が可能となる。
In this embodiment, the light receiving element 1 in the vertical direction is also used.
8 is used, it is possible to obtain the eye refractive power including astigmatism by using the light receiving elements 4 and 4'shown in FIGS.

【0019】図11は第3の実施例の構成図である。こ
の実施例は第2の実施例における光分割部材13を偏光
素子に置換し、受光素子18をCCD素子21と交換し
て、観察光学系と眼屈折測定系とを同一の部材で行える
ようにしている。即ち、光源22の出射方向には偏光光
分割部材20、光軸方向に移動可能な移動レンズ23が
被検眼Eとの間に設けられ、偏光光分割部材20の透過
方向にはCCD素子21を有するテレビカメラ24が配
置されている。また、テレビカメラ24の出力はアイア
イピース25を備えたテレビモニタ26に接続されてい
る。
FIG. 11 is a block diagram of the third embodiment. In this embodiment, the light splitting member 13 in the second embodiment is replaced with a polarizing element, and the light receiving element 18 is replaced with a CCD element 21 so that the observation optical system and the eye refraction measuring system can be performed by the same member. ing. That is, the polarized light splitting member 20 and the movable lens 23 that can move in the optical axis direction are provided between the light source 22 and the subject's eye E, and the CCD element 21 is placed in the transmission direction of the polarized light splitting member 20. The television camera 24 which it has is arranged. The output of the TV camera 24 is connected to a TV monitor 26 equipped with an eyepiece 25.

【0020】光源22を発した光束はブリュースタ角を
利用した偏光素子である偏光光分割部材20によって反
射され、光軸方向に可動な移動レンズ23を透過して遠
方の被検眼Eに入射するようになっている。被検眼Eの
反射光は移動レンズ23を透過し、眼底反射によって偏
光の崩れた光束のみが偏光光分割部材20を透過して、
光源22と移動レンズ23に対して共役な位置に配置さ
れたテレビカメラ24のCCD素子21に入射できるよ
うになっている。検眼eはテレビカメラ24の出力によ
るテレビモニタ26とアイアイピース25を介して被検
眼Eを確認できる。
The light beam emitted from the light source 22 is reflected by the polarized light splitting member 20 which is a polarizing element utilizing Brewster's angle, passes through the movable lens 23 movable in the optical axis direction, and is incident on the distant eye E. It is like this. The reflected light of the eye E to be inspected passes through the movable lens 23, and only the light beam whose polarization has been lost due to fundus reflection passes through the polarized light splitting member 20,
The light can be incident on the CCD element 21 of the television camera 24 arranged at a position conjugate with the light source 22 and the moving lens 23. The eye E can confirm the eye E through the TV monitor 26 and the eyepiece 25, which are output from the TV camera 24.

【0021】図12はテレビモニタ26の正面図であ
り、検者が被検眼Eをテレビモニタ26の視野のほぼ中
央に入れ測定釦を押すと、光源22は発光し被検眼Eか
らの反射光はCCD素子21に投影される。移動レンズ
23が光軸方向に移動し合焦状態になるとテレビモニタ
26上で合焦ランプ27が点灯し、同時に図示しないコ
ンピュータによって計算された被検眼Eに適した眼鏡レ
ンズの屈折力Dが表示される。この実施例では、偏光光
分割部材20に偏光素子を使用しているため、移動レン
ズ23の反射光はCCD素子21に入射することがなく
ノイズが減少する。
FIG. 12 is a front view of the television monitor 26. When the examiner puts the eye E to be examined in the approximate center of the visual field of the television monitor 26 and presses the measurement button, the light source 22 emits light and the reflected light from the eye E is reflected. Is projected onto the CCD element 21. When the movable lens 23 moves in the optical axis direction and becomes in focus, the focus lamp 27 lights on the TV monitor 26, and at the same time, the refractive power D of the eyeglass lens suitable for the eye E calculated by the computer (not shown) is displayed. To be done. In this embodiment, since the polarization element is used as the polarized light splitting member 20, the reflected light of the moving lens 23 does not enter the CCD element 21 and noise is reduced.

【0022】図13は第4の実施例の構成図であり、被
検眼Eの観察光学系が別途に設けられている。測定光学
系の光源30による光路01上には、中央に遮光黒点31
aを有する黒点板31、光分割部材32、移動レンズ3
3が順次に配置され被検眼Eに至っている。また、光分
割部材32の後方には光源30と共役な位置に受光素子
34が設けられている。観察光学系の光路02上には、被
検眼E側から順に対物レンズ35、対物レンズ35の焦
点面にスプリットプリズム36、更にアイピース37が
配置され、検者はアイピース37から観察できるように
なっている。観察系と測定系の光学系は所定の距離、例
えば1mで合焦し一致するように配置されている。
FIG. 13 is a block diagram of the fourth embodiment, in which an observation optical system for the eye E is separately provided. On the optical path 01 by the light source 30 of the measurement optical system, a light-shielding black dot 31 is formed at the center.
a black dot plate 31 having a, a light splitting member 32, a moving lens 3
3 are sequentially arranged and reach the eye E to be inspected. Further, a light receiving element 34 is provided behind the light splitting member 32 at a position conjugate with the light source 30. On the optical path 02 of the observation optical system, the objective lens 35, the split prism 36, and the eyepiece 37 on the focal plane of the objective lens 35 are arranged in this order from the eye E side so that the examiner can observe from the eyepiece 37. There is. The optical system of the observation system and the optical system of the measurement system are arranged so as to be focused and matched at a predetermined distance, for example, 1 m.

【0023】測定時には被検者を固定させ、検眼eはス
プリットプリズム36が正しく見える位置に装置を合わ
せる。図示しない測定釦を押すと、光源30が発光し移
動レンズ33が前後に移動して測定が行われる。観察光
学系が測定光学系と独立して設けられているため、測定
中でも焦点がぼけることがなく、被検眼Eを観察し続け
ることが可能となる。
At the time of measurement, the subject is fixed, and the optometry e is adjusted so that the split prism 36 can be seen correctly. When a measurement button (not shown) is pressed, the light source 30 emits light and the movable lens 33 moves back and forth to perform measurement. Since the observation optical system is provided independently of the measurement optical system, the focus is not defocused even during measurement, and the eye E to be inspected can be continuously observed.

【0024】図14は第5の実施例である。この実施例
では、上述の第3の実施例で分離していた観察光学系と
測定光学系の主光路が同軸にされている。光源40から
被検眼Eに至る光路O3上には、光分割部材41、光軸上
に遮光黒点42aを有する移動レンズ42、中央部に反
射面43aを有し面が光軸に垂直な面に対して僅かに傾
いた光分割プリズム43が順次に設けられ、光分割部材
41の後方には光源40と共役な位置に受光素子44が
設けられている。反射面43aの反射側の光路04上に
は、ミラー45、レンズ46、47が順次に配置されて
検眼eに至っている。
FIG. 14 shows a fifth embodiment. In this embodiment, the main optical paths of the observation optical system and the measurement optical system, which have been separated in the above-mentioned third embodiment, are coaxial. On the optical path O3 from the light source 40 to the eye E, a light splitting member 41, a moving lens 42 having a light-shielding black spot 42a on the optical axis, a reflecting surface 43a at the center, and a surface perpendicular to the optical axis. A light splitting prism 43 slightly inclined with respect to the light splitting prism 43 is sequentially provided, and a light receiving element 44 is provided behind the light splitting member 41 at a position conjugate with the light source 40. On the optical path 04 on the reflection side of the reflection surface 43a, the mirror 45 and the lenses 46 and 47 are sequentially arranged to reach the optometry e.

【0025】測定は上述の実施例と同様のプロセスを用
いて行われる。移動レンズ42による反射は遮光黒点4
2aにより除去され、光分割プリズム43に入射するこ
ともない。また、光分割プリズム43は部分ミラーで代
用することも可能である。
The measurement is carried out using a process similar to the embodiment described above. Reflection by the moving lens 42 is a black dot 4
It is removed by 2a and does not enter the light splitting prism 43. Further, the light splitting prism 43 may be replaced by a partial mirror.

【0026】図15は第6の実施例の構成図であり、光
源50から被検眼Eに至る光路上には、ハーフミラー又
は偏光素子等から成る光分割部材51、光軸方向に駆動
する移動レンズ52が配置され、光分割部材51の後方
には光分割部材51に関して光源50と共役な位置に、
CCD素子53を有するテレビカメラ54が配置されて
いる。テレビカメラ54の出力はテレビモニタ55と信
号処理器56に接続され、信号処理器56の出力は移動
レンズ52を移動させるための駆動手段に接続されてい
る。また、検眼eはアイアイピース57を介してテレビ
モニタ55を観察できるようになっている。
FIG. 15 is a block diagram of the sixth embodiment. In the optical path from the light source 50 to the eye E to be inspected, a light splitting member 51 including a half mirror or a polarizing element, and movement for driving in the optical axis direction. A lens 52 is arranged, behind the light splitting member 51, at a position conjugate with the light source 50 with respect to the light splitting member 51,
A television camera 54 having a CCD element 53 is arranged. The output of the television camera 54 is connected to the television monitor 55 and the signal processor 56, and the output of the signal processor 56 is connected to the driving means for moving the moving lens 52. Further, the optometry e can observe the television monitor 55 through the eyepiece 57.

【0027】光源50が発光すると、光分割部材51で
反射された光束は移動レンズ52を透過し被検眼Eに入
射する。被検眼Eからの反射光は移動レンズ52、光分
割部材51を透過してCCD素子53で受光される。手
動或いは自動焦点装置によって移動レンズ52を光軸方
向に移動させ、前眼部合焦時と眼底合焦時とにおける光
分割部材51の相対位置から、信号処理器56によって
被検眼Eの屈折値が求められる。また、被検眼Eまでの
距離を予め決めておけば、前眼部合焦時における光分割
部材51の位置を測定する必要はない。
When the light source 50 emits light, the light beam reflected by the light splitting member 51 passes through the moving lens 52 and enters the eye E to be examined. The reflected light from the eye E to be examined passes through the moving lens 52 and the light splitting member 51 and is received by the CCD element 53. The movable lens 52 is moved in the optical axis direction by a manual or automatic focusing device, and the refraction value of the eye E to be inspected by the signal processor 56 from the relative position of the light splitting member 51 when the anterior segment is focused and when the fundus is focused. Is required. Further, if the distance to the eye E is predetermined, it is not necessary to measure the position of the light splitting member 51 when focusing on the anterior segment.

【0028】図16は光源50の正面図であり、図17
はCCD素子53に投影された外眼像E’と光源像50
a、50b、50cの正面図である。合焦させるには、
移動レンズ52が移動し被検眼Eの眼底Erと光源50の
配置が共役になると、CCD素子53上に光源50の像
50aが結像する。このときのCCD素子53上の像の
大きさと位置とは、被検眼Eと装置までの距離や光束の
被検眼Eへの入射状態には無関係であり常に一定であ
る。像50aの両側の像50b、50cにおける信号の
大きさと像50aの信号の大きさの比を求め、信号比が
最大になったときに合焦状態であるということから、像
50a、50b、50cの部分の信号を処理すれば、焦
点を自動的に調整できることになる。
FIG. 16 is a front view of the light source 50, and FIG.
Is the external eye image E ′ and the light source image 50 projected on the CCD element 53.
It is a front view of a, 50b, 50c. To focus
When the moving lens 52 moves and the fundus Er of the eye E and the light source 50 are conjugated, an image 50a of the light source 50 is formed on the CCD element 53. The size and position of the image on the CCD element 53 at this time are always constant because they are irrelevant to the distance between the eye E and the apparatus and the state of incidence of the light beam on the eye E. The ratios of the signal magnitudes of the images 50b and 50c on both sides of the image 50a and the signal magnitude of the image 50a are calculated, and when the signal ratio is maximum, the image is in focus. The focus can be adjusted automatically by processing the signal in the area.

【0029】図18は第7の実施例の構成図である。こ
の実施例では、レンズ反射によるノイズを低減させるた
め、光分割部材を被検眼E側に配置されている。光源6
0から被検眼Eに至る光路上には、移動レンズ61、光
分割部材62が設けられ、光分割部材62の後方には移
動レンズ61と同じ機能を有する移動レンズ63、CC
D素子64を有するテレビカメラ65が設けられ、光源
60と移動レンズ61はそれぞれ光分割部材62に対し
て、移動レンズ63とCCD素子64に共役な配置にな
っている。
FIG. 18 is a block diagram of the seventh embodiment. In this embodiment, the light splitting member is arranged on the eye E side in order to reduce noise due to lens reflection. Light source 6
A moving lens 61 and a light dividing member 62 are provided on the optical path from 0 to the eye E, and a moving lens 63 and a CC having the same function as the moving lens 61 are provided behind the light dividing member 62.
A television camera 65 having a D element 64 is provided, and the light source 60 and the moving lens 61 are arranged so as to be conjugate with the light dividing member 62 with respect to the moving lens 63 and the CCD element 64.

【0030】眼屈折力測定時には、光源60から発光し
た光束は移動レンズ61を透過し光分割部材62によっ
て被検眼Eの方向に反射される。被検眼Eからの反射光
は光分割部材62を透過して移動レンズ63によってC
CD素子64上に結像する。移動レンズ61と移動レン
ズ63は連動して動作し、図示しない自動焦点検出機構
によって前眼部と眼底の合焦状態における移動レンズ6
1或いは移動レンズ63の位置が計測されて眼屈折力が
求められる。
At the time of measuring the eye refractive power, the luminous flux emitted from the light source 60 passes through the moving lens 61 and is reflected by the light dividing member 62 toward the eye E to be inspected. The reflected light from the eye E to be examined passes through the light splitting member 62 and is moved to the C by the moving lens 63.
An image is formed on the CD element 64. The moving lens 61 and the moving lens 63 operate in conjunction with each other, and the moving lens 6 in the in-focus state of the anterior segment and the fundus is controlled by an automatic focus detection mechanism (not shown).
1 or the position of the moving lens 63 is measured to obtain the eye refractive power.

【0031】また、移動レンズ61が光分割部材62よ
りも光源60側にあるため、移動レンズ61による強い
反射光が直接CCD素子64に入射することはなくノイ
ズが減少する。更に、眼底部の合焦後に、移動レンズ6
1と移動レンズ63を迅速に前眼部合焦位置に戻すと、
測定中に被検眼Eが動いたか否かの確認ができて都合が
よい。
Further, since the moving lens 61 is located closer to the light source 60 than the light splitting member 62, strong reflected light from the moving lens 61 does not directly enter the CCD element 64, and noise is reduced. Furthermore, after focusing on the fundus, the moving lens 6
1 and the moving lens 63 are quickly returned to the anterior segment focusing position,
It is convenient to be able to confirm whether or not the eye E has moved during the measurement.

【0032】なお、測定に用いられる光束は可視光でも
赤外光でもよく、同様に眼屈折力を測定することができ
る。
The luminous flux used for the measurement may be visible light or infrared light, and the eye refractive power can be measured in the same manner.

【0033】[0033]

【発明の効果】以上説明したように本発明に係る眼屈折
計は、瞳孔径よりも十分に太い光束を被検眼に導き、そ
の反射光を利用して眼屈折力を測定するため、位置合わ
せに厳密性を必要としない。
As described above, the eye refractometer according to the present invention guides a light beam having a diameter sufficiently larger than the pupil diameter to the eye to be inspected and measures the eye refracting power by utilizing the reflected light. Does not require rigor.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例の構成図である。FIG. 1 is a configuration diagram of a first embodiment.

【図2】光源の正面図である。FIG. 2 is a front view of a light source.

【図3】受光素子の正面図である。FIG. 3 is a front view of a light receiving element.

【図4】移動レンズの位置と受光素子の受光量との関係
図である。
FIG. 4 is a diagram showing the relationship between the position of a moving lens and the amount of light received by a light receiving element.

【図5】光源の平面図である。FIG. 5 is a plan view of a light source.

【図6】受光素子の正面図である。FIG. 6 is a front view of a light receiving element.

【図7】第1の実施例を応用したホロプタの正面図であ
る。
FIG. 7 is a front view of a horopter to which the first embodiment is applied.

【図8】第2の実施例の構成図である。FIG. 8 is a configuration diagram of a second embodiment.

【図9】光源の正面図である。FIG. 9 is a front view of a light source.

【図10】受光素子の正面図である。FIG. 10 is a front view of a light receiving element.

【図11】第3の実施例の構成図である。FIG. 11 is a configuration diagram of a third embodiment.

【図12】テレビモニタの正面図である。FIG. 12 is a front view of a television monitor.

【図13】第4の実施例の構成図である。FIG. 13 is a configuration diagram of a fourth embodiment.

【図14】第5の実施例の構成図である。FIG. 14 is a configuration diagram of a fifth embodiment.

【図15】第6の実施例の構成図である。FIG. 15 is a configuration diagram of a sixth embodiment.

【図16】光源の正面図である。FIG. 16 is a front view of a light source.

【図17】CCD素子上の画像の説明図である。FIG. 17 is an explanatory diagram of an image on a CCD element.

【図18】第7の実施例の構成図である。FIG. 18 is a configuration diagram of a seventh embodiment.

【符号の説明】[Explanation of symbols]

1 ダイクロイックミラー 2、14、23、33、42、52、61、63 移動
レンズ 3、13、41、51、62 光分割部材 4、4’、18、34、44 受光素子 5、5’、11、22、30、40、50、60 光源 20 偏光光分割部材 24、54、65 テレビカメラ 26、55 テレビモニタ
1 dichroic mirror 2, 14, 23, 33, 42, 52, 61, 63 moving lens 3, 13, 41, 51, 62 light splitting member 4, 4 ', 18, 34, 44 light receiving element 5, 5', 11 , 22, 30, 40, 50, 60 Light source 20 Polarized light splitting member 24, 54, 65 Television camera 26, 55 Television monitor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光源から出て光分割部材と移動レンズを
介して瞳孔径よりも大きい光束によって被検眼を照明す
る照明光学系と、前記光分割部材に関して前記光源と共
役な位置に配置した光検出器を備えた受光系とを有し、
前記移動レンズと前記光検出器からの情報とを基に被検
眼の眼屈折力を求めることを特徴とする眼屈折計。
1. An illumination optical system for illuminating an eye to be inspected by a light flux emitted from a light source and passing through a light splitting member and a moving lens, and a light arranged at a position conjugate with the light source with respect to the light splitting member. And a light receiving system equipped with a detector,
An eye refractometer, wherein the eye refractive power of the eye to be inspected is obtained based on the information from the moving lens and the photodetector.
【請求項2】 前記光分割部材を介して被検眼を観察す
る観察光学系を備えた請求項1に記載の眼屈折計。
2. The eye refractometer according to claim 1, further comprising an observation optical system for observing an eye to be inspected through the light splitting member.
【請求項3】 前記移動レンズの反射光の前記受光系へ
の入射を妨げる遮光部材を備えた請求項1に記載の眼屈
折計。
3. The eye refractometer according to claim 1, further comprising a light blocking member that prevents the reflected light of the moving lens from entering the light receiving system.
【請求項4】 前記光検出器はビデオカメラとした請求
項1に記載の眼屈折計。
4. The eye refractometer according to claim 1, wherein the photodetector is a video camera.
【請求項5】前記ビデオカメラ又は前記光電素子の受像
面上の前記光源像と該像の周辺部との信号を、前記ビデ
オカメラの合焦手段に用いるようにした請求項4に記載
の眼屈折計。
5. The eye according to claim 4, wherein signals of the light source image on the image receiving surface of the video camera or the photoelectric element and a peripheral portion of the image are used for focusing means of the video camera. Refractometer.
JP3297902A 1991-10-18 1991-10-18 Opthalmorefractometer Pending JPH05111461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3297902A JPH05111461A (en) 1991-10-18 1991-10-18 Opthalmorefractometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3297902A JPH05111461A (en) 1991-10-18 1991-10-18 Opthalmorefractometer

Publications (1)

Publication Number Publication Date
JPH05111461A true JPH05111461A (en) 1993-05-07

Family

ID=17852584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3297902A Pending JPH05111461A (en) 1991-10-18 1991-10-18 Opthalmorefractometer

Country Status (1)

Country Link
JP (1) JPH05111461A (en)

Similar Documents

Publication Publication Date Title
EP1217939B1 (en) Method and apparatus for measuring refractive errors of an eye
JP4684700B2 (en) Ophthalmic optical characteristic measuring device
US7887185B2 (en) Method and arrangement for the measurement of the anterior segment of the eye
JPS6153052B2 (en)
JPH06142044A (en) Ophthalmic measuring apparatus
JPS6324927A (en) Ophthalmic measuring apparatus
JPH08564A (en) Ophthalmologic device
JP2012010790A (en) Ophthalmologic device
US4807989A (en) Surgical microscope system
JPH067298A (en) Ocular refractometer
JPH0646995A (en) Eye refractometer
JPH05220113A (en) Eye refracting power measuring instrument
EP0663179A1 (en) Spatial refractometer
JP2812421B2 (en) Corneal cell imaging device
JP2000023920A (en) Ophthalmic device
JPH05111461A (en) Opthalmorefractometer
JPH0430854B2 (en)
JPH0984760A (en) Positioning detection device for ophthalmic equipment
JP3187083B2 (en) Optometry device
JPH05317255A (en) Measuring instrument for eye to be examined
JPH0654807A (en) Ophthalmic device
JPH09103408A (en) Ophthalmometer
JPH02302243A (en) Measuring instrument for refractive index of eyes
JPH0775623A (en) Ophthalmorefractometer
JP2693772B2 (en) Ophthalmic equipment