JPH05107203A - X-ray apparatus for evaluating surface condition of sample - Google Patents

X-ray apparatus for evaluating surface condition of sample

Info

Publication number
JPH05107203A
JPH05107203A JP26611591A JP26611591A JPH05107203A JP H05107203 A JPH05107203 A JP H05107203A JP 26611591 A JP26611591 A JP 26611591A JP 26611591 A JP26611591 A JP 26611591A JP H05107203 A JPH05107203 A JP H05107203A
Authority
JP
Japan
Prior art keywords
sample
axis
ray
dimensional
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26611591A
Other languages
Japanese (ja)
Inventor
Ukyo Kaminaga
神長宇享
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON X RAY KK
NIPPON X-RAY KK
Jeol Ltd
Original Assignee
NIPPON X RAY KK
NIPPON X-RAY KK
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON X RAY KK, NIPPON X-RAY KK, Jeol Ltd filed Critical NIPPON X RAY KK
Priority to JP26611591A priority Critical patent/JPH05107203A/en
Publication of JPH05107203A publication Critical patent/JPH05107203A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To evaluate surface the conditions of a sample such as crystal orientation in a short time by making linear parallel X-ray beams fall on the sample and by detecting onedimensionally only a parallel component in diffracted beams. CONSTITUTION:An incident angle OMEGA around an axis OMEGA perpendicularly intersecting a detecting surface B of a sample S, a tilt chi around the axis and an angle 2theta of diffraction being set, thin and linear parallel X-ray beams I located on the detecting surface B formed by incident X rays I and diffracted X rays R are applied onto the sample S and only a parallel component R of the diffracted rays is measured by a one-dimensional X-ray detector D. While the sample S is moved minutely in the direction of the axis (y), two-dimensional information on the surface of the sample S can be measured only by one- dimensional scanning and a measuring time can be shortened sharply.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単結晶集合体等の結晶
試料表面の各領域の結晶方位等の状態を評価する装置に
関し、特に線状X線を用いて試料表面状態を評価する装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for evaluating the state of the crystal orientation of each region on the surface of a crystal sample such as a single crystal aggregate, and particularly to an apparatus for evaluating the state of the sample surface using linear X-rays. Regarding

【0002】[0002]

【従来の技術】高温超伝導体等の単結晶試料や異種材料
を表面にコーティングする研究開発が盛んに行われてい
る。作成した試料表面の評価にX線回折技術が利用され
ており、試料が結晶性のものである場合は、評価する項
目として次のようなものがある。
2. Description of the Related Art Research and development for coating a surface of a single crystal sample such as a high temperature superconductor or a different material has been actively conducted. The X-ray diffraction technique is used to evaluate the surface of the prepared sample, and when the sample is crystalline, the items to be evaluated are as follows.

【0003】単一単結晶か、単結晶の集合体か、多結
晶体か、又は、それらの混合体であるのかを、試料の各
場所で結晶がどのように分布しているかを調べる。
It is investigated how the crystals are distributed in each place of the sample whether it is a single single crystal, an aggregate of single crystals, a polycrystal, or a mixture thereof.

【0004】単一単結晶の試料の場合は、その格子歪
がどのように分布しているのか調べる。
In the case of a single single crystal sample, it is investigated how the lattice strain is distributed.

【0005】単結晶の集合体の場合は、各単結晶の形
状及びその方位とその分布がどうなっているかを調べ
る。
In the case of a single crystal aggregate, the shape, orientation, and distribution of each single crystal are examined.

【0006】このような評価を調べる従来技術として
は、試料全面にコリメートした太い平行X線ビームを照
射して回折X線の分布を見るX線トポグラフ法があり、
上記、の場合に適用されるが、試料表面と回折面が
ずれていない状態でのごく微小方位変化又は微小歪しか
測定できないという限界がある。
As a conventional technique for investigating such evaluation, there is an X-ray topography method for observing a distribution of diffracted X-rays by irradiating a collimated thick parallel X-ray beam on the entire surface of a sample,
Although it is applied to the case of the above, there is a limit that it is possible to measure only a very small azimuth change or a minute strain in a state where the sample surface and the diffraction surface are not displaced.

【0007】また、試料に分布する各単結晶の大きな方
位変化や歪を調べるための方法としては、微小サイズに
コリメートした点状のX線ビームを試料表面の各位置に
2次元的にくまなく照射し、各点で回折が起こるように
試料の方位を変える方法が知られているが、これは、試
料上を微小ステップで2次元的に走査する必要があるた
め、非常に長い測定時間となり、実用的でない。
Further, as a method for investigating a large orientation change and strain of each single crystal distributed on the sample, a point-like X-ray beam collimated to a minute size is two-dimensionally distributed at each position on the sample surface. It is known to irradiate and change the orientation of the sample so that diffraction occurs at each point, but this requires a very long measurement time because it requires two-dimensional scanning over the sample in minute steps. Not practical.

【0008】[0008]

【発明が解決しようとする課題】本発明はこのような状
況に鑑みてなされたものであり、その目的は、入射X線
と回折X線の作る面上に存在する細い線状の平行X線ビ
ームを試料に入射させ、X線が照射された試料表面の線
状の部分からの回折ビームの中の平行成分のみを1次元
X線検出器で検出する方式を用いて、結晶方位等の試料
表面状態を比較的短時間に評価できる装置を提供するこ
とである。
SUMMARY OF THE INVENTION The present invention has been made in view of such a situation, and an object thereof is a thin linear parallel X-ray existing on a plane formed by incident X-rays and diffracted X-rays. The beam is incident on the sample, and the one-dimensional X-ray detector is used to detect only the parallel component in the diffracted beam from the linear portion of the sample surface that is irradiated with X-rays. An object of the present invention is to provide a device capable of evaluating the surface condition in a relatively short time.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する本発
明のX線試料表面状態評価装置は、試料表面を含む平面
を試料面とし、試料面内で直交するx軸及びy軸を定義
し、x軸を含み試料面に交差し線状平行入射X線ビーム
及び線状平行回折X線ビームを含む平面を検出面とし
て、試料をy方向に移動可能でy軸がその表面のほぼ中
心を通るように取り付ける試料取り付け手段を備え、検
出面内において試料表面のx軸に沿う線状領域に平行X
線入射ビームを照射するX線照射手段を備え、試料表面
の線状X線照射領域から回折された回折X線の中、検出
面内で所定の回折角2θで回折された平行Xビームのみ
を取り出してその1次元強度分布を検出する手段であっ
て、原点を通り検出面に直交するω軸の周りで入射ビー
ムに対する検出回折角2θが調節可能な1次元X線検出
手段を備え、入射ビームに対するx軸の相対角度ωを調
節するように、ω軸の周りで前記試料取り付け手段、X
線照射手段及び1次元X線検出手段の一方又は双方の回
転角を調節する第1角度調節手段を備え、さらに、試料
面とω軸のなす角度χを調節するように、x軸の周りで
前記試料取り付け手段、X線照射手段及び1次元X線検
出手段の一方又は双方の回転角を調節する第2角度調節
手段を備えてなることを特徴とするものである。
An X-ray sample surface state evaluation apparatus of the present invention which achieves the above object defines a plane including a sample surface as a sample surface, and defines an x axis and ay axis orthogonal to each other in the sample surface. , A plane that includes the x-axis and intersects the sample surface and that includes the linearly parallel incident X-ray beam and the linearly parallel diffracted X-ray beam is used as a detection surface, the sample can be moved in the y direction, and the y-axis is approximately the center of the surface. A sample mounting means mounted so as to pass therethrough is provided, and is parallel to a linear region along the x-axis of the sample surface in the detection plane X
An X-ray irradiating means for irradiating a linear incident beam is provided, and among the diffracted X-rays diffracted from the linear X-ray irradiation region on the sample surface, only the parallel X-beam diffracted at a predetermined diffraction angle 2θ in the detection plane is displayed. A means for taking out and detecting the one-dimensional intensity distribution thereof, which comprises a one-dimensional X-ray detecting means capable of adjusting the detection diffraction angle 2θ with respect to the incident beam around the ω axis passing through the origin and orthogonal to the detection surface, To adjust the relative angle ω of the x-axis to X, around the ω-axis.
A first angle adjusting means for adjusting the rotation angle of one or both of the beam irradiating means and the one-dimensional X-ray detecting means is provided, and further, the angle χ between the sample surface and the ω axis is adjusted so as to be adjusted around the x axis. A second angle adjusting means for adjusting a rotation angle of one or both of the sample attaching means, the X-ray irradiating means and the one-dimensional X-ray detecting means is provided.

【0010】[0010]

【作用】本発明によると、試料表面の全位置の2次元的
情報を収集するのに、試料表面の2次元的走査を行う必
要がなく、単に線状X線照射領域に直交する方向に試料
を1次元走査するだけでよく、また、回折が起こるよう
に試料の方向を2軸の周りで相対的に変えるが、試料の
X線照射領域が変わらずX線照射系及び検出系がずれる
ことがない。さらに、試料表面の線状の情報が同時に収
集できるので、測定時間が大幅に短縮できる。
According to the present invention, it is not necessary to perform two-dimensional scanning of the sample surface in order to collect the two-dimensional information of all positions on the sample surface, and the sample is simply moved in the direction orthogonal to the linear X-ray irradiation region. It only requires one-dimensional scanning, and the direction of the sample is relatively changed around two axes so that diffraction occurs, but the X-ray irradiation area of the sample does not change and the X-ray irradiation system and the detection system shift. There is no. Furthermore, since the linear information on the sample surface can be collected at the same time, the measurement time can be greatly reduced.

【0011】[0011]

【実施例】次に、図面を参照にして本発明のX線試料表
面状態評価装置の実施例について説明する。実施例の説
明の前に、図1を参照にして本発明の装置の原理を説明
する。同図(a)はこの装置の検出面内での様子を示す
図、同図(b)は(a)図を矢印L方向から見た図、同
図(c)は試料部の平面図であり、同図(c)の点線は
y方向に試料を微小距離Δyだけ移動した状態を示す。
EXAMPLES Examples of the X-ray sample surface condition evaluation apparatus of the present invention will be described below with reference to the drawings. Before explaining the embodiments, the principle of the device of the present invention will be described with reference to FIG. The figure (a) is a diagram showing a state in the detection surface of this device, the figure (b) is a diagram of the figure (a) seen from the arrow L direction, and the figure (c) is a plan view of the sample part. Yes, the dotted line in FIG. 7C shows a state in which the sample is moved by a minute distance Δy in the y direction.

【0012】試料Sの表面を含む平面を試料面Aとし、
その平面A内に図示のように直交するx軸及びy軸を定
義し、その交点を原点Oとする。x軸を含み試料面Aに
交差し、後記する線状平行入射X線ビームI、線状平行
回折X線ビームRを含む平面Bを検出面と定義する。検
出面Bに原点Oで直交する軸をω軸とする。
A plane including the surface of the sample S is referred to as a sample surface A,
An x-axis and a y-axis that are orthogonal to each other are defined in the plane A as shown in the drawing, and the intersection is defined as an origin O. A plane B that includes the x-axis and intersects the sample surface A and that includes a linear parallel incident X-ray beam I and a linear parallel diffracted X-ray beam R described later is defined as a detection surface. The axis orthogonal to the detection surface B at the origin O is defined as the ω axis.

【0013】本発明においては、検出面B内において、
平行にコリメートされた線状平行X線ビームIを試料S
表面のx軸上に照射する。試料S表面のx軸上の線状X
線照射領域から回折された回折X線の中、検出面B内の
線状平行回折X線ビームRのみを取り出し、ある回折線
の回折負2θに固定された1次元X線検出器Dによって
その1次元強度分布を検出する。この1次元強度分布
は、平行ビーム光学系を使っているので、試料S表面の
x軸上の各位置からの強度を検出器Dの検出位置と1対
1に対応して検出することができる。すなわち、原点O
上からの回折線の検出器での検出位置をOD とし、検出
器Dの検出位置を図示のようにxD とすると、検出位置
D と試料位置xS とは、 xD =xS sin(2θ−ω) の関係となる。検出された1次元強度分布を様式的に示
したのが図2である。
In the present invention, in the detection plane B,
The parallel collimated linear X-ray beam I is applied to the sample S.
Irradiate on the x-axis of the surface. Linear X on the x-axis of the sample S surface
Of the diffracted X-rays diffracted from the X-ray irradiation region, only the linear parallel diffracted X-ray beam R on the detection surface B is taken out and the one-dimensional X-ray detector D fixed to the diffraction negative 2θ of a certain diffracted line Detect the one-dimensional intensity distribution. Since this one-dimensional intensity distribution uses a parallel beam optical system, the intensity from each position on the surface of the sample S on the x-axis can be detected in a one-to-one correspondence with the detection position of the detector D. .. That is, the origin O
When the detection position of the diffraction line from above at the detector is O D and the detection position of the detector D is x D as shown in the drawing, the detection position x D and the sample position x S are as follows: x D = x S The relationship is sin (2θ−ω). FIG. 2 shows the detected one-dimensional intensity distribution in a stylized manner.

【0014】X線回折においてよく知られているよう
に、単結晶からの回折線は、多結晶からの回折線に比べ
ると、半値幅の狭い強い回折線となる。また、単結晶の
場合、回折条件を満足する方位にあったときのみ回折が
起こるが、多結晶体の場合は、ランダムな方位を持った
微結晶の集合体であるので、試料の方位に関係なくブラ
ッグの回折条件2dsinθ=λで示される回折角2θ
方向に回折する。
As is well known in X-ray diffraction, a diffraction line from a single crystal is a strong diffraction line with a narrow half width as compared with a diffraction line from a polycrystal. In the case of a single crystal, diffraction occurs only when it is in the orientation that satisfies the diffraction condition, but in the case of a polycrystal, it is an aggregate of microcrystals with random orientation, so it is related to the orientation of the sample. Bragg diffraction condition 2d sin θ = λ
Diffract in the direction.

【0015】したがって、回折線ピーク強度をもとにし
て単結晶からの回折線であるか多結晶からの回折である
かがわかる。図2において、回折線が検出さている検出
位置がxD3〜xD4から、試料上での位置xS3〜xS4の部
分は1つの単結晶であり、弱い回折線が検出されている
検出位置xD1〜xD2から、試料上での位置xS1〜xS2
部分は多結晶体であることが判定できる。それ以外の強
度の弱い部分は、単結晶であるが方位が合っていないた
めに、回折が起こっていない部分である。この部分につ
いては、後記するように、ω、χ回転により試料Sの方
位を変えて同様の測定をすることにより、単結晶の形状
と方位が調べられる。
Therefore, it can be seen from the diffraction line peak intensity whether the diffraction line is from a single crystal or polycrystal. In FIG. 2, the detection position where the diffraction line is detected is from x D3 to x D4 , and the position x S3 to x S4 on the sample is one single crystal, and the detection position where the weak diffraction line is detected. From x D1 to x D2 , it can be determined that the portions at positions x S1 to x S2 on the sample are polycrystalline. The other portions with weak intensity are single crystals, but the orientations do not match, and therefore, the portions where diffraction does not occur. As to this portion, the shape and orientation of the single crystal can be examined by changing the orientation of the sample S by ω and χ rotation and performing the same measurement as described later.

【0016】図1において、試料Sをy方向に順に微小
距離Δyだけ移動させて、同様な回折X線1次元強度分
布の検出を繰り返すことにより、試料S全面での図3の
ような2次元的な分布状態図が求められる。図3におい
て、領域Iは回折条件を満足する方位にあった単一単結
晶、領域IIは多結晶体、領域III は回折条件を満足して
いない方位を向いた単結晶と考えられるが、単結晶とは
限らない。この試料S移動はy軸上で行われるが、試料
Sの線状X線照射領域(図1(c))は常に検出面B内
のx軸上になるので、試料Sを移動にしても、X線光学
系は変化しない。
In FIG. 1, the sample S is sequentially moved in the y direction by a minute distance Δy, and the detection of the same one-dimensional intensity distribution of the diffracted X-rays is repeated to obtain a two-dimensional image as shown in FIG. 3 on the entire surface of the sample S. A general distribution diagram is required. In FIG. 3, region I is considered to be a single crystal oriented in a direction satisfying the diffraction condition, region II is a polycrystalline substance, and region III is considered to be a single crystal oriented in a direction not satisfying the diffraction condition. It is not always a crystal. This movement of the sample S is performed on the y-axis, but the linear X-ray irradiation region of the sample S (FIG. 1C) is always on the x-axis in the detection surface B, so that even if the sample S is moved. , The X-ray optical system does not change.

【0017】図2、図3で示した回折条件を満足してい
ない方位を向いた部分については、ω軸の周りのω回転
及びx軸まわりのχ回転により試料Sを回転し、方位を
変えた状態で、上述したのと同様の測定をすることによ
り、図4のような2次元的な分布状態図が得られる。領
域IIは多結晶体であるので、今回も回折される領域であ
り、領域IVはこの方位において回折条件を満足する単一
単結晶である。また、点線で示した領域Iは今回は見え
ない。領域 III′は領域III と同様、回折条件を満足し
ていない方位を向いた単結晶と考えられるが、単結晶と
は限らない。この場合も、y軸方向の試料Sの移動によ
ってX線光学系が変化することはない。
As for the portion facing the azimuth which does not satisfy the diffraction conditions shown in FIGS. 2 and 3, the sample S is rotated by ω rotation around the ω axis and χ rotation around the x axis to change the orientation. By performing the same measurement as described above in the above state, a two-dimensional distribution state diagram as shown in FIG. 4 is obtained. Since the region II is a polycrystalline body, it is also a region that is diffracted this time, and the region IV is a single single crystal that satisfies the diffraction condition in this orientation. Further, the region I shown by the dotted line is not visible this time. Like the region III, the region III 'is considered to be a single crystal oriented in an orientation that does not satisfy the diffraction condition, but it is not limited to the single crystal. Also in this case, the movement of the sample S in the y-axis direction does not change the X-ray optical system.

【0018】いくつかのω、χでの測定を行い、求めた
2次元分布状態図を合成すると、図5のような2次元分
布状態図が得られ、試料S表面での各単一結晶の形状及
びその方位が求まる。また、多結晶体部の形状も求ま
る。こうして、試料S表面の各場所での結晶状態分布、
各単一単結晶の形状及びその方位とその分布がどうなっ
ているかを調べることができる。
When several measurements at ω and χ are performed and the obtained two-dimensional distribution state diagrams are synthesized, a two-dimensional distribution state diagram as shown in FIG. 5 is obtained, and each single crystal on the surface of the sample S is obtained. The shape and its orientation can be obtained. Further, the shape of the polycrystalline portion can be obtained. Thus, the crystalline state distribution at each location on the surface of the sample S,
The shape and orientation of each single single crystal and its distribution can be investigated.

【0019】さらに、1次元X線検出器Dの固定2θ角
を別の回折角に変えて、同様の測定を行えば、各単一単
結晶について異なる回折面の方位がわかり、これから各
単一単結晶の3次元的な方位も求められる。
Further, if the fixed 2θ angle of the one-dimensional X-ray detector D is changed to another diffraction angle and the same measurement is performed, the orientation of different diffraction planes can be found for each single single crystal. The three-dimensional orientation of the single crystal is also required.

【0020】また、単一単結晶試料の場合の格子歪分布
測定(格子定数分布測定)について、次のような利点が
ある。単結晶試料表面と回折面がずれているときが一般
的であるが、このとき、ω、χの回転により回折条件を
満足する方位に試料Sを傾ける。従来のX線トポグラフ
装置では、上記のずれが大きいと、回折像が歪まない微
小領域のみが測定領域となるため、試料Sの各微小領域
の測定を試料Sの各位置について2次元的に行わなけれ
ばならなかった。本発明においては、上記ずれが大きい
場合でも、線状領域を同時に測定でき、試料Sのy軸方
向の1次元走査で全域のデータがとれる。試料結晶の方
位をω、χを使って大きく変えた状態でも、試料Sのy
軸方向走査によってX線光学系が変わることがないの
で、2次元回折像の歪みがないことが上記測定を可能に
している。
Further, there are the following advantages in the lattice strain distribution measurement (lattice constant distribution measurement) in the case of a single single crystal sample. Generally, the surface of the single crystal sample and the diffraction surface are deviated from each other, but at this time, the sample S is tilted in the azimuth that satisfies the diffraction condition by the rotation of ω and χ. In the conventional X-ray topography apparatus, if the above-mentioned deviation is large, only the microscopic region where the diffraction image is not distorted becomes the measurement region. Therefore, the measurement of each microscopic region of the sample S is performed two-dimensionally at each position of the sample S. I had to. In the present invention, the linear region can be measured at the same time even when the deviation is large, and the data of the entire region can be obtained by one-dimensional scanning of the sample S in the y-axis direction. Even if the orientation of the sample crystal is largely changed using ω and χ, y of the sample S is changed.
Since the X-ray optical system does not change due to the axial scanning, there is no distortion of the two-dimensional diffraction image, which enables the above measurement.

【0021】ところで、検出面B内において平行にコリ
メートされた線状の平行X線ビームIを生成するには、
例えば、図1に示すように、検出面B内に入射方向に交
差するように線状X線源1を配置し、その前に入射方向
に向くX線のみを取り出すソーラースリットのようなコ
リメータ2を配置し、さらに、その前に検出面Bを含み
それに沿った直線スリットを有する入射側スリット3を
配置すればよい。また、試料S表面の線状X線照射領域
から回折された回折X線の中、検出面B内で所定方向に
回折された平行ビームRのみを取り出すには、線状X線
照射領域から所定回折方向に向かう回折線を通す長さで
検出面Bを含みそれに沿った直線スリットを有する受光
側スリット4を配置し、その後ろに回折角2θ方向のX
線のみを取り出すソーラースリットのようなコリメータ
5を配置すればよい。1次元X線検出器Dとしては特に
限定されず、PSPC(Position Sensitive Proportio
nal Counter )、CCD等の公知の何れの検出器でも用
いることができる。
By the way, in order to generate a parallel collimated linear X-ray beam I in the detection plane B,
For example, as shown in FIG. 1, a linear X-ray source 1 is arranged in the detection surface B so as to intersect with the incident direction, and a collimator 2 such as a solar slit that extracts only the X-rays directed in the incident direction in front of the linear X-ray source 1. May be arranged, and further, the incident side slit 3 including the detection surface B and having a linear slit along the detection surface B may be arranged in front thereof. Further, in order to extract only the parallel beam R diffracted in the predetermined direction within the detection plane B among the diffracted X-rays diffracted from the linear X-ray irradiation region on the surface of the sample S, a predetermined X-ray irradiation region is used. A light-receiving side slit 4 having a linear slit extending along the detection surface B and having a length for passing a diffraction line directed in the diffraction direction is arranged behind the X-axis in the diffraction angle 2θ direction.
It suffices to arrange a collimator 5 such as a solar slit that takes out only the line. The one-dimensional X-ray detector D is not particularly limited, and PSPC (Position Sensitive Proportio)
Any known detector such as a nal counter) or CCD can be used.

【0022】次に、本発明の具体的な実施例について説
明する。図6は第1の実施例の要部の斜視図、図7は試
料Sをx軸を中心にあるχ角度回転した状態の試料台部
分の斜視図であり、図1の同様の構成部材は同一の符号
を付してある。この実施例は、試料Sを2軸ゴニオメー
タ10の試料台11上に載置し、ω軸の周りで試料Sを
傾けて、x軸と入射ビームIのなす入射角ωを調節し、
また、試料面を通るx軸の周りで試料Sを傾けて、試料
面に対する検出面(図1)のなす角度χを調節するよう
にしたものである。このために、ω軸の周りで回転する
試料台11上にはx軸を中心とする円筒面が設けられ、
その上に同じ半径の円筒下面を有する中間ステージ16
が配置され、試料台11に対する中間ステージ16のx
軸周りの回転角がアオリノブ17によって調節されるよ
うになっている。中間ステージ16上にはXステージ1
4がx方向に調節自在に載っており、Xノブ15により
位置調節される。さらに、Xステージ14上にはYステ
ージ12がy方向に調節自在に載っており、モータ13
の回転により各検出毎の位置移動が行われる。また、x
軸とω軸の交点が試料S表面に位置するように試料台1
1のz方向高さを調節するZノブ21も設けられてい
る。また、受光側スリット4、ソーラースリット5、1
次元X線検出器Dからなる回折ビームR検出系は、図示
しない調節固定機構によりω軸の周りで角度調節可能に
なっており、回折角2θの大きさにより調節される。ま
た、線状X線源1、ソーラースリット2、入射側スリッ
ト3からなる入射ビームI照射系は装置に固定される
が、必要に応じてω軸の周りで角度調節できるようにな
っている。なお、図中、符号20は線状X線源1のX線
管シールド、22は1次元X線検出器Dの受光領域を制
限する制限スリット、23は基準面治具を示す。
Next, specific examples of the present invention will be described. FIG. 6 is a perspective view of a main part of the first embodiment, and FIG. 7 is a perspective view of a sample table portion in a state where the sample S is rotated by a χ angle about the x axis. The same reference numerals are attached. In this embodiment, the sample S is placed on the sample table 11 of the biaxial goniometer 10, the sample S is tilted around the ω axis, and the incident angle ω formed by the x axis and the incident beam I is adjusted.
Further, the sample S is tilted around the x-axis passing through the sample surface to adjust the angle χ formed by the detection surface (FIG. 1) with respect to the sample surface. For this purpose, a cylindrical surface centering on the x-axis is provided on the sample table 11 rotating about the ω-axis,
Intermediate stage 16 having a cylindrical lower surface with the same radius thereon
Of the intermediate stage 16 with respect to the sample stage 11
The rotation angle around the axis is adjusted by the tilt knob 17. X stage 1 on the intermediate stage 16
4 is adjustably mounted in the x direction, and its position is adjusted by the X knob 15. Further, the Y stage 12 is mounted on the X stage 14 so as to be adjustable in the y direction.
The position of each detection is moved by the rotation of. Also, x
The sample table 1 so that the intersection of the axis and the ω-axis is located on the surface of the sample S.
A Z knob 21 for adjusting the z-direction height of 1 is also provided. In addition, the light-receiving side slit 4, the solar slit 5, 1
The diffracted beam R detection system including the dimensional X-ray detector D is adjustable in angle around the ω axis by an adjusting and fixing mechanism (not shown), and is adjusted by the size of the diffraction angle 2θ. The incident beam I irradiation system including the linear X-ray source 1, the solar slit 2 and the incident side slit 3 is fixed to the apparatus, but the angle can be adjusted around the ω axis as necessary. In the figure, reference numeral 20 is an X-ray tube shield of the linear X-ray source 1, 22 is a limiting slit for limiting the light receiving area of the one-dimensional X-ray detector D, and 23 is a reference plane jig.

【0023】以上のような構成であるので、試料Sをy
方向スタート位置に設定し、所定のω、2θ、χについ
て、そのy位置でのx方向線状X線照射領域からの回折
X線の1次元強度分布を1次元X線検出器Dによって検
出し、試料Sをy方向に微小距離移動して同様に検出を
繰り返すことにより、そのω、2θ、χの値に応じて定
まる試料S表面の結晶方位等の2次元分布情報が求めら
れる。別のω、2θ、χの値の組についても同様に2次
元分布情報が求められる。
With the above structure, the sample S is y
The position is set to the direction start position, and the one-dimensional intensity distribution of the diffracted X-rays from the x-direction linear X-ray irradiation region at the y position is detected by the one-dimensional X-ray detector D for the predetermined ω, 2θ, and χ. , The sample S is moved a small distance in the y direction and the detection is repeated in the same manner, whereby the two-dimensional distribution information such as the crystal orientation of the surface of the sample S determined by the values of ω, 2θ, and χ is obtained. Two-dimensional distribution information is similarly obtained for another set of values of ω, 2θ, and χ.

【0024】ところで、図6、図7のように、試料Sを
ゴニオメータに取り付けて軸の周りで回転するようにす
ると、試料Sを加熱、冷却、引っ張り、圧縮、曲げ、真
空、ガス雰囲気、磁場、電場等を与えながら表面状態2
次元分布を検出するのは容易ではない。そこで、図8に
模式図を示すように、試料Sをx、y、z方向に調節可
能な固定試料台30上に載置し、これに対して、線状X
線源1、ソーラースリット2、入射側スリット3からな
るX線照射装置31及び受光側スリット4、ソーラース
リット5、1次元X線検出器Dからなる1次元X線検出
装置32を、x軸を中心にして回転可能で原点Oを中心
とする円形アーム33に入射角ω及び回折角2θが調節
可能になるように取り付けるように変形することができ
る。こうすると、試料Sのy方向の移動のみが試料台3
0の方で行われ、試料S表面は常に水平に保たれ、その
傾きはなくなっているので、試料Sに加熱、冷却、引っ
張り、圧縮、曲げ、真空、ガス雰囲気、磁場、電場等を
与える手段を容易に併設でき、表面状態を検出しながら
これらの雰囲気を変えることができる。なお、図8にお
いて、円形アーム33には回転軸34が固定されてお
り、回転軸34は固定台35中でx軸を中心に回転する
ようになっている。
By the way, as shown in FIGS. 6 and 7, when the sample S is attached to a goniometer and rotated about an axis, the sample S is heated, cooled, pulled, compressed, bent, vacuum, gas atmosphere, magnetic field. , Surface condition 2 while applying an electric field, etc.
It is not easy to detect the dimensional distribution. Therefore, as shown in the schematic view of FIG. 8, the sample S is placed on the fixed sample table 30 which can be adjusted in the x, y, and z directions, and the linear X
An X-ray irradiation device 31 including a radiation source 1, a solar slit 2, and an incident side slit 3 and a light receiving side slit 4, a solar slit 5, and a one-dimensional X-ray detection device 32 including a one-dimensional X-ray detector D are arranged on the x-axis. It can be deformed so as to be attached to a circular arm 33 which is rotatable about a center and which has an origin O as a center so that the incident angle ω and the diffraction angle 2θ can be adjusted. By doing so, only the movement of the sample S in the y direction is limited to the sample table 3
0, the surface of the sample S is always kept horizontal and its inclination disappears. Therefore, means for applying heating, cooling, pulling, compression, bending, vacuum, gas atmosphere, magnetic field, electric field, etc. to the sample S. Can be easily installed together, and these atmospheres can be changed while detecting the surface condition. In FIG. 8, a rotary shaft 34 is fixed to the circular arm 33, and the rotary shaft 34 is configured to rotate around the x axis in a fixed base 35.

【0025】以上の図1、図6〜図8においては、X線
照射系及びX線検出系のコリメータ2、5としてソーラ
ースリットを用いていたが、その代わりに、結晶面での
ブラッグ回折を用いて特定方向に回折された特定波長の
X線を取り出す結晶モノクロメータ(シリコン結晶、ゲ
ルマニウム結晶、グラファイト等からなる。)を用いる
ことができる。図9はその場合の模式図であり、符号
2′、5′が結晶モノクロメータである。モノクロメー
タ5′は結晶面6に平行にカットして構成したものであ
り、モノクロメータ2′は結晶面6に交差してカットし
た非対称カットモノクロメータである。前者は、入射ビ
ームと回折ビームの断面の大きさは同じだが、後者は、
入射ビームに比べて回折ビームの断面が回折方向に変形
する性質を有するので、図4に示すように、X線照射系
のコリメータとして非対称カットモノクロメータ2′を
用いると、線状X線ビームの長さを長くできるので、よ
り大きな試料Sの測定が可能となる。また、ものモノク
ロメータ5′についても、非対称カットモノクロメータ
を用いれば、検出器Dに入る回折ビームの断面を拡大又
は縮小できる。
In FIGS. 1 and 6 to 8 described above, solar slits are used as the collimators 2 and 5 of the X-ray irradiation system and the X-ray detection system, but instead, Bragg diffraction on the crystal plane is performed. It is possible to use a crystal monochromator (made of silicon crystal, germanium crystal, graphite, etc.) for extracting X-rays of a specific wavelength diffracted in a specific direction. FIG. 9 is a schematic diagram in that case, and the reference numerals 2'and 5'represent a crystal monochromator. The monochromator 5'is constructed by cutting parallel to the crystal plane 6, and the monochromator 2'is an asymmetric cut monochromator cut across the crystal plane 6. In the former, the incident beam and the diffracted beam have the same cross-sectional size, but in the latter,
Since the cross section of the diffracted beam has a property of being deformed in the diffraction direction as compared with the incident beam, if an asymmetric cut monochromator 2'is used as a collimator of the X-ray irradiation system as shown in FIG. Since the length can be increased, a larger sample S can be measured. As for the monochromator 5 ', the cross section of the diffracted beam entering the detector D can be enlarged or reduced by using an asymmetric cut monochromator.

【0026】なお、以上において、試料Sを構成する結
晶の方位は、試料Sをその表面の法線の周りで回転させ
て同様の測定を行うことにより、完全に決定することが
できる。
In the above, the orientation of the crystals constituting the sample S can be completely determined by rotating the sample S around the normal line of its surface and performing the same measurement.

【0027】以上、本発明のX線試料表面状態評価装置
のいくつかの実施例について説明してきたが、本発明は
これら実施例に限定されず、種々の変形が可能である。
例えば、図6において、試料面を下に向け、下方からX
線を照射するようにすることができる。
Although some embodiments of the X-ray sample surface condition evaluation apparatus of the present invention have been described above, the present invention is not limited to these embodiments and various modifications can be made.
For example, in FIG. 6, with the sample surface facing downward, X from the bottom
It can be adapted to irradiate a line.

【0028】[0028]

【発明の効果】以上の説明から明らかなように、本発明
のX線試料表面状態評価装置によると、次のような効果
が得られる。
As is apparent from the above description, the X-ray sample surface condition evaluation apparatus of the present invention has the following effects.

【0029】入射X線と回折X線の作る面上にある細
い線状の平行X線ビームを使用し、回折線の平行成分の
みを1次元X線検出器で測定するので、試料の方位を2
軸方向に変えても、試料の2次元的情報を1次元走査だ
けで測定でき、測定時間が大幅に短縮できる。
Since the parallel linear X-ray beam on the plane formed by the incident X-ray and the diffracted X-ray is used and only the parallel component of the diffraction line is measured by the one-dimensional X-ray detector, the orientation of the sample is Two
Even if it is changed in the axial direction, the two-dimensional information of the sample can be measured by only one-dimensional scanning, and the measurement time can be greatly reduced.

【0030】単一単結晶の場合、試料表面と回折面が
大きくずれていても、格子歪や格子定数変化の試料面内
での分布も測定できる。
In the case of a single crystal, even if the surface of the sample and the diffractive surface are largely deviated, the distribution of the lattice strain and the change of the lattice constant within the sample can be measured.

【0031】単結晶の集合体の場合、各単結晶の大き
な方位変化も測定できる。
In the case of an aggregate of single crystals, a large change in orientation of each single crystal can also be measured.

【0032】単結晶の欠陥や非晶質等の面内分布測定
ができる。
It is possible to measure in-plane distribution of defects such as single crystal and amorphous.

【0033】単結晶と多結晶の集合体の場合、その分
布測定ができる。
In the case of an aggregate of a single crystal and a polycrystal, its distribution can be measured.

【0034】結晶モノクロメータを使ってより平行度
の高いビームを使用すれば、高精度の微小変位測定が可
能となる。
If a beam having a higher degree of parallelism is used by using a crystal monochromator, highly accurate minute displacement measurement can be performed.

【0035】非対称カット結晶モノクロメータを使え
ば、より大きな試料の測定も可能になる。
The use of the asymmetric cut crystal monochromator enables the measurement of larger samples.

【0036】試料を水平に保つ構成にすれば、液体状
の試料(液晶等)の方位分布測定が可能となる。
If the sample is kept horizontal, the orientation distribution of the liquid sample (liquid crystal or the like) can be measured.

【0037】単一単結晶の場合、その試料が平板なの
か湾曲しているのか、湾曲しているならどのように湾曲
しているのかを調べることができる。
In the case of a single single crystal, it can be investigated whether the sample is a flat plate or curved, and if curved, how curved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のX線試料表面状態評価装置の原理を説
明するための図である。
FIG. 1 is a diagram for explaining the principle of an X-ray sample surface state evaluation device of the present invention.

【図2】検出1次元回折X線強度分布を様式的に示した
図である。
FIG. 2 is a diagram stylistically showing a detected one-dimensional diffraction X-ray intensity distribution.

【図3】特定の方位における試料全面での2次元的分布
状態図である。
FIG. 3 is a two-dimensional distribution state diagram on the entire surface of a sample in a specific orientation.

【図4】別の方位における試料全面での2次元的分布状
態図である。
FIG. 4 is a two-dimensional distribution state diagram on the entire surface of the sample in another orientation.

【図5】合成2次元分布状態図である。FIG. 5 is a synthetic two-dimensional distribution state diagram.

【図6】本発明の第1実施例の要部の斜視図である。FIG. 6 is a perspective view of a main part of the first embodiment of the present invention.

【図7】図6においてχ角度回転した状態の試料台部分
の斜視図である。
FIG. 7 is a perspective view of a sample stage portion in a state of being rotated by χ angle in FIG.

【図8】第2実施例の模式図である。FIG. 8 is a schematic diagram of a second embodiment.

【図9】コリメータとして結晶モノクロメータを用いる
場合の構成の模式図である。
FIG. 9 is a schematic diagram of a configuration when a crystal monochromator is used as a collimator.

【符号の説明】[Explanation of symbols]

S…試料 A…試料面 B…検出面 I…入射平行X線ビーム R…回折平行X線ビーム D…1次元X線検出器 1…線状X線源 2…ソーラースリット 3…入射側スリット 4…受光側スリット 5…ソーラースリット 10…ゴニオメータ 11…試料台 12…Yステージ 13…モータ 14…Xステージ 15…Xノブ 16…中間ステージ 17…アオリノブ 20…X線管シールド 21…Zノブ 22…制限スリット 23…基準面治具 S ... Sample A ... Sample surface B ... Detection surface I ... Incident parallel X-ray beam R ... Diffraction parallel X-ray beam D ... One-dimensional X-ray detector 1 ... Linear X-ray source 2 ... Solar slit 3 ... Incident side slit 4 ... Light receiving side slit 5 ... Solar slit 10 ... Goniometer 11 ... Sample stage 12 ... Y stage 13 ... Motor 14 ... X stage 15 ... X knob 16 ... Intermediate stage 17 ... Aorinobu 20 ... X-ray tube shield 21 ... Z knob 22 ... Limit Slit 23 ... Reference plane jig

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料表面を含む平面を試料面とし、試料
面内で直交するx軸及びy軸を定義し、x軸を含み試料
面に交差し線状平行入射X線ビーム及び線状平行回折X
線ビームを含む平面を検出面として、試料をy方向に移
動可能でy軸がその表面のほぼ中心を通るように取り付
ける試料取り付け手段を備え、検出面内において試料表
面のx軸に沿う線状領域に平行X線入射ビームを照射す
るX線照射手段を備え、試料表面の線状X線照射領域か
ら回折された回折X線の中、検出面内で所定の回折角2
θで回折された平行Xビームのみを取り出してその1次
元強度分布を検出する手段であって、原点を通り検出面
に直交するω軸の周りで入射ビームに対する検出回折角
2θが調節可能な1次元X線検出手段を備え、入射ビー
ムに対するx軸の相対角度ωを調節するように、ω軸の
周りで前記試料取り付け手段、X線照射手段及び1次元
X線検出手段の一方又は双方の回転角を調節する第1角
度調節手段を備え、さらに、試料面とω軸のなす角度χ
を調節するように、x軸の周りで前記試料取り付け手
段、X線照射手段及び1次元X線検出手段の一方又は双
方の回転角を調節する第2角度調節手段を備えてなるこ
とを特徴とするX線試料表面状態評価装置。
1. A plane including a sample surface is defined as a sample surface, and an x-axis and a y-axis orthogonal to each other in the sample surface are defined, and a linear parallel incident X-ray beam and a linear parallel crossing the sample surface including the x-axis are defined. Diffraction X
A plane including the line beam is used as a detection surface, and a sample mounting means is provided for mounting the sample in the y direction so that the y axis passes through substantially the center of the surface, and a linear shape along the x axis of the sample surface in the detection surface. An X-ray irradiating means for irradiating a parallel X-ray incident beam to the area is provided, and a predetermined diffraction angle 2 in the detection plane among the diffracted X-rays diffracted from the linear X-ray irradiation area on the sample surface.
This is a means for extracting only the parallel X beam diffracted by θ and detecting its one-dimensional intensity distribution, and the detection diffraction angle 2θ for the incident beam can be adjusted around the ω axis that passes through the origin and is orthogonal to the detection surface. Dimensional X-ray detection means, and rotation of one or both of the sample attachment means, the X-ray irradiation means and the one-dimensional X-ray detection means about the ω axis so as to adjust the relative angle ω of the x-axis with respect to the incident beam. A first angle adjusting means for adjusting the angle, and further, an angle χ formed between the sample surface and the ω axis
To adjust the rotation angle of one or both of the sample attachment means, the X-ray irradiation means and the one-dimensional X-ray detection means around the x-axis. X-ray sample surface condition evaluation device.
JP26611591A 1991-10-15 1991-10-15 X-ray apparatus for evaluating surface condition of sample Withdrawn JPH05107203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26611591A JPH05107203A (en) 1991-10-15 1991-10-15 X-ray apparatus for evaluating surface condition of sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26611591A JPH05107203A (en) 1991-10-15 1991-10-15 X-ray apparatus for evaluating surface condition of sample

Publications (1)

Publication Number Publication Date
JPH05107203A true JPH05107203A (en) 1993-04-27

Family

ID=17426537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26611591A Withdrawn JPH05107203A (en) 1991-10-15 1991-10-15 X-ray apparatus for evaluating surface condition of sample

Country Status (1)

Country Link
JP (1) JPH05107203A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515435A (en) * 2002-01-21 2005-05-26 エックスアールディ−トールズ ソシエタ ア レスポンサビリタ リミタータ Diffractometer and diffraction analysis method
JP2005221363A (en) * 2004-02-05 2005-08-18 Rigaku Corp Sample support device for x-ray analysis, and x-ray analyzer
JP2006250646A (en) * 2005-03-09 2006-09-21 National Institute For Materials Science X-ray diffraction analyzer and x-ray diffraction analyzing method
JP2006250642A (en) * 2005-03-09 2006-09-21 National Institute For Materials Science X-ray diffraction analyzing method and x-ray diffraction analyzer
JP2006292551A (en) * 2005-04-11 2006-10-26 National Institute For Materials Science Titanium oxide analyzing method and titanium oxide analyzer carrying out it
JP2008203212A (en) * 2007-02-22 2008-09-04 Fujitsu Ltd Method and device for evaluating crystal specimen shape, and program
JP2010223851A (en) * 2009-03-25 2010-10-07 Rigaku Corp X-ray diffraction method and x-ray diffraction apparatus
JP2019190965A (en) * 2018-04-24 2019-10-31 国立研究開発法人物質・材料研究機構 Method for measuring crystal lattice plane distribution

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515435A (en) * 2002-01-21 2005-05-26 エックスアールディ−トールズ ソシエタ ア レスポンサビリタ リミタータ Diffractometer and diffraction analysis method
JP2005221363A (en) * 2004-02-05 2005-08-18 Rigaku Corp Sample support device for x-ray analysis, and x-ray analyzer
JP2006250646A (en) * 2005-03-09 2006-09-21 National Institute For Materials Science X-ray diffraction analyzer and x-ray diffraction analyzing method
JP2006250642A (en) * 2005-03-09 2006-09-21 National Institute For Materials Science X-ray diffraction analyzing method and x-ray diffraction analyzer
JP4581126B2 (en) * 2005-03-09 2010-11-17 独立行政法人物質・材料研究機構 X-ray diffraction analysis method and X-ray diffraction analysis apparatus
JP2006292551A (en) * 2005-04-11 2006-10-26 National Institute For Materials Science Titanium oxide analyzing method and titanium oxide analyzer carrying out it
JP2008203212A (en) * 2007-02-22 2008-09-04 Fujitsu Ltd Method and device for evaluating crystal specimen shape, and program
JP2010223851A (en) * 2009-03-25 2010-10-07 Rigaku Corp X-ray diffraction method and x-ray diffraction apparatus
JP2019190965A (en) * 2018-04-24 2019-10-31 国立研究開発法人物質・材料研究機構 Method for measuring crystal lattice plane distribution

Similar Documents

Publication Publication Date Title
EP0990140B1 (en) X-ray monochromator comprising a crystal having a tapered width and assuming a logarithmic spiral shape
CN110398506A (en) X-ray detection optical device for small angle X ray scattering measurement
JPH0552446B2 (en)
JPH04337236A (en) Three-dimensional atomic arrangement observing device and method
US5768335A (en) Apparatus and method for measuring the orientation of a single crystal surface
US4364122A (en) X-Ray diffraction method and apparatus
JP5031215B2 (en) Multifunctional X-ray analysis system
JP2016502119A (en) Apparatus and method for surface mapping using in-plane oblique incidence diffraction
JPH05107203A (en) X-ray apparatus for evaluating surface condition of sample
US5446777A (en) Position-sensitive X-ray analysis
JP3519203B2 (en) X-ray equipment
EP1495311B1 (en) High-resolution x-ray diffraction apparatus
JP2003194741A (en) X-ray diffractometer, method of measuring reflected x-ray, and method of drawing up reciprocal lattice space map
JPH08313458A (en) X-ray equipment
JPH05196583A (en) Total reflection x-ray analyzer
WO1993008462A1 (en) X-ray diffractometer
JPH11304729A (en) X-ray measurement method and x-ray measurement device
JPH06249803A (en) X-ray device and evaluating analyzing method using this device
JPH05296946A (en) X-ray diffraction device
JPH04318433A (en) Radiograph stress measuring apparatus
JPH0358058B2 (en)
JPH0727080B2 (en) One-dimensional scanning X-ray diffraction microscope
JP2732311B2 (en) X-ray topography equipment
JPH11248652A (en) X-ray diffraction measuring method and x-ray differactometer
GB2228167A (en) X-ray diffractometer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107