JPH05101385A - Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction - Google Patents

Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction

Info

Publication number
JPH05101385A
JPH05101385A JP25394091A JP25394091A JPH05101385A JP H05101385 A JPH05101385 A JP H05101385A JP 25394091 A JP25394091 A JP 25394091A JP 25394091 A JP25394091 A JP 25394091A JP H05101385 A JPH05101385 A JP H05101385A
Authority
JP
Japan
Prior art keywords
magnetic recording
recording medium
layer
substrate
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25394091A
Other languages
Japanese (ja)
Inventor
Yoichi Uchiyama
洋一 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DIGITAL EQUIP
NIPPON DIGITAL EQUIP KK
Original Assignee
NIPPON DIGITAL EQUIP
NIPPON DIGITAL EQUIP KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DIGITAL EQUIP, NIPPON DIGITAL EQUIP KK filed Critical NIPPON DIGITAL EQUIP
Priority to JP25394091A priority Critical patent/JPH05101385A/en
Publication of JPH05101385A publication Critical patent/JPH05101385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To produce the magnetic recording medium having the axis of easy magnetization unified in a circumferential direction with good productivity. CONSTITUTION:The process for production of the magnetic recording medium having substrate film layers 28, 29 consisting of a Cr system on a nonmagnetic base body 27 and a magnetic alloy film 30 of a Co system thereon and having the axis of easy magnetization unified in the circumferential direction consists in making medium particles incident on the base body 27 by a sputtering method from the substantially radial direction of the magnetic recording medium to be formed with the substrate film layers 28, 29 to form the initial layer 28 of the extremely thin film consisting of the Cr system at the time of forming the above-mentioned substrate film layers 28, 29, then laminating and forming the Cr film 29 by the sputtering method which does not restrict the incident direction of the medium particles until the thickness sufficient as the substrate film layer is attained. The magnetic recording medium is produced with more excellent productivity than the conventional process for production.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、円周方向に揃った磁化
容易軸を有する磁気記録媒体、例えば、ハードディス
ク、フロッピーディスク等に用いる円盤状の磁気記録媒
体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a magnetic recording medium having easy axes of magnetization aligned in the circumferential direction, for example, a disk-shaped magnetic recording medium used for hard disks, floppy disks and the like.

【0002】[0002]

【従来の技術】この種の磁気記録媒体として、Co系合
金薄膜を磁気記録層とするものがあり、この場合には、
その媒体の膜面内に異方性を強く持たせるために、下地
層として体心立方構造のCr薄膜等を基体と磁気記録層
との間に設けることによって、磁気記録層の保持力また
角型比を大きくできることが知られている。例えば、六
方最密充填構造のCo−Crよりなる記録層をCr下地
層の上に設けると、Co−Cr層の磁化容易軸であるc
軸が膜面内に向きCr下地層がない場合に比べて著しく
角型性のよい、また大きな保持力をもつ磁気記録媒体を
作製することができる。
2. Description of the Related Art As a magnetic recording medium of this type, there is one using a Co-based alloy thin film as a magnetic recording layer.
In order to have a strong anisotropy in the film surface of the medium, a Cr thin film having a body-centered cubic structure or the like is provided as an underlayer between the substrate and the magnetic recording layer, so that the coercive force and the corner of the magnetic recording layer are increased. It is known that the mold ratio can be increased. For example, when a recording layer made of Co—Cr having a hexagonal close-packed structure is provided on a Cr underlayer, the magnetization easy axis of the Co—Cr layer is c.
A magnetic recording medium having a remarkably good squareness and a large coercive force can be produced as compared with the case where the axis is oriented in the plane of the film and there is no Cr underlayer.

【0003】しかし、一般的に作製される媒体は、作製
装置により面内の一定方向に容易軸を持つ場合、あるい
は位置によって異なる方向に磁化容易軸を分布して持つ
場合がある。そのため、例えば、円盤状の磁気記録媒体
であるハードディスク、フロッピーディスク等は、その
同心円状のトラック進行方向から見た場合、一周の間に
磁化容易軸方向に沿う場合と磁化困難軸方向に沿う場合
が順次現れるので、再生の際の出力変動を引き起こす。
磁化容易軸方向の残留磁化Mr(easy)は、磁化困難軸方
向の残留磁化Mr (hard)に比べて大きく、例えば、円盤
上で一方向に磁化容易軸が揃っている場合、トラック一
周あたりの再生出力のエンベロープは、二周期の正弦波
に似た形になってしまう。円盤状の磁気記録媒体でこの
ような出力変動を押さえるめには、円周方向に磁化容易
軸を揃えるか、あるいは等方的な媒体を作製しなくては
ならない。
However, a medium that is generally manufactured may have an easy axis in a certain direction in the plane by the manufacturing apparatus, or may have distributed easy axes in different directions depending on the position. Therefore, for example, a hard disk, a floppy disk, or the like, which is a disk-shaped magnetic recording medium, may be along the easy magnetization axis direction or the hard magnetization axis direction during one round when viewed from the concentric track traveling direction. Appears in sequence, which causes output fluctuation during reproduction.
The remanent magnetization M r (easy) in the easy-axis direction is larger than the remanent magnetization M r (hard) in the hard-axis direction. For example, when the easy-axis is aligned in one direction on the disk, the track goes around one track. The envelope of the reproduced output is similar to a two-period sine wave. In order to suppress such an output fluctuation in a disk-shaped magnetic recording medium, it is necessary to align the easy axis of magnetization in the circumferential direction or to prepare an isotropic medium.

【0004】[0004]

【発明が解決しようとする課題】磁化容易軸を円周方向
に揃えるために、円盤状の基体に円周方向に同心円状に
テクスチャー処理をすることによって、磁化容易軸を制
御する方法が試みられている。この方法によると、形状
磁気異方性により半径方向が磁化困難軸で円周方向が磁
化容易軸になり、磁化容易軸方向の残留磁化が磁化困難
軸方向のそれに比べて30%程度大きくなり、再生出力
変動が押さえられる他、再生出力自体も平均的に大きく
なる(例えば、S. Uchinami et al., IEEE Trans. Mag
n., vol.23,No.5, Sept(1987)3408参照)。
In order to align the easy axis of magnetization in the circumferential direction, a method of controlling the easy axis of magnetization has been attempted by texturing the disk-shaped substrate in a concentric manner in the circumferential direction. ing. According to this method, the radial direction becomes the hard axis of magnetization and the circumferential direction becomes the easy axis of magnetization due to the shape magnetic anisotropy, and the residual magnetization in the easy axis of magnetization becomes approximately 30% larger than that in the hard axis of magnetization. Playback output fluctuations are suppressed and the playback output itself becomes large on average (eg, S. Uchinami et al., IEEE Trans. Mag.
n., vol.23, No.5, Sept (1987) 3408).

【0005】しかし、テクスチャー処理による方法は、
基体の面粗さを増加させることになる。これは、媒体面
とヘッドとの間の間隔が面粗さにより局所的な変動を伴
い、ヘッド−媒体間の距離の精密さが特に問題となるよ
うな高密度記録にはあまり適さない。また、媒体作製条
件により膜面内に等方的な記録媒体を作製することも可
能であるが、円周方向に磁化容易軸が揃っている媒体に
比べて角型性が平均化され悪くなるため、残留磁化も小
さくなり、再生出力が小さくなってしまう。
However, the method by texture processing is
This will increase the surface roughness of the substrate. This is not suitable for high-density recording in which the distance between the medium surface and the head is locally varied due to surface roughness, and the precision of the distance between the head and the medium is a particular problem. It is also possible to manufacture an isotropic recording medium within the film surface depending on the medium manufacturing conditions, but the squareness is averaged and deteriorated compared to a medium in which the easy axis of magnetization is aligned in the circumferential direction. Therefore, the residual magnetization also becomes small and the reproduction output becomes small.

【0006】一方、テクスチャー処理なしに、Cr下地
層を円盤状基体の半径方向に媒体粒子を入射させること
により、円周方向に磁化容易軸を揃えるようにする方法
が知られている。この方法は、いわゆる斜め入射効果を
利用するものである。斜め入射効果とは、スパッタリン
グあるいは蒸着法で薄膜を作製する場合、基体に斜めに
媒体粒子が入射することにより得られる膜には、一般的
に基体面に垂直な方向から媒体粒子が入射する場合と異
なり、異方性が入射方向に影響されることである。
[0006] On the other hand, a method is known in which the axis of easy magnetization is aligned in the circumferential direction by making medium particles enter the Cr underlayer in the radial direction of the disk-shaped substrate without texturing. This method utilizes the so-called oblique incidence effect. The oblique incidence effect means that when a thin film is formed by sputtering or vapor deposition, the medium particles are generally incident on the substrate in a direction perpendicular to the substrate surface. Unlike that, the anisotropy is affected by the incident direction.

【0007】特に、添付図面の図5に示すように、実際
に、Cr系下地層2およびCo系合金記録層1を基体3
上に付着させる際に、媒体粒子をある角度θにて、すな
わち、矢印4の方向から入射させた場合には、作製され
る記録媒体はその入射方向に対して直角な方向(α=±
90°、図5中矢印5の方向)に磁化容易軸が揃う。こ
こで、矢印4は、x−z平面内、矢印5は、x−y平面
内にある。つまり、磁化容易軸を円周方向に揃えるため
には、半径方向に媒体粒子を斜めに入射させればいいこ
とになる。
In particular, as shown in FIG. 5 of the accompanying drawings, the Cr-based underlayer 2 and the Co-based alloy recording layer 1 are actually used as the base 3
When the medium particles are made to enter at a certain angle θ, that is, in the direction of arrow 4 when the recording medium is made to adhere onto the recording medium, the recording medium to be produced is in a direction perpendicular to the incident direction (α = ±).
The easy magnetization axis is aligned at 90 ° (the direction of arrow 5 in FIG. 5). Here, the arrow 4 is in the x-z plane and the arrow 5 is in the xy plane. That is, in order to align the easy axis of magnetization in the circumferential direction, the medium particles should be obliquely incident in the radial direction.

【0008】その方法の例として、図6に略示するよう
なプレーナマグネトロン方式と呼ばれる方法が従来知ら
れている。この方法によれば、スパッタの際に円盤状の
マグネトロン10を用いると、マグネトロンターゲット
は、ターゲット面に平行な磁場が最も強くなる部分にあ
たる領域が最もスパッタされ易い。この領域を、エロー
ジョン領域と呼ぶ。円盤状のターゲットからの磁束がタ
ーゲット中心から半径方向にそって周辺に向かうため、
エロージョン領域11は、円状になる。したがって、基
体13とターゲット10との間に中心に穴のあいたマス
ク12を用いて、基体13に対する媒体粒子14の入射
角を制御することで、異方性を円周方向にそろえること
ができる(T. Abe et al. IEEETrans. Magn., Vol.22,
No.5,Sept. (570) 1986 参照)。
As an example of such a method, a method called a planar magnetron method as schematically shown in FIG. 6 is conventionally known. According to this method, when the disk-shaped magnetron 10 is used during sputtering, the magnetron target is most likely to be sputtered in a region in which the magnetic field parallel to the target surface is the strongest. This area is called an erosion area. Since the magnetic flux from the disk-shaped target goes toward the periphery from the center of the target along the radial direction,
The erosion area 11 has a circular shape. Therefore, the anisotropy can be aligned in the circumferential direction by controlling the incident angle of the medium particles 14 with respect to the substrate 13 using the mask 12 having a hole in the center between the substrate 13 and the target 10 ( T. Abe et al. IEEETrans. Magn., Vol.22,
No. 5, Sept. (570) 1986).

【0009】このように、入射角を制限して作製したC
r系下地層を設け、その上にマスクを除いた通常の方法
(以下、バッチタイプ方式と呼ぶ)で作製したCo系強
磁性層を積層した二層構造からなる媒体を作製すると、
上層のCo系強磁性層もこの下地層の影響により磁化容
易軸が円周方向にそろう。
As described above, C produced by limiting the incident angle
When an r-type underlayer is provided, and a Co-type ferromagnetic layer formed by a usual method (hereinafter, referred to as a batch type method) on which a mask is removed is formed, a medium having a two-layer structure is produced.
Also in the upper Co-based ferromagnetic layer, the easy axis of magnetization is aligned in the circumferential direction due to the influence of this underlayer.

【0010】ところが、Cr系下地層は、ある程度(5
0nm)以上厚くないと、記録層の特性のよいものが得ら
れないところ、前述の従来の方法でCr系下地層を作製
すると、マスクがあるために膜の付着速度が著しく低下
してしまい、十分に厚い下地層とするには、時間がかか
り過ぎる等生産性が悪くなってしまうという欠点があっ
た。また、この従来の方法では、ターゲットは、基体に
見合うだけの大きさを持った円盤状のプレーナーマグネ
トロン方式のものに限られてしまう。従って、例えば、
最も生産効率のよいインラインスパッタ装置において
は、基体が長方形のターゲット上を通過しながら各層が
形成されるため、この方法は適用できなかった。
However, the Cr-based underlayer has a certain degree (5
If the thickness of the recording layer is not more than 0 nm), good characteristics of the recording layer cannot be obtained. However, when the Cr-based underlayer is prepared by the above-mentioned conventional method, the deposition rate of the film is remarkably reduced because of the mask. There has been a drawback that productivity is deteriorated because it takes too much time to form a sufficiently thick underlayer. Further, in this conventional method, the target is limited to the disk-shaped planar magnetron type having a size commensurate with the substrate. So, for example,
In the in-line sputtering apparatus with the highest production efficiency, this method cannot be applied because each layer is formed while the substrate passes over the rectangular target.

【0011】本発明の目的は、前述したような従来の問
題点を解消しうるような磁気記録媒体の製造方法を提供
することである。
An object of the present invention is to provide a method of manufacturing a magnetic recording medium which can solve the above-mentioned conventional problems.

【0012】[0012]

【課題を解決するための手段】本発明によれば、非磁性
基体上に、Cr系の下地膜層を有し、その上にCo系強
磁性合金膜を有し、円周方向に揃った磁化容易軸を有す
る磁気記録媒体の製造方法において、前記下地膜層の形
成に際し、前記基体上に対して、形成すべき磁気記録媒
体の実質的に半径方向から、スパッタリング法により媒
体粒子を入射することにより極薄膜のCr系初期層を形
成した後、媒体粒子の入射方向を制限しないスパッタリ
ング法によりさらにCr系膜を下地膜層として十分な厚
みになるまで積層形成することにより、磁化容易軸が円
周方向に揃った十分な厚みをもつ下地膜層を生産性よく
形成できる。
According to the present invention, a Cr-based underlayer film is provided on a non-magnetic substrate, and a Co-based ferromagnetic alloy film is provided thereon, and they are aligned in the circumferential direction. In the method of manufacturing a magnetic recording medium having an easy axis of magnetization, when forming the underlayer, medium particles are incident on the substrate by a sputtering method from a substantially radial direction of the magnetic recording medium to be formed. Thus, after forming an extremely thin Cr-based initial layer, by further forming a Cr-based film as a base film layer to a sufficient thickness by a sputtering method that does not limit the incidence direction of medium particles, the easy axis of magnetization is A base film layer having a sufficient thickness that is aligned in the circumferential direction can be formed with good productivity.

【0013】[0013]

【実施例】次に、添付図面の図1から図4に基づいて、
本発明の実施例について、本発明をより詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, based on FIGS. 1 to 4 of the accompanying drawings,
The present invention will be described in more detail with reference to examples of the present invention.

【0014】本発明の具体的な実施例について説明する
前に、先ず、発明者が本発明をなすことができた着眼点
について述べておく。一般的に、薄膜における結晶成長
において、結晶の方向性が初期の結晶と同じ方向に揃う
という現象が知られている。現に、この現象は、従来の
Cr系下地層の上にCo系磁性層を設けた磁気記録媒体
においても利用されているのであり、Cr系の薄膜自体
には磁性はないのであるが、その上に形成されるCo系
磁性層の結晶方向を制御するためのものとして設けてい
るのである。すなわち、Co系磁性層は、Cr系下地層
の結晶構造に影響されて成長し、Cr系下地層の結晶方
向を円周方向としておけば、その上に形成されるCo系
磁性層もその結晶構造に影響されて成長して、その磁化
容易軸の方向を円周方向とすることができるのである。
Before describing specific examples of the present invention, first, the points of interest by which the inventor can make the present invention will be described. It is generally known that, in crystal growth in a thin film, the crystal orientation is aligned in the same direction as the initial crystal. Actually, this phenomenon is also utilized in the magnetic recording medium in which the Co-based magnetic layer is provided on the conventional Cr-based underlayer, and the Cr-based thin film itself has no magnetism. It is provided to control the crystal direction of the Co-based magnetic layer formed in 1. That is, the Co-based magnetic layer grows under the influence of the crystal structure of the Cr-based underlayer, and if the crystal direction of the Cr-based underlayer is the circumferential direction, the Co-based magnetic layer formed on the Co-based magnetic layer also has the crystal structure. The growth is influenced by the structure, and the direction of the easy axis of magnetization can be set to the circumferential direction.

【0015】本発明者は、このような現象をCr系下地
層の形成にも応用できないかと考え、Cr系下地層の形
成においても、初期においてのみ媒体粒子を斜め入射さ
せて結晶に方向性を与えておけば、以後は媒体粒子の入
射方向を制限しなくとも、初期層の結晶方向にならって
積層が行われうるのではないかと着想して、種々実験し
てみたのである。その結果、このようにして形成したC
r系下地膜層の上に、強磁性金属薄膜であるCo系記録
層を設けても、Cr系初期層の入射方向に直角な方向に
磁化容易軸が揃った異方性を持つCo系記録層が実現さ
れうるとを確認して本発明に至ったのである。
The inventors of the present invention thought that such a phenomenon could be applied to the formation of the Cr-based underlayer, and even in the formation of the Cr-based underlayer, the medium particles were obliquely incident only at the initial stage to direct the crystallographically. After that, various experiments were carried out with the idea that after that, even if the incident direction of the medium particles is not limited, the stacking can be performed according to the crystal direction of the initial layer. As a result, C formed in this way
Even if a Co-based recording layer, which is a ferromagnetic metal thin film, is provided on the r-based underlayer, the Co-based recording has anisotropy in which the easy axis of magnetization is aligned in the direction perpendicular to the incident direction of the Cr-based initial layer. The inventors arrived at the present invention by confirming that layers could be realized.

【0016】本発明では、制御層として入射角を制限し
た斜め入射によりCr系極薄膜の初期層を設け、その上
に通常の入射角を制限しない膜形成方法で、Cr系の下
地層及びCo系の記録層を作製することにより、その記
録層の異方性を制御するものである。図1は、本発明の
製造方法によって形成された磁気記録媒体の断面構造を
概念的に示している。図1に示すように、この磁気記録
媒体は、非磁性基体27上に斜め入射により作製したC
r系極薄膜の初期層28を作製した後に、通常の入射角
を制限しない方法で作製したCr系下地層29、Co系
記録層30を積層してなるものである。
In the present invention, a Cr-based ultrathin film initial layer is provided as a control layer by oblique incidence with a limited incident angle, and a Cr-based underlayer and Co are formed on the initial layer by a normal film formation method that does not limit the incident angle. The anisotropy of the recording layer is controlled by preparing the recording layer of the system. FIG. 1 conceptually shows the cross-sectional structure of a magnetic recording medium formed by the manufacturing method of the present invention. As shown in FIG. 1, this magnetic recording medium was produced by obliquely incident on a non-magnetic substrate 27 C
After the initial layer 28 of an r-type ultra-thin film is formed, a Cr-type underlayer 29 and a Co-type recording layer 30 which are produced by a method that does not normally limit the incident angle are laminated.

【0017】実際に、初期層28として、スパッタリン
グ法によりCrターゲットから平均的入射角度θ=30
°でガラス基体27に入射させてCr極薄膜を10nm厚
さまで形成し、さらに、通常の入射角を制限しない方
法、すなわち、平均的入射角度θ=90°でCr下地層
29を50nm厚さまで、さらに、Co記録層30を50
nm厚さにスパッタして磁気記録媒体を作製してみた。こ
のとき、スパッタリングガス圧は、1.5mTorr で、基体
の温度は、200°C に保った。
Actually, as the initial layer 28, the average incident angle θ = 30 from the Cr target by the sputtering method.
The ultrathin Cr film is made incident to the glass substrate 27 at a temperature of 10 nm to form a film having a thickness of 10 nm, and the ordinary incident angle is not limited, that is, the Cr underlayer 29 is made to have a thickness of 50 nm at an average incident angle θ = 90 °. Further, the Co recording layer 30 is set to 50
A magnetic recording medium was produced by sputtering to a thickness of nm. At this time, the sputtering gas pressure was 1.5 mTorr and the temperature of the substrate was kept at 200 ° C.

【0018】こうして得られた磁気記録媒体を振動試料
型磁束計(VSM)により評価した結果を図4に示してい
る。この図4の曲線は、膜面内のある角度αの方向で測
定して得られた残留磁化の入射方向(α=0°)の残留
磁化に対する比(Mr /Mr (0))をαに関してプロ
ットしたものである。図4の曲線から分かるように、残
留磁化の比は、α=90°付近で最大1.4程度になり異
方性がはっきりついていることが分かる。つまり、入射
角を制限した斜め入射によるCr極薄膜の初期層を設
け、さらに通常の入射角を制限しない方法で、ある程度
厚いCr下地層ならびにCo−Cr系記録層を設ければ
記録層の異方性を制御できることが分かる。これにより
入射角を制限して比較的厚いCr系下地層全部を作製す
る従来の方法に比べて、はるかに生産性が向上すること
が分かる。
FIG. 4 shows the results of evaluation of the magnetic recording medium thus obtained by a vibrating sample type magnetometer (VSM). The curve of FIG. 4 shows the ratio (M r / M r (0)) of the remanent magnetization of the incident direction (α = 0 °) to the remanent magnetization obtained by measuring in the direction of an angle α in the film plane. It is plotted with respect to α. As can be seen from the curve in FIG. 4, the remanent magnetization ratio is about 1.4 at the maximum around α = 90 °, and it is clear that the anisotropy is clear. In other words, if an initial layer of a Cr ultra-thin film is provided by oblique incidence with a limited incident angle, and a Cr underlayer and a Co—Cr system recording layer that are thick to some extent are provided by a method that does not normally limit the incident angle, the recording layers will differ. It can be seen that the directionality can be controlled. As a result, it can be seen that the productivity is much improved as compared with the conventional method in which the incident angle is limited and the relatively thick Cr-based underlayer is entirely manufactured.

【0019】ここで、Co系強磁性金属薄膜30は、C
o及びCoにさらにNi、Cr、Ta、V、B、C、
W、Pt、Fe、Al等を添加したもので、例えば、C
o−Cr、Co−Cr−Ni、Co−Cr−Ta、Co
−Pt、Co−Cr−Pt、Co−Cr−Pt−B等で
ある。また、Cr系の下地層および初期層は、Cr、W
あるいはCr、Wを主成分とした合金である。
Here, the Co-based ferromagnetic metal thin film 30 is C
In addition to o and Co, Ni, Cr, Ta, V, B, C,
W, Pt, Fe, Al, etc. added, for example, C
o-Cr, Co-Cr-Ni, Co-Cr-Ta, Co
-Pt, Co-Cr-Pt, Co-Cr-Pt-B and the like. The Cr-based underlayer and the initial layer are made of Cr, W
Alternatively, it is an alloy containing Cr and W as main components.

【0020】以下、本発明の製造方法の具体的な実施例
について説明する。なお、以下の説明では、“入射角を
制限した斜め入射によって形成するCr系極薄膜の初期
層”をA層と呼び、“入射角を制限しないで形成するC
r系下地層”をB層と呼び、“入射角を制限しないで形
成するCo系記録層”をC層と呼ぶことにする。
Specific examples of the manufacturing method of the present invention will be described below. In the following description, “an initial layer of a Cr-based ultrathin film formed by oblique incidence with a limited incident angle” is referred to as an A layer, and “C formed without limiting the incident angle”.
The "r-based underlayer" is referred to as the B layer, and the "Co-based recording layer formed without limiting the incident angle" is referred to as the C layer.

【0021】実施例−1 図2は、本発明の製造方法の一実施例を説明するための
概略図である。この実施例は、生産性の高いインライン
式スパッタ装置にて行う場合である。この実施例の製造
方法によれば、磁気記録媒体の基体40は、長方形のタ
ーゲット44上を矢印50の方向に移動しながらスパッ
タされる。先ず、A層を、基体40に近接して設けたマ
スク41を介して形成する。マスク41には、媒体粒子
の入射方向にスリット42が設けられている。このとき
は、基体40は、矢印50の方向には移動されず、自転
させられる。スパッタリングターゲット44よりスパッ
タ媒体粒子がエロージョン領域51より矢印52、53
の方向に飛散させられて、基体40へスリット42を通
して入射させられる。基体40が回転しているために、
基体全体にわたり半径方向に斜め入射することになる。
Example-1 FIG. 2 is a schematic view for explaining one example of the manufacturing method of the present invention. In this embodiment, an in-line type sputtering apparatus having high productivity is used. According to the manufacturing method of this embodiment, the substrate 40 of the magnetic recording medium is sputtered on the rectangular target 44 while moving in the direction of arrow 50. First, the A layer is formed via the mask 41 provided close to the substrate 40. The mask 41 is provided with slits 42 in the incident direction of the medium particles. At this time, the base body 40 does not move in the direction of the arrow 50 but rotates on its axis. Sputtering medium particles from the sputtering target 44, arrows 52, 53 from the erosion region 51.
Are scattered in the direction of and are incident on the substrate 40 through the slit 42. Since the base body 40 is rotating,
The light is obliquely incident on the entire substrate in the radial direction.

【0022】こうしてA層が形成された基体は、矢印5
0の方向に移動させられて、参照符号43にて示す位置
に保持される。この状態で、スパッタリングターゲット
44による通常の入射角を制限しないスパッタ方式に
て、順次、B層およびC層が形成される。この場合に
は、基体は、回転していても静止していてもよい。この
結果、円周方向に記録層の磁化容易軸が揃うことにな
る。参照符号54および55は、スパッタリングターゲ
ト44のエロージョン領域51からの各媒体粒子の飛散
方向を示している。
The substrate on which the A layer is formed in this way is indicated by the arrow 5
It is moved in the direction of 0 and held at the position indicated by reference numeral 43. In this state, the B layer and the C layer are sequentially formed by the sputtering method in which the incident angle by the sputtering target 44 is not limited. In this case, the substrate may be rotating or stationary. As a result, the easy axis of magnetization of the recording layer is aligned in the circumferential direction. Reference numerals 54 and 55 indicate directions in which each medium particle is scattered from the erosion region 51 of the sputtering target 44.

【0023】スリット42の長さは、基体40の半径程
度にわたるものであるが、直径程度でもよい。また、ス
リット42の形状は、基体中心から扇形状に広がった形
をしていてもよい。ここでは、基体40の片側だけA層
を形成しているが、基体40に対して上下に対称な位置
にマスクとターゲットを設ければ同時に両面初期層を形
成できる。また、ここでは、基体40とマスク41は、
基体40の回転を除き相対的に静止している場合を示し
たが、スリット42を適当に長くとり、マスク40は静
止させて、基体40のみ回転させながら矢印50の方向
に移動させてもよい。以上のようなマスクを用いれば、
インラインスパッタのような生産性の高い装置において
も、円盤状基体の円周方向に磁化容易軸を揃えることが
できることが分かる。また、マグネトロンを用いないタ
ーゲット全面が平均的にスパッタされるコンベンショナ
ルスパッタ方式でも同様に可能である。
The length of the slit 42 is about the radius of the substrate 40, but may be about the diameter. Further, the slit 42 may have a fan shape extending from the center of the base body. Here, the A layer is formed on only one side of the substrate 40, but if a mask and a target are provided at vertically symmetrical positions with respect to the substrate 40, the double-sided initial layer can be simultaneously formed. Further, here, the substrate 40 and the mask 41 are
Although the case where the substrate 40 is relatively stationary except the rotation is shown, the slit 42 may be appropriately lengthened, the mask 40 may be stationary, and only the substrate 40 may be rotated and moved in the direction of the arrow 50. .. If you use the above mask,
It is understood that the easy axis of magnetization can be aligned in the circumferential direction of the disk-shaped substrate even in a highly productive apparatus such as in-line sputtering. Further, a conventional sputtering method in which the entire surface of the target is averagely sputtered without using a magnetron is also possible.

【0024】実施例−2 図3は、本発明の製造方法の別の実施例を説明するため
の概略図である。この実施例は、A層を形成するために
改良された対向ターゲット方式を用いるものである。図
3に示すように、この実施例では、基体面積に対して比
較的小型面積の二組の対向したスパッタリングターゲッ
ト対70、71を、中心に穴のあいた基体72に対して
配置して、A層を形成する。
Embodiment-2 FIG. 3 is a schematic view for explaining another embodiment of the manufacturing method of the present invention. This example uses an improved facing target scheme to form the A layer. As shown in FIG. 3, in this embodiment, two pairs of opposed sputtering targets 70 and 71 having a relatively small area with respect to the area of the substrate are arranged with respect to the substrate 72 having a hole at the center. Form the layers.

【0025】ターゲット対70は、円筒形のもので、タ
ーゲット対71は、ドーナツ状のものである。また、ド
ーナツ状磁石80、81、82、83、84、85が図
のように配置されている。このような構成にすると、基
体の回転のあるなしにかかわらず、基体72に対して矢
印75、76、77で示されるように半径方向に沿って
斜め入射をしA層を形成する。対向したターゲットの組
のうち、ターゲット対71は、ターゲット対70ほど異
方性をそろえるという点で効果はなく、補助的なもので
省いてもよい。A層を形成するためのターゲット面積
は、通常のターゲットに比べて非常に小さくてすみ、コ
ストが少なくてすむ。また、ターゲットが対向し、マス
クを用いないため無駄になるスパッタ粒子が少なくてす
み、従来の方法に比べて非常に効率のよい方法である。
残りのB層ならびにC層は、通常のスパッタ法であるイ
ンラインあるいはバッチタイプ方式で形成すればよく、
結果的に、円周方向に磁化容易軸が揃うことになる。
The target pair 70 has a cylindrical shape, and the target pair 71 has a donut shape. Further, donut-shaped magnets 80, 81, 82, 83, 84, 85 are arranged as shown. With such a structure, the layer A is obliquely incident on the substrate 72 along the radial direction as indicated by arrows 75, 76, and 77 regardless of the rotation of the substrate. Among the pair of targets facing each other, the target pair 71 is not effective in that it has the same anisotropy as the target pair 70, and may be omitted because it is an auxiliary one. The target area for forming the A layer is much smaller than that of a normal target, and the cost is low. Further, since the targets face each other and a mask is not used, the amount of sputtered particles wasted is small, which is a very efficient method as compared with the conventional method.
The remaining B layer and C layer may be formed by an inline or batch type method which is a normal sputtering method.
As a result, the axes of easy magnetization are aligned in the circumferential direction.

【0026】[0026]

【発明の効果】本発明の製造方法によれば、磁気記録層
の磁化容易軸を円周方向に揃えたものとするために、極
薄のCr系初期層のみを、入射角を制限したスパッタリ
ングによって形成すればよいものとし、ターゲットの形
状にもあまりとらわれないですむものとしたので、従来
の方法に比べて非常に生産性よく、磁気記録媒体を製造
することができる。
According to the manufacturing method of the present invention, in order to align the easy axis of magnetization of the magnetic recording layer in the circumferential direction, only the ultrathin Cr-based initial layer is sputtered with the incident angle limited. The magnetic recording medium can be manufactured with much higher productivity than the conventional method, because the target can be formed by the method described above and the shape of the target does not have to be taken into consideration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法によって形成された磁気記録
媒体の断面構造を概念的に示す図である。
FIG. 1 is a view conceptually showing a cross-sectional structure of a magnetic recording medium formed by a manufacturing method of the present invention.

【図2】本発明の製造方法の一実施例を説明するための
図であり、斜め入射によるCr系極薄膜の初期層を形成
する際の基体上方より見たものと断面構造を簡略的に示
した図である。
FIG. 2 is a diagram for explaining one embodiment of the manufacturing method of the present invention, in which the cross-sectional structure and the one seen from above the substrate when forming the initial layer of the Cr-based ultrathin film by oblique incidence are schematically shown. It is the figure shown.

【図3】本発明の製造方法の別に実施例を説明するため
の図であり、斜め入射によるCr系極薄の初期層を形成
する際の断面構造および基体上方より見たものを簡略的
に示した図である。
FIG. 3 is a diagram for explaining another embodiment of the manufacturing method of the present invention, which is a cross-sectional structure when a Cr-based ultrathin initial layer is formed by oblique incidence and a view seen from above the substrate in a simplified manner. It is the figure shown.

【図4】斜め入射によるCr系極薄膜初期層の記録層に
及ぼす効果を説明するグラフを示す図である。
FIG. 4 is a diagram showing a graph for explaining the effect of the oblique incidence on the recording layer of the Cr-based ultrathin film initial layer.

【図5】斜め入射効果を説明するための図である。FIG. 5 is a diagram for explaining an oblique incidence effect.

【図6】円周状に磁化容易軸を付与するための従来の方
法の一例を説明するための図である。
FIG. 6 is a diagram for explaining an example of a conventional method for circumferentially applying an easy axis of magnetization.

【符号の説明】[Explanation of symbols]

1 Co系磁気記録層 2 Cr系下地層 3 基体 10 円盤状マグネトロンターゲット 11 エロージョン領域 12 入射角制御用円盤状マスク 13 円盤状基体 27 基体 28 斜め入射によるCr系極薄膜初期層 29 入射角を制限せずに形成したCr系下地層 30 入射角を制限せずに形成したCo系磁気記録層 40 円盤状の基体 41 マスク 42 スリット 44 長方形マグネトロンターゲット 70 対向円筒状スパッタリングターゲット 71 対向ドーナツ状スパッタリングターゲット 72 円盤状基体 81、82、83、84、85 対向ターゲット用ドー
ナツ状マグネット
1 Co-based magnetic recording layer 2 Cr-based underlayer 3 Substrate 10 Disc-shaped magnetron target 11 Erosion region 12 Disc-shaped mask for incident angle control 13 Disc-shaped substrate 27 Substrate 28 Cr-based ultra-thin film initial layer by oblique incidence 29 Incident angle limited Cr-based underlayer 30 formed without forming a Co-based magnetic recording layer formed without limiting the incident angle 40 Disc-shaped substrate 41 Mask 42 Slit 44 Rectangular magnetron target 70 Opposed cylindrical sputtering target 71 Opposed donut-shaped sputtering target 72 Disk-shaped substrate 81, 82, 83, 84, 85 Donut magnet for facing target

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基体上に、Cr系の下地膜層を有
し、その上にCo系強磁性合金膜を有し、円周方向に揃
った磁化容易軸を有する磁気記録媒体の製造方法におい
て、前記下地膜層の形成に際し、前記基体上に対して、
形成すべき磁気記録媒体の実質的に半径方向から、スパ
ッタリング法により媒体粒子を入射することにより極薄
膜のCr系初期層を形成した後、媒体粒子の入射方向を
制限しないスパッタリング法によりさらにCr系膜を下
地膜層として十分な厚みになるまで積層形成することを
特徴とする磁気記録媒体の製造方法。
1. A magnetic recording medium having a Cr-based underlayer on a non-magnetic substrate, a Co-based ferromagnetic alloy layer on the underlayer, and an easy axis of magnetization aligned in the circumferential direction. In the method, when forming the base film layer, on the substrate,
After forming a Cr-based initial layer of a very thin film by injecting medium particles by a sputtering method from substantially the radial direction of the magnetic recording medium to be formed, a Cr-based initial layer is further formed by a sputtering method that does not limit the incident direction of the medium particles. A method of manufacturing a magnetic recording medium, comprising laminating films as a base film layer to a sufficient thickness.
【請求項2】 前記Cr系初期層の形成は、形成すべき
磁気記録媒体の半径方向に延長するスリットを有するマ
スクを、前記基体の上面より上方に配置し、前記基体を
回転させながら、前記マスクのスリットを通してスパッ
タリングを行うことによってなされる請求項1記載の磁
気記録媒体の製造方法。
2. The Cr-based initial layer is formed by arranging a mask having slits extending in the radial direction of a magnetic recording medium to be formed above the upper surface of the base and rotating the base while rotating the base. The method of manufacturing a magnetic recording medium according to claim 1, wherein the method is performed by performing sputtering through a slit of a mask.
【請求項3】 前記Cr系初期層の形成は、前記基体の
実質的に中心面上に対向配置した小円形状スパッタター
ゲットと、前記基体の外側面上に対向配置し前記基体の
外形と同程度の内径を有するドーナツ型スパッタターゲ
ットとを用いて行われる請求項1記載の磁気記録媒体の
製造方法。
3. The formation of the Cr-based initial layer is performed in the same manner as the small circular sputter target arranged substantially on the central surface of the base body and the outer surface of the base body facing each other. The method for producing a magnetic recording medium according to claim 1, wherein the method is performed by using a doughnut-type sputter target having an inner diameter of about 3 mm.
JP25394091A 1991-10-01 1991-10-01 Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction Pending JPH05101385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25394091A JPH05101385A (en) 1991-10-01 1991-10-01 Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25394091A JPH05101385A (en) 1991-10-01 1991-10-01 Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction

Publications (1)

Publication Number Publication Date
JPH05101385A true JPH05101385A (en) 1993-04-23

Family

ID=17258116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25394091A Pending JPH05101385A (en) 1991-10-01 1991-10-01 Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction

Country Status (1)

Country Link
JP (1) JPH05101385A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051630A1 (en) * 2002-12-02 2004-06-17 Fujitsu Limited Polycrystalline structure film, magnetic recording medium and magnetic storage
WO2005040449A1 (en) * 2003-09-29 2005-05-06 Seagate Technology Llc System, method and aperture for oblique deposition
US7482069B2 (en) 2002-12-02 2009-01-27 Fujitsu Limited Polycrystalline structure film having inclined lattice surfaces

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051630A1 (en) * 2002-12-02 2004-06-17 Fujitsu Limited Polycrystalline structure film, magnetic recording medium and magnetic storage
US7482069B2 (en) 2002-12-02 2009-01-27 Fujitsu Limited Polycrystalline structure film having inclined lattice surfaces
WO2005040449A1 (en) * 2003-09-29 2005-05-06 Seagate Technology Llc System, method and aperture for oblique deposition

Similar Documents

Publication Publication Date Title
KR100418640B1 (en) Magnetic recording medium and its manufacturing method
JPH07105027B2 (en) Perpendicular magnetic recording medium
JPH05101385A (en) Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction
JP2001207257A (en) Method and system for manufacturing gmr film
JPH0268716A (en) Production of magnetic disk medium
JP2001014664A (en) Magnetic recording medium and manufacture of the same
JPS59107417A (en) Permanent magnet bias type magneto-resistance effect head
JPH10241935A (en) Magnetic recording medium and its manufacture
EP0227069A2 (en) Middle layer material for magnetic disc
JP2806443B2 (en) Magnetic recording medium and method of manufacturing the same
JPH0969460A (en) Manufacture of magnetic recording medium
JPS6260119A (en) Magnetic recording medium and its production
JPS59157828A (en) Magnetic recording medium
JPH01213833A (en) Production of magnetic recording medium
JPH0969459A (en) Manufacture of magnetic recording medium
JPH05258275A (en) Perpendicular magnetic recording medium and its production
JPH0823929B2 (en) Perpendicular magnetic recording media
JPS62150516A (en) Magnetic recording body
JPH02236815A (en) Magnetic recording medium and its production
JPH0677051A (en) Soft magnetic thin film
JPS63127432A (en) Sputtering device
JPH08162355A (en) Manufacture of soft magnetic film and magnetic head
JPH0273522A (en) Manufacture of recording medium
JPH04328325A (en) Manufacture of magnetic recording medium
JPH01227224A (en) Target for producing sputtered magnetic disk medium and production of sputtered magnetic disk medium