JPH0510567A - Air conditioning controller - Google Patents

Air conditioning controller

Info

Publication number
JPH0510567A
JPH0510567A JP3164921A JP16492191A JPH0510567A JP H0510567 A JPH0510567 A JP H0510567A JP 3164921 A JP3164921 A JP 3164921A JP 16492191 A JP16492191 A JP 16492191A JP H0510567 A JPH0510567 A JP H0510567A
Authority
JP
Japan
Prior art keywords
temperature
air conditioning
room temperature
load
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3164921A
Other languages
Japanese (ja)
Inventor
Kazuo Suzuki
一雄 鈴木
Tetsuo Sano
哲夫 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3164921A priority Critical patent/JPH0510567A/en
Priority to US07/907,538 priority patent/US5372015A/en
Publication of JPH0510567A publication Critical patent/JPH0510567A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To control air conditioning capacity properly so that the temperature in a room approaches to a set temperature quickly and is maintained at the set temperature stably. CONSTITUTION:A difference between a room temperature, measured by a room temperature sensor 2, and a set temperature is operated by a room temperature change operating circuit 10 while an air conditioning load is operated by a neural network 6 based on the timer change of the room temperature, an atmospheric temperature, measured by an atmospheric temperature sensor 5, and the room temperature, measured by the room temperature sensor 2. A motor 9 for a compressor is controlled through a frequency changeable circuit 8 so that the frequency of the compressor is controlled based on the air conditioning load whereby the indoor temperature is approached to the set temperature quickly and the indoor temperature is maintained stably and constantly at the set temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、室内温度を所望の設定
温度に迅速かつ安定に制御する空調制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-conditioning control device for quickly and stably controlling an indoor temperature to a desired set temperature.

【0002】[0002]

【従来の技術】空調機の能力制御幅は、圧縮機の周波数
制御により広く行われるとともに、またその可変幅は年
々広くなっているが、従来の周波数制御は室温と設定温
度との差に対して一意的に行われている。具体的には、
図5に示すように、暖房において日当りの良い南向きの
部屋とか、春先等の外が暖かい時期、または断熱の良い
小さな部屋等といった軽負荷の場合には、従来の一意的
な制御では空調負荷の変化に比較して空調機の空調能力
の変化幅が大きく室温がハンチングし、また日当りの悪
い北向きの部屋とか、真冬等の外が寒い時期、または断
熱の悪い大きな部屋といった重負荷の場合には、従来の
一意的な制御では空調負荷の変化に比較して空調機の空
調能力の変化幅が小さく設定した温度になかなか達しな
く、設定温度を境として緩やかに変化し、一定し難くな
っている。
2. Description of the Related Art The capacity control range of an air conditioner is widely controlled by the frequency control of the compressor, and its variable range is becoming wider year by year. Conventional frequency control is based on the difference between room temperature and set temperature. Is done uniquely. In particular,
As shown in FIG. 5, in the case of a light load such as a room facing south in sunny weather, warm weather outside in early spring, or a small room with good heat insulation, air conditioning load is reduced by the conventional unique control. In the case of a heavy load such as a room facing north with poor sunlight, cold outside such as midwinter, or a large room with poor insulation compared to the change in In the conventional unique control, the change width of the air conditioning capacity of the air conditioner is small compared to the change of the air conditioning load, it does not reach the set temperature easily, it changes gradually at the set temperature and it becomes difficult to keep it constant. ing.

【0003】また、室内機と室外機の信号伝達において
は限られた量の情報しか送れないため、その室内機から
の少ない情報量で室外機の圧縮機の周波数制御を行う必
要があり、従来の設定温度と室温との差で一意的に決ま
る制御では、空調負荷の大きい時や小さい時に対応しき
れないことがある。
Further, since only a limited amount of information can be transmitted in signal transmission between the indoor unit and the outdoor unit, it is necessary to control the frequency of the compressor of the outdoor unit with a small amount of information from the indoor unit. The control uniquely determined by the difference between the set temperature and the room temperature may not be able to handle when the air conditioning load is large or small.

【0004】[0004]

【発明が解決しようとする課題】上述したように、例え
ば季節、部屋の状態等により空調負荷が異なると、空調
負荷の変化と能力制御が一致し難くなり、室温が安定せ
ずハンチングしたり、立ち上がりが遅くなるという問題
がある。
As described above, when the air conditioning load varies depending on the season, the state of the room, etc., it becomes difficult to match the change in the air conditioning load with the capacity control, and the room temperature is unstable and hunting occurs. There is a problem that the startup is delayed.

【0005】本発明は、上記に鑑みてなされたもので、
その目的とするところは、室内温度が設定温度に迅速に
近づき安定に維持されるように空調能力を適確に制御す
る空調制御装置を提供することにある。
The present invention has been made in view of the above,
It is an object of the invention to provide an air conditioning control device for appropriately controlling the air conditioning capacity so that the indoor temperature quickly approaches the set temperature and is stably maintained.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明の空調制御装置は、室内温度と所望の設定温
度との差、該温度差の時間変化および外気温度に基づい
て空調負荷を算出する負荷算出手段と、該負荷算出手段
で算出した空調負荷に基づいて室内温度が設定温度に迅
速に近づき、該設定温度で安定して一定に維持されるよ
うに空調能力を制御すべく圧縮機の周波数を制御する制
御手段とを有することを要旨とする。
In order to achieve the above object, an air conditioning control device of the present invention determines an air conditioning load based on a difference between an indoor temperature and a desired set temperature, a time change of the temperature difference, and an outside air temperature. Based on the load calculating means for calculating and the air conditioning load calculated by the load calculating means, the indoor temperature quickly approaches the set temperature and compressed to control the air conditioning capacity so as to be stably and constantly maintained at the set temperature. The gist is to have a control means for controlling the frequency of the machine.

【0007】[0007]

【作用】本発明の空調制御装置では、室温と設定温度と
の差、その時間変化および外気温度に基づいて空調負荷
を算出し、この空調負荷に基づいて圧縮機の周波数を制
御し、室内温度が設定温度に迅速に近づき、該設定温度
で安定して一定に維持されるようにしている。
In the air conditioning control device of the present invention, the air conditioning load is calculated based on the difference between the room temperature and the set temperature, its time change, and the outside air temperature, and the frequency of the compressor is controlled based on this air conditioning load to control the indoor temperature. Quickly approaches the set temperature and is stably maintained at the set temperature.

【0008】[0008]

【実施例】以下、図面を用いて本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1は、本発明の一実施例に係わる空調制
御装置の構成図である。同図に示す空調制御装置は、使
用者によって操作され、空調機の運転/停止の指令、所
望の室内温度の設定、風量の設定等を行う例えばリモコ
ン等の運転操作部1、空調機が設定される部屋の温度を
測定する室温センサ2、例えば暖房時の冷風防止制御等
に使用され、室内熱交換器の温度を測定する熱交センサ
3、風を送出するためのファンモータ4、室外の温度を
測定する外気温センサ5を有し、前記室温センサ2で測
定した室内温度は室温変化計算回路10に供給されて、
室温の変化が計算され、この計算された室温変化はニュ
ーラルネットワーク6に供給されている。
FIG. 1 is a block diagram of an air conditioning controller according to an embodiment of the present invention. The air-conditioning control device shown in the figure is operated by a user, and the operation / operation unit 1 such as a remote controller and the air-conditioner are set to instruct the operation / stop of the air-conditioner, set the desired room temperature, and set the air volume. A room temperature sensor 2 for measuring the temperature of a room to be operated, a heat exchange sensor 3 for measuring the temperature of an indoor heat exchanger, for example, which is used for cold air prevention control at the time of heating, a fan motor 4 for sending out air, an outdoor An ambient temperature sensor 5 for measuring the temperature is provided, and the room temperature measured by the room temperature sensor 2 is supplied to a room temperature change calculation circuit 10,
The change in room temperature is calculated, and the calculated change in room temperature is supplied to the neural network 6.

【0010】また、該ニューラルネットワーク6には、
室温変化計算回路10からの室温変化に加えて前記室温
センサ2からの室温および外気温センサ5からの外気温
が供給されている。
Further, the neural network 6 includes
In addition to the room temperature change from the room temperature change calculation circuit 10, the room temperature from the room temperature sensor 2 and the outside air temperature from the outside air temperature sensor 5 are supplied.

【0011】ニューラルネットワーク6は、その詳細を
図2に示すように、入力層6a、中間層6bおよび出力
層6cから構成され、入力層6aには前記室温センサ2
からの室温、室温変化計算回路10からの室温変化、外
気温センサ5からの外気温が供給され、室温と設定温度
の差と空調機の能力との関係を示す出力パターンである
軽負荷、軽中負荷、中負荷、中重負荷、重負荷の出力パ
ターンを出力層6cから出力するようになっている。例
えば、暖房時には、高い周波数で圧縮機を運転しても室
温がなかなか上昇しない場合は、空調負荷が大きいとい
えるし、また外気温が低く、室温が高ければ、この場合
も空調負荷が大きいといえる。逆に少し周波数を上げて
もすぐに室温が上昇するようであると、空調負荷が小さ
いといえる。外気温が高く、室温が低ければ空調負荷は
小さい、このような関係がニューラルネットワーク6に
組み込まれている。すなわち、入力と出力の関係が重み
付けされている。なお、図2に示すニューラルネットワ
ーク6は入力層6aが3層、中間層6bが4層、出力層
6cが5層となっているが、これに限定されるものでは
ない。
As shown in detail in FIG. 2, the neural network 6 is composed of an input layer 6a, an intermediate layer 6b and an output layer 6c, and the input layer 6a includes the room temperature sensor 2 described above.
Room temperature, the room temperature change from the room temperature change calculation circuit 10, and the outside air temperature from the outside air temperature sensor 5 are supplied, and the output pattern showing the relationship between the difference between the room temperature and the set temperature and the capacity of the air conditioner is light load, light load. Output patterns of medium load, medium load, medium heavy load, and heavy load are output from the output layer 6c. For example, during heating, if the room temperature does not rise easily even if the compressor is operated at a high frequency, it can be said that the air conditioning load is large, and if the outside temperature is low and the room temperature is high, the air conditioning load is also large. I can say. Conversely, if the room temperature seems to rise immediately even if the frequency is increased a little, it can be said that the air conditioning load is small. Such a relationship that the outside air temperature is high and the room temperature is low has a small air conditioning load is incorporated in the neural network 6. That is, the relationship between the input and the output is weighted. The neural network 6 shown in FIG. 2 has three input layers 6a, four intermediate layers 6b, and five output layers 6c, but the present invention is not limited to this.

【0012】ニューラルネットワーク6の出力、すなわ
ち空調負荷の程度により圧縮機の運転パターン(出力パ
ターン)が選択されるが、この運転パターンが図3に示
されている。図3は横軸に室温と設定温度の差を取り、
縦軸に空調能力、すなわち圧縮機の運転周波数が示さ
れ、同図では、前記ニューラルネットワーク6の出力に
対応して軽負荷、軽中負荷、中負荷、中重負荷、重負荷
の5種類の運転パターンが示されているが、パターンの
種類は5種類に限らず更に多くてもよい。
The operation pattern (output pattern) of the compressor is selected according to the output of the neural network 6, that is, the degree of the air conditioning load. This operation pattern is shown in FIG. Figure 3 shows the difference between room temperature and set temperature on the horizontal axis,
The air-conditioning capacity, that is, the operating frequency of the compressor is shown on the vertical axis. In the same figure, five types of light load, light medium load, medium load, medium heavy load, and heavy load corresponding to the output of the neural network 6 are shown. Although the driving patterns are shown, the number of types of patterns is not limited to five and may be more.

【0013】図3からわかるように、重負荷用では、高
い周波数域で周波数の変化が少なく、これにより僅かな
負荷変動では周波数は少ししか変わらないので一定した
制御が可能となる。また、低負荷用では、同様に僅かの
負荷変動では周波数は少ししか変わらないので一定した
制御が可能となる。更に、例えば部屋の戸の開閉といっ
た急激な負荷変動に対しては周波数の変化幅が大きいの
で(図3の右側部分)、すぐに目的の温度に引き戻すこ
とができる。
As can be seen from FIG. 3, for heavy loads, there is little change in the frequency in the high frequency range, and the frequency changes little even with a slight load change, so that constant control is possible. Further, in the case of a low load, similarly, the frequency changes only a little with a slight load change, so that constant control is possible. Further, since the frequency change width is large with respect to a sudden load change such as opening and closing of the door of the room (right side portion of FIG. 3), it is possible to immediately return to the target temperature.

【0014】このような周波数の割付が図4の表に示さ
れている。同図の表では、最低周波数は10Hzであ
り、最高周波数は190Hzである場合が示されてい
る。また、同図では、均等割付の場合も示されている。
Such frequency allocation is shown in the table of FIG. In the table of the figure, the lowest frequency is 10 Hz and the highest frequency is 190 Hz. The figure also shows the case of even allocation.

【0015】図1に戻って、上述したニューラルネット
ワーク6の出力は制御部7に供給され、制御部7から周
波数可変回路8を介して圧縮機用モータ9の周波数を制
御するようになっている。この結果、運転操作部1から
設定される所望の設定温度と室温センサ2で検知した室
内温度との差により軽負荷か重負荷か等の負荷に応じた
空調能力、すなわち圧縮機の周波数が決定され、周波数
可変回路8によって圧縮機用モータ9に所定の周波数が
与えられる。このような制御により、空調負荷付近にお
いては、きめ細かく周波数を変化させ、それ以外では粗
く変化させている。そして、大小様々な空調負荷に対応
させるために高中低の数種類の周波数域においてきめ細
かく周波数を制御し、これにより立ち上がりを速くする
とともに、設定温度に一定に維持するように制御してい
る。
Returning to FIG. 1, the output of the neural network 6 described above is supplied to the control unit 7, and the frequency of the compressor motor 9 is controlled from the control unit 7 via the frequency variable circuit 8. . As a result, the air-conditioning capacity according to the load such as the light load or the heavy load, that is, the frequency of the compressor is determined by the difference between the desired set temperature set by the driving operation unit 1 and the room temperature detected by the room temperature sensor 2. Then, the frequency variable circuit 8 gives a predetermined frequency to the compressor motor 9. By such control, the frequency is finely changed in the vicinity of the air conditioning load, and is coarsely changed in other cases. The frequency is finely controlled in several types of high, medium, and low frequency ranges in order to cope with various air conditioning loads of various sizes, thereby speeding the rise and controlling the frequency to be kept constant.

【0016】また、出力パターンの選択にはニューラル
ネットワーク6によって学習を行い、前回までの情報を
基に新たな出力パターンを選択し、すなわち空調負荷の
状況、変化の様子等を学習し、圧縮機を常に最適に制御
することが可能となっている。
Further, the output pattern is selected by learning with the neural network 6, and a new output pattern is selected based on the information up to the previous time, that is, the condition of the air conditioning load, the state of change, etc. are learned and the compressor is selected. Can always be controlled optimally.

【0017】なお、図1に示す空調制御装置としては、
吐出温度センサ、圧縮機用モータ9への電流を測定する
電流センサ等のセンサ類、冷媒の流量を制御する冷媒流
量制御別、冷房と暖房で切り替える四方弁や室外機のフ
ァンモータ等も有するものであるが、図を簡単化するた
めに図示および説明を省略する。
The air conditioning control device shown in FIG.
Sensors such as a discharge temperature sensor, a current sensor for measuring the current to the compressor motor 9, a refrigerant flow rate control for controlling the refrigerant flow rate, a four-way valve that switches between cooling and heating, a fan motor for an outdoor unit, etc. However, illustration and description are omitted to simplify the drawing.

【0018】以上のようにして、対象とする部屋の空調
負荷の選択は常に行われ、常に最適となるような運転パ
ターンの選択が行われる。具体的には、工場出荷段階で
は、中負荷用の運転パターン(周波数割付)が初期値と
して入力されている。そして、運転する毎に運転パター
ンの選択が行われ、重負荷用であるとか、軽負荷用に移
っていく。
As described above, the air conditioning load of the target room is always selected, and the optimum operation pattern is always selected. Specifically, at the factory shipment stage, an operation pattern (frequency allocation) for medium load is input as an initial value. Then, an operation pattern is selected each time the vehicle is driven, and the operation pattern is changed to a heavy load or a light load.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
室温と設定温度との差、その時間変化および外気温度に
基づいて空調負荷を算出し、この空調負荷に基づいて圧
縮機の周波数を制御し、室内温度が設定温度に迅速に近
づき、該設定温度で安定して一定に維持されるようにし
ているので、従来のように例えば季節、部屋の状態等に
より空調負荷が異なるために空調負荷の変化と能力制御
が一致し難くなって室温が安定せずハンチングしたり、
立ち上がりが遅くなるということが無くなり、室温を常
に所望の設定温度に適確に制御することができる。
As described above, according to the present invention,
Calculate the air conditioning load based on the difference between the room temperature and the set temperature, its change over time and the outside air temperature, and control the frequency of the compressor based on this air conditioning load so that the indoor temperature quickly approaches the set temperature. Since the air conditioning load is changed stably depending on the season and the state of the room as in the past, it is difficult to match the changes in the air conditioning load with the capacity control, and the room temperature is stabilized. Without hunting,
The rise is not delayed, and the room temperature can always be appropriately controlled to the desired set temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係わる空調制御装置の構成
図である。
FIG. 1 is a configuration diagram of an air conditioning control device according to an embodiment of the present invention.

【図2】図1の空調制御装置に使用されるニューラルネ
ットワークの構成図である。
FIG. 2 is a configuration diagram of a neural network used in the air conditioning control device of FIG.

【図3】図2に示すニューラルネットワークの入出力パ
ターンの一例を横軸にとった室温と設定温度との差およ
び縦軸に取った圧縮機の運転周波数からなる空調能力の
関係を示す図である。
FIG. 3 is a diagram showing a relationship between an air conditioning capacity consisting of a difference between room temperature and a set temperature on the horizontal axis and an operating frequency of the compressor on the vertical axis, which is an example of an input / output pattern of the neural network shown in FIG. 2; is there.

【図4】図2に示す各出力パターンに対する周波数の割
付を示す表である。
FIG. 4 is a table showing allocation of frequencies for each output pattern shown in FIG.

【図5】従来の制御による室温制御の様子を示す図であ
る。
FIG. 5 is a diagram showing a state of room temperature control by conventional control.

【符号の説明】[Explanation of symbols]

1 運転操作部 2 室温センサ 5 外気温センサ 6 ニューラルネットワーク 7 制御部 8 周波数可変回路 9 圧縮機用モータ 10 室温変化計算回路 1 Driving control section 2 Room temperature sensor 5 Outside temperature sensor 6 Neural network 7 control unit 8 frequency variable circuit 9 Compressor motor 10 Room temperature change calculation circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 室内温度と所望の設定温度との差、該温
度差の時間変化および外気温度に基づいて空調負荷を算
出する負荷算出手段と、該負荷算出手段で算出した空調
負荷に基づいて室内温度が設定温度に迅速に近づき、該
設定温度で安定して一定に維持されるように空調能力を
制御すべく圧縮機の周波数を制御する制御手段とを有す
ることを特徴とする空調制御装置。
1. A load calculating means for calculating an air conditioning load based on a difference between an indoor temperature and a desired set temperature, a time change of the temperature difference and an outside air temperature, and an air conditioning load calculated by the load calculating means. An air conditioning controller comprising: a control means for controlling the frequency of the compressor so as to control the air conditioning capacity so that the indoor temperature quickly approaches the set temperature and is stably maintained constant at the set temperature. .
【請求項2】 前記制御手段は、空調負荷の状況および
変化の様子を学習し、圧縮機に最適に制御する学習手段
を有することを特徴とする請求項1記載の空調制御装
置。
2. The air conditioning control device according to claim 1, wherein the control unit has a learning unit that learns a condition and a state of change of an air conditioning load and optimally controls the compressor.
JP3164921A 1991-07-05 1991-07-05 Air conditioning controller Pending JPH0510567A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3164921A JPH0510567A (en) 1991-07-05 1991-07-05 Air conditioning controller
US07/907,538 US5372015A (en) 1991-07-05 1992-07-02 Air conditioner controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3164921A JPH0510567A (en) 1991-07-05 1991-07-05 Air conditioning controller

Publications (1)

Publication Number Publication Date
JPH0510567A true JPH0510567A (en) 1993-01-19

Family

ID=15802381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3164921A Pending JPH0510567A (en) 1991-07-05 1991-07-05 Air conditioning controller

Country Status (1)

Country Link
JP (1) JPH0510567A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116155A (en) * 2006-11-07 2008-05-22 Matsushita Electric Ind Co Ltd Operation control method for air conditioner
US7594409B2 (en) 2003-06-13 2009-09-29 Daikin Industries, Ltd. Freezer apparatus
CN107883524A (en) * 2017-10-19 2018-04-06 广东美的制冷设备有限公司 Air conditioner energy-saving temperature control method, air conditioner and storage medium
CN116067524A (en) * 2023-02-14 2023-05-05 杭州宇嘉微科技有限公司 Real-time temperature monitoring method for internal components of oil immersed transformer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7594409B2 (en) 2003-06-13 2009-09-29 Daikin Industries, Ltd. Freezer apparatus
JP2008116155A (en) * 2006-11-07 2008-05-22 Matsushita Electric Ind Co Ltd Operation control method for air conditioner
JP4622988B2 (en) * 2006-11-07 2011-02-02 パナソニック株式会社 Air conditioner
CN107883524A (en) * 2017-10-19 2018-04-06 广东美的制冷设备有限公司 Air conditioner energy-saving temperature control method, air conditioner and storage medium
CN107883524B (en) * 2017-10-19 2020-05-22 广东美的制冷设备有限公司 Energy-saving temperature control method for air conditioner, air conditioner and storage medium
CN116067524A (en) * 2023-02-14 2023-05-05 杭州宇嘉微科技有限公司 Real-time temperature monitoring method for internal components of oil immersed transformer
CN116067524B (en) * 2023-02-14 2023-08-11 杭州宇嘉微科技有限公司 Real-time temperature monitoring method for internal components of oil immersed transformer

Similar Documents

Publication Publication Date Title
US8621881B2 (en) System and method for heat pump oriented zone control
US10900684B2 (en) Thermostat and method for an environmental control system for HVAC system of a building
US7784293B2 (en) Variable speed, electronically controlled, room air conditioner
US8757506B2 (en) PTAC dehumidification without reheat and without a humidistat
US4997030A (en) Central air conditioning system having remote controller in a plurality of rooms for starting or stopping air conditioning apparatus
US6397610B1 (en) Method for controlling air conditioner/heater by coil temperature
CN104110799A (en) Integrated control method and circuit for electronic expansion valve of air conditioner
US20070057075A1 (en) System and method for heat pump oriented zone control
US4120173A (en) Head pressure control system for refrigeration apparatus
EP1946020A1 (en) System and method for control of heat pump operation
KR20000075159A (en) Control method of an air conditioner
JPH11132541A (en) Air conditioner
US5426951A (en) Air conditioning apparatus with cross control means therein
JPH10232040A (en) Air-conditioning system device
JPH1183113A (en) Air conditioner
JPH0510567A (en) Air conditioning controller
JPH1183112A (en) Air conditioner
JP2697282B2 (en) Air conditioner
JPH0668410B2 (en) Air conditioner
JP2000304329A (en) Air conditioner
JP2001116330A (en) Multi-chamber type air-conditioning system
JP3117321B2 (en) Air conditioner
JPH05296548A (en) Air conditioner
JPS5927145A (en) Air conditioner
KR100628711B1 (en) Air Conditioner and Control Method thereof