JPH05100201A - Variable focus lens - Google Patents

Variable focus lens

Info

Publication number
JPH05100201A
JPH05100201A JP26202191A JP26202191A JPH05100201A JP H05100201 A JPH05100201 A JP H05100201A JP 26202191 A JP26202191 A JP 26202191A JP 26202191 A JP26202191 A JP 26202191A JP H05100201 A JPH05100201 A JP H05100201A
Authority
JP
Japan
Prior art keywords
electrode
ring
variable focus
lens
electrode lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26202191A
Other languages
Japanese (ja)
Inventor
Osamu Yokoyama
修 横山
Hidefumi Sakata
秀文 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP26202191A priority Critical patent/JPH05100201A/en
Publication of JPH05100201A publication Critical patent/JPH05100201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To form ring band-shaped electrodes without any missing and to make image formation characteristics excellent by forming electrode lead-out lines on a different surface from the ring band-shaped electrodes. CONSTITUTION:On a transparent substrate 101, the electrode lead-out lines 102 are formed. Those electrode lead-out lines 102 are formed of transparent electrode films and a transparent insulating film 103 which is as thick as the electrode lead-out lines 102 are formed except at the pattern of the electrode lead-out lines 102. Then connection parts 104 for connecting the electrode lead- out lines 102 and ring band-shaped electrodes 106 are formed. The electrode lead--out lines 102 are connected to the ring band-shaped electrodes 106 through the connection parts 104. In this case, the ring band-shaped electrodes 106 and the electrode lead-out lines 102 and formed on different surfaces. Then the proper ring band-shaped electrode 106 is selected and applied with a voltage to vary the refractive index of liquid crystal to incident light, and thus a necessary phase distribution is generated to vary the focal length.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、焦点距離を電気的に変
えられるレンズの構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lens structure whose focal length can be changed electrically.

【0002】[0002]

【従来の技術】従来の可変焦点レンズの例としては、特
開昭63ー249125に記載されているように、液晶
を用いてフレネルゾーンプレートを構成する方法が考え
られていた。そこに記載されている電極パターンは図5
に示す様になっており、電極パターン501の一部を除
去して電極引き出し線502を設けるようになってい
る。
2. Description of the Related Art As an example of a conventional variable focus lens, there has been considered a method of forming a Fresnel zone plate using a liquid crystal as described in JP-A-63-249125. The electrode pattern described there is shown in FIG.
The electrode lead-out line 502 is provided by removing a part of the electrode pattern 501.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、フレネ
ルゾーンプレートにおける輪帯状の電極パターンの一部
の欠落は、結像特性を劣化させる、という問題点があっ
た。
However, there is a problem that a part of the ring-shaped electrode pattern on the Fresnel zone plate is lost, which deteriorates the image forming characteristics.

【0004】本発明はこの様な問題を解決するものであ
り、その目的とするところは、欠落のない輪帯状電極か
ら成り、良好な結像特性をもつ可変焦点レンズを提供す
るところにある。
The present invention solves such a problem, and an object of the present invention is to provide a varifocal lens which is composed of a ring-shaped electrode having no omission and has good image forming characteristics.

【0005】[0005]

【課題を解決するための手段】本発明の第1の可変焦点
レンズは、屈折率可変材料が輪帯状電極と対向電極とに
挟持されている可変焦点レンズにおいて、前記輪帯状電
極の電極引き出し線が前記輪帯状電極とは異なる面内に
あることを特徴とする。
A first variable focus lens of the present invention is a variable focus lens in which a variable refractive index material is sandwiched between an annular electrode and a counter electrode, and an electrode lead line of the annular electrode is provided. Is in a plane different from that of the ring-shaped electrode.

【0006】本発明の第2の可変焦点レンズは、前記第
1の可変焦点レンズにおいて、電極引き出し線と、該電
極引き出し線と輪帯状電極とを接続する接続部と、前記
輪帯状電極とが順次積層され、各層において導体間を該
導体と同じ厚みの透明絶縁膜で埋めたことを特徴とす
る。
According to a second variable focus lens of the present invention, in the first variable focus lens, an electrode lead line, a connecting portion connecting the electrode lead line and the ring-shaped electrode, and the ring-shaped electrode are provided. It is characterized in that they are sequentially laminated, and the conductors in each layer are filled with a transparent insulating film having the same thickness as the conductor.

【0007】本発明の第3の可変焦点レンズは、前記第
1の可変焦点レンズにおいて、屈折率可変材料が液晶で
あることを特徴とする。
A third variable focus lens of the present invention is characterized in that, in the first variable focus lens, the refractive index variable material is liquid crystal.

【0008】本発明の第4の可変焦点レンズは、前記第
1の可変焦点レンズにおいて、最内周の電極以外の輪帯
状電極の幅が等しいことを特徴とする。
A fourth variable focus lens of the present invention is characterized in that, in the first variable focus lens, the widths of the ring-shaped electrodes other than the innermost electrode are equal.

【0009】本発明の第5の可変焦点レンズは、前記第
1の可変焦点レンズにおいて、隣合う複数の輪帯状電極
にステップ状に電圧を印加することを特徴とする。
A fifth variable focus lens according to the present invention is characterized in that, in the first variable focus lens, a voltage is applied stepwise to a plurality of adjacent annular electrodes.

【0010】本発明の第6の可変焦点レンズは、前記第
1の可変焦点レンズにおいて、輪帯状電極が楕円状のパ
ターンを有することを特徴とする。
A sixth variable focus lens of the present invention is characterized in that, in the first variable focus lens, the ring-shaped electrode has an elliptical pattern.

【0011】[0011]

【作用】位相の周期構造によってレンズ作用を持つフレ
ネルレンズでは、焦点距離は位相の周期構造のパターン
によって決まる。逆に言えば、位相の周期構造のパター
ンを変えることによって焦点距離を変えることができ
る。どれだけ細かく位相の周期構造を変えてやれば良い
かということから決まる細さの輪帯状電極を用意してお
き、この電極に印加する電圧によって液晶の配向を変
え、入射光に対する液晶の屈折率を変えてやることによ
って位相を変化させる。所望の焦点距離に対応する位相
の周期構造のパターンに合う輪帯状電極を選択して電圧
を印加することによって所望の焦点距離を得ることがで
きる。
In the Fresnel lens having the lens action due to the periodic structure of the phase, the focal length is determined by the pattern of the periodic structure of the phase. Conversely speaking, the focal length can be changed by changing the pattern of the periodic structure of the phase. A ring-shaped electrode with a thinness determined by how finely the periodic structure of the phase should be changed is prepared, the orientation of the liquid crystal is changed by the voltage applied to this electrode, and the refractive index of the liquid crystal to incident light is changed. The phase is changed by changing. A desired focal length can be obtained by selecting a ring-shaped electrode that matches the pattern of the periodic structure having a phase corresponding to the desired focal length and applying a voltage.

【0012】[0012]

【実施例】【Example】

(実施例1)図1は本発明の可変焦点レンズの構成を示
す図である。図1(a)は断面図であり、図1(b)は
電極だけを抜き出して描いた平面図である。図1(a)
は図1(b)のAーB断面を示している。見やすくする
ために図の電極数は実際より少なく描いてある。
(Embodiment 1) FIG. 1 is a diagram showing a configuration of a variable focus lens of the present invention. 1A is a cross-sectional view, and FIG. 1B is a plan view in which only the electrodes are extracted and drawn. Figure 1 (a)
Shows the AB cross section of FIG. 1 (b). The number of electrodes in the figure is drawn smaller than it is for the sake of clarity.

【0013】透明な基板であるガラス基板101上に、
電極引き出し線102が形成される。電極引き出し線1
02は透明導電膜から成る。電極引き出し線102のパ
ターン以外の部分には、電極引き出し線102と同じ厚
みを持つ透明絶縁膜103が形成される。続いて、電極
引き出し線102と輪帯状電極106を接続するための
接続部104が形成される。接続部104は透明導電膜
から成る。接続部104のパターン以外の部分には、接
続部104と同じ厚みを持つ透明絶縁膜105が形成さ
れる。
On a glass substrate 101 which is a transparent substrate,
The electrode lead wire 102 is formed. Electrode lead wire 1
02 is made of a transparent conductive film. A transparent insulating film 103 having the same thickness as the electrode lead-out line 102 is formed on a portion other than the pattern of the electrode lead-out line 102. Subsequently, a connecting portion 104 for connecting the electrode lead wire 102 and the ring-shaped electrode 106 is formed. The connection portion 104 is made of a transparent conductive film. A transparent insulating film 105 having the same thickness as the connecting portion 104 is formed on the portion other than the pattern of the connecting portion 104.

【0014】さらに、液晶108の屈折率を制御してフ
レネルレンズを形成するための輪帯状電極106が形成
される。輪帯状電極106は透明導電膜から成る。輪帯
状電極106のパターン以外の部分には、輪帯状電極1
06と同じ厚みを持つ透明絶縁膜107が形成される。
Further, an annular electrode 106 for controlling the refractive index of the liquid crystal 108 to form a Fresnel lens is formed. The ring-shaped electrode 106 is made of a transparent conductive film. The ring-shaped electrode 1 is formed on the portion other than the pattern of the ring-shaped electrode 106.
A transparent insulating film 107 having the same thickness as 06 is formed.

【0015】電極引き出し線102、接続部104、及
び輪帯状電極106を構成する透明導電膜としては酸化
インジウムと酸化錫とから成るITOを用いることがで
きる。
ITO composed of indium oxide and tin oxide can be used as the transparent conductive film forming the electrode lead wire 102, the connecting portion 104, and the ring-shaped electrode 106.

【0016】また、透明導電膜のパターン以外の部分を
埋める透明絶縁膜103、105、107としては、透
明導電膜との屈折率差による不要な回折を防ぐために、
透明導電膜の屈折率と同じ屈折率を持つ材料を用いるの
が最適であるが、現実的には電極引き出し線の屈折率に
なるべく近い屈折率を持つ材料を使うことになる。例え
ば酸化セリウム(CeO2)、酸化ケイ素(SiO)、
酸化ジルコニウム(ZrO2)などである。
Further, as the transparent insulating films 103, 105 and 107 for filling the portions other than the pattern of the transparent conductive film, in order to prevent unnecessary diffraction due to the difference in refractive index with the transparent conductive film,
It is optimal to use a material having the same refractive index as that of the transparent conductive film, but in reality, a material having a refractive index as close as possible to the refractive index of the electrode lead line will be used. For example, cerium oxide (CeO 2 ), silicon oxide (SiO),
Zirconium oxide (ZrO 2 ) and the like.

【0017】液晶108はガラス基板110に形成され
ている透明導電膜から成る共通電極109と、輪帯状電
極106および透明絶縁膜107の間に封入されてい
る。
The liquid crystal 108 is sealed between the common electrode 109 formed of a transparent conductive film formed on the glass substrate 110, the ring-shaped electrode 106 and the transparent insulating film 107.

【0018】本実施例における可変焦点レンズは、位相
の周期構造によってレンズ作用を持つフレネルレンズで
あり、その中でもブレーズ型フレネルレンズと呼ばれて
いるものである。図2を用いて本実施例における可変焦
点レンズの動作を説明する。軸対称のプラスレンズの位
相分布を図2(a)に示す。横軸はレンズの半径Rを表
しており、縦軸は位相を表している。レンズの中心Oか
らレンズ外周に向かって位相が周期的に、かつ鋸歯状に
2πずつ変化している。位相が0から−2πにかわる一
周期をゾーンと呼ぶことにする。ゾーンの半径Rmは次
式で与えられる。
The varifocal lens in this embodiment is a Fresnel lens having a lens action due to the periodic structure of the phase, and among them, it is called a blazed Fresnel lens. The operation of the variable focus lens in this embodiment will be described with reference to FIG. The phase distribution of the axisymmetric plus lens is shown in FIG. The horizontal axis represents the radius R of the lens, and the vertical axis represents the phase. The phase changes from the center O of the lens toward the outer periphery of the lens periodically and in a sawtooth shape by 2π. One period in which the phase changes from 0 to −2π is called a zone. The radius Rm of the zone is given by the following equation.

【0019】 Rm=(2mλf+(mλ)21/2 … (1) ここで、mは整数、λは波長、fは焦点距離である。つ
まり、レンズの焦点距離fが決まるとゾーンの位置が決
まる。従って、所望の焦点距離を実現するRmを計算
し、そのパターンに対応した輪帯状電極を選択して電圧
を印加し、入射光に対する液晶の屈折率を変えて所望の
位相分布をつければ、所望の焦点距離が実現できる。こ
の場合、一つのゾーン内の位相を0からー2πまで連続
的に変化させるのが望ましいが、離散的な輪帯状電極に
よって液晶の屈折率を変えるので、位相変化も離散的に
なる。従って、できるだけ理想的な位相分布に近づける
ように各輪帯状電極に印加する電圧を制御する。これを
図2(b)及び図2(c)を用いて具体的に説明する。
Rm = (2mλf + (mλ) 2 ) 1/2 (1) Here, m is an integer, λ is a wavelength, and f is a focal length. That is, the position of the zone is determined when the focal length f of the lens is determined. Therefore, by calculating Rm that realizes a desired focal length, selecting a ring-shaped electrode corresponding to the pattern, applying a voltage, and changing the refractive index of the liquid crystal with respect to incident light to give a desired phase distribution, The focal length of can be realized. In this case, it is desirable to continuously change the phase in one zone from 0 to −2π, but since the refractive index of the liquid crystal is changed by the discrete annular electrodes, the phase change is also discrete. Therefore, the voltage applied to each ring-shaped electrode is controlled so as to approximate the ideal phase distribution as much as possible. This will be specifically described with reference to FIGS. 2B and 2C.

【0020】図2(b)は焦点距離fbの場合の輪帯状
電極106とそれぞれの電極に印加される電圧の分布を
示したものである。わかりやすくするために、レンズの
一部だけを取り出して描いている。横軸はレンズの半径
R方向を示しており、Oはレンズの中心である。201
は電圧分布を示している。
FIG. 2B shows the distribution of the voltage applied to the ring-shaped electrodes 106 and the respective electrodes when the focal length is f b . For clarity, only a part of the lens is drawn for drawing. The horizontal axis shows the radius R direction of the lens, and O is the center of the lens. 201
Indicates the voltage distribution.

【0021】ゾーンの半径Rmb、Rmb+1は式(1)よ
り、 Rmb=(2mbλfb+(mbλ)21/2 … (2ー1) Rmb+1=(2(mb+1)λfb+((mb+1)λ)21/2 … (2ー2) である。このRmbとRmb+1の間で位相を0から−2πま
で変えるために、輪帯状電極Emb1とEmb2の間の電極に
電圧をステップ状に印加する。ステップの大きさは等し
くても良い、すなわち、電極Emb1からEmb2までの間で
電圧が直線的に変化しても良いが、図2(a)に示され
ている位相分布に近づけるようにステップの大きさを電
極ごとに変化させる方が望ましい。
From the formula (1), the radiuses Rm b and Rm b +1 of the zones are Rm b = (2m b λf b + (m b λ) 2 ) 1/2 (2-1) Rm b + 1 = (2 (m b +1) λf b + ((m b +1) λ) 2 ) 1/2 (2-2). In order to change the phase between Rm b and Rm b +1 from 0 to −2π, a voltage is applied stepwise to the electrode between the annular electrodes Emb1 and Emb2. The steps may have the same magnitude, that is, the voltage may change linearly between the electrodes Emb1 and Emb2, but the steps should be close to the phase distribution shown in FIG. 2 (a). It is desirable to change the size for each electrode.

【0022】一方、図2(c)には焦点距離fc(≠
b)の場合の輪帯状電極106とそれぞれの電極に印
加される電圧の分布を示した。図2(b)と同様にレン
ズの一部だけを取り出して描いている。横軸はレンズの
半径R方向を示しており、Oはレンズの中心である。2
02は電圧分布を示している。
On the other hand, in FIG. 2C, the focal length f c (≠
The distribution of the voltage applied to each of the annular electrodes 106 and the respective electrodes in the case of f b ) is shown. As in FIG. 2B, only a part of the lens is taken out and drawn. The horizontal axis shows the radius R direction of the lens, and O is the center of the lens. Two
02 indicates the voltage distribution.

【0023】焦点距離fcに対応するゾーンの半径R
mc、Rmc+1は式(1)より、 Rmc=(2mcλfc+(mcλ)21/2 … (3ー1) Rmc+1=(2(mc+1)λfc+((mc+1)λ)21/2 … (3ー2) である。このRmcとRmc+1の間で位相を0から−2πま
で変えるために、輪帯状電極Emc1とEmc2の間の電極に
電圧をステップ状に印加する。
The radius R of the zone corresponding to the focal length f c
m c, Rm c +1 with the formula (1), Rm c = ( 2m c λf c + (m c λ) 2) 1/2 ... (3 over 1) Rm c + 1 = ( 2 (m c +1 ) Λf c + ((m c +1) λ) 2 ) 1/2 (3-2). In order to change the phase between Rm c and Rm c +1 from 0 to −2π, a voltage is applied stepwise to the electrode between the annular electrodes Emc1 and Emc2.

【0024】以上のようにして、適当な輪帯状電極を選
択して電圧を印加し、入射光に対する液晶の屈折率を変
えて必要な位相分布を作り出すことによって焦点距離を
変えることができる。
As described above, the focal length can be changed by selecting an appropriate ring-shaped electrode, applying a voltage, and changing the refractive index of the liquid crystal with respect to the incident light to create a required phase distribution.

【0025】輪帯状電極106一本一本の幅は、位相分
布の変化に対応できる程度に細くなければならず、レン
ズ全面にわたって必要な分解能程度の幅で等しいことが
望ましい。ただし、最内周の輪帯の大きさはある程度の
大きさ以下にはならないので、最内周の輪帯状電極11
1の半径は、その他の輪帯状電極の幅ほどには小さくす
る必要はない。
The width of each ring-shaped electrode 106 must be thin enough to cope with the change in the phase distribution, and it is desirable that the width is equal to the required resolution over the entire lens surface. However, since the size of the innermost ring zone does not become smaller than a certain size, the innermost ring-shaped electrode 11
The radius of 1 does not have to be as small as the width of the other annular electrodes.

【0026】(実施例2)本実施例における可変焦点レ
ンズは、実施例1と同様にブレーズ型フレネルレンズで
あるが、図3に示すように輪帯状電極301が楕円パタ
ーンである。図3は輪帯状電極の平面図であり、見やす
くするために図の電極数は実際より少なく描いてある。
実施例1のレンズとは輪帯状電極と電極引き出し線の平
面的な形状が異なるだけである。
(Embodiment 2) The varifocal lens in this embodiment is a blazed Fresnel lens as in Embodiment 1, but the annular electrode 301 has an elliptical pattern as shown in FIG. FIG. 3 is a plan view of the ring-shaped electrode, and the number of electrodes in the drawing is drawn smaller than it actually is for the sake of clarity.
It differs from the lens of Example 1 only in the planar shape of the annular electrode and the electrode lead-out line.

【0027】楕円パターンを有するフレネルレンズの焦
点距離は図のY方向とX方向とで異なる。従って、輪帯
状電極301に印加する電圧パターンを変えることによ
り、Y方向の焦点距離とX方向の焦点距離を変えること
ができる。
The focal length of a Fresnel lens having an elliptical pattern differs in the Y and X directions in the figure. Therefore, the focal length in the Y direction and the focal length in the X direction can be changed by changing the voltage pattern applied to the annular electrode 301.

【0028】(実施例3)本実施例における可変焦点レ
ンズは、実施例1、実施例2と同様に位相の周期構造に
よってレンズ作用を持つフレネルレンズであるが、その
中でもバイナリ型フレネルレンズと呼ばれているもので
ある。図4を用いて本実施例における可変焦点レンズの
動作を説明する。
(Embodiment 3) The varifocal lens in this embodiment is a Fresnel lens having a lens action due to the periodic structure of the phase as in Embodiments 1 and 2, but is called a binary Fresnel lens among them. It is what has been. The operation of the variable focus lens in this embodiment will be described with reference to FIG.

【0029】軸対称のプラスレンズの位相分布を図4
(a)に示す。横軸はレンズの半径Rを表しており、縦
軸は位相を表している。レンズの中心Oからレンズ外周
に向かって位相が周期的にπずつ変化している。位相が
0から−πにかわる一周期をゾーンと呼ぶことにする。
位相が変化する半径Rnは次式で与えられる。
FIG. 4 shows the phase distribution of an axisymmetric plus lens.
It shows in (a). The horizontal axis represents the radius R of the lens, and the vertical axis represents the phase. The phase periodically changes by π from the center O of the lens toward the outer circumference of the lens. One period in which the phase changes from 0 to −π is called a zone.
The radius Rn at which the phase changes is given by the following equation.

【0030】 Rn=(nλf+(nλ/2)21/2 … (4) ここで、nは整数、λは波長、fは焦点距離である。つ
まり、レンズの焦点距離fが決まるとゾーンの位置が決
まる。従って、所望の焦点距離を実現するRnを計算
し、そのパターンに対応した輪帯状電極を選択して電圧
を印加し、入射光に対する液晶の屈折率を変えて所望の
位相分布をつければ、所望の焦点距離が実現できる。こ
れを図4(b)及び図4(c)を用いて具体的に説明す
る。
Rn = (nλf + (nλ / 2) 2 ) 1/2 (4) Here, n is an integer, λ is a wavelength, and f is a focal length. That is, the position of the zone is determined when the focal length f of the lens is determined. Therefore, if Rn that realizes a desired focal length is calculated, a ring-shaped electrode corresponding to the pattern is selected, a voltage is applied, the refractive index of the liquid crystal with respect to incident light is changed, and a desired phase distribution is obtained, The focal length of can be realized. This will be specifically described with reference to FIGS. 4B and 4C.

【0031】図4(b)は焦点距離fbの場合の輪帯状
電極106とそれぞれの電極に印加される電圧の分布を
示したものである。わかりやすくするために、レンズの
一部だけを取り出して描いている。横軸はレンズの半径
R方向を示しており、Oはレンズの中心である。401
は電圧分布を示している。
FIG. 4B shows the distribution of the voltage applied to each of the annular electrodes 106 and the respective electrodes when the focal length is f b . For clarity, only a part of the lens is drawn for drawing. The horizontal axis shows the radius R direction of the lens, and O is the center of the lens. 401
Indicates the voltage distribution.

【0032】位相を反転させる半径Rnb、Rnb+1は式
(4)より、 Rnb=(nbλfb+(nbλ/2)21/2 … (5ー1) Rnb+1=((nb+1)λfb+((nb+1)λ/2)21/2 … (5−2) である。RnbとRnb+1の間の位相をπだけ変えるために
は、入射光に対する液晶の屈折率を変えれば良く、これ
は、Enb1からEnb2の間の輪帯状電極に印加する電圧を
変えれば実現できる。式(4)で決まるパターンに従っ
てレンズの中心Oからレンズ最外周へ向かって輪帯状電
極を選択して電圧を印加し、所望の位相分布を形成す
る。
The radius Rn b to invert the phase, Rn b +1 with the formula (4), Rn b = ( n b λf b + (n b λ / 2) 2) 1/2 ... (5 over 1) Rn b is a +1 = ((n b +1) λf b + ((n b +1) λ / 2) 2) 1/2 ... (5-2). In order to change the phase between Rn b and Rn b +1 by π, it suffices to change the refractive index of the liquid crystal with respect to the incident light. This can be achieved by changing the voltage applied to the annular electrode between Enb1 and Enb2. realizable. A ring-shaped electrode is selected from the center O of the lens toward the outermost circumference of the lens according to the pattern determined by the equation (4), and a voltage is applied to form a desired phase distribution.

【0033】一方、図4(c)には焦点距離fc(≠
b)の場合の輪帯状電極106とそれぞれの電極に印
加される電圧の分布を示した。図4(b)と同様にレン
ズの一部だけを取り出して描いている。横軸はレンズの
半径R方向を示しており、Oはレンズの中心である。4
02は電圧分布を示している。
On the other hand, in FIG. 4C, the focal length f c (≠
The distribution of the voltage applied to each of the annular electrodes 106 and the respective electrodes in the case of f b ) is shown. Similar to FIG. 4B, only a part of the lens is taken out and drawn. The horizontal axis shows the radius R direction of the lens, and O is the center of the lens. Four
02 indicates the voltage distribution.

【0034】位相を反転させる半径Rnc、Rnc+1は式
(4)より、 Rnc=(ncλfc+(ncλ/2)21/2 … (6ー1) Rnc+1=((nc+1)λfc+((nc+1)λ/2)21/2 … (6−2) である。RncとRnc+1の間の位相をπだけ変えるために
は、Enc1からEnc2の間の輪帯状電極に印加する電圧を
変えれば良い。
From the formula (4), the radii Rn c and Rn c +1 for inverting the phase are calculated as follows: Rn c = (n c λf c + (n c λ / 2) 2 ) 1/2 ... (6-1) Rn c + 1 = ((n c +1) λf c + ((n c +1) λ / 2) 2 ) 1/2 (6-2). In order to change the phase between Rn c and Rn c +1 by π, the voltage applied to the annular electrode between Enc1 and Enc2 may be changed.

【0035】以上のようにして、適当な輪帯状電極を選
択して電圧を印加し、入射光に対する液晶の屈折率を変
えて必要な位相分布を作り出すことによって焦点距離を
変えることができる。
As described above, the focal length can be changed by selecting an appropriate ring-shaped electrode, applying a voltage, and changing the refractive index of the liquid crystal with respect to the incident light to create a necessary phase distribution.

【0036】レンズの透過率は、実施例1のブレーズ型
フレネルレンズの方が本実施例のバイナリ型フレネルレ
ンズより高い。
The transmittance of the lens is higher in the blazed Fresnel lens of the first embodiment than in the binary Fresnel lens of the present embodiment.

【0037】以上、本発明の焦点可変レンズの実施例を
説明したが、本発明の可変焦点レンズは、光ディスク用
光学ヘッドのレンズ、レーザビ−ムプリンタ用のレン
ズ、あるいは眼鏡レンズへの応用が可能である。また、
輪帯状電極と引き出し電極を異なる層で構成し、それぞ
れの電極の間を絶縁膜で埋めて平坦化する構造は、反射
型の焦点可変ミラ−にも適用が可能である。
Although the embodiments of the variable focus lens of the present invention have been described above, the variable focus lens of the present invention can be applied to a lens of an optical head for an optical disc, a lens for a laser beam printer, or a spectacle lens. Is. Also,
The structure in which the ring-shaped electrode and the extraction electrode are composed of different layers, and the gap between the electrodes is filled with an insulating film to be flattened can be applied to a reflection type variable focus mirror.

【0038】なお、輪帯状電極によって非球面レンズに
相当するゾーンパターンを形成することにより、収差の
コントロールも可能になる。
It is also possible to control aberrations by forming a zone pattern corresponding to an aspherical lens with the ring-shaped electrode.

【0039】[0039]

【発明の効果】以上述べたように本発明によれば、電極
引き出し線を輪帯状電極とは異なる面に形成することに
より、欠落のない輪帯状電極を形成できるという効果を
有する。
As described above, according to the present invention, by forming the electrode lead wire on the surface different from the ring-shaped electrode, it is possible to form a ring-shaped electrode without any omission.

【0040】従って、良好な結像特性を得ることができ
るという効果を有する。
Therefore, there is an effect that good imaging characteristics can be obtained.

【0041】また、電極引き出し線と、この電極引き出
し線と輪帯状電極とを接続する接続部と、輪帯状電極と
を順次積層し、各層において導体間をこれらの導体と同
じ厚みの透明絶縁膜で埋めることによって、段差をなく
して導体の断線が防げると共に、不要な回折光の発生が
抑えられるという効果を有する。
Further, an electrode lead wire, a connecting portion connecting the electrode lead wire and the ring-shaped electrode, and a ring-shaped electrode are sequentially laminated, and a transparent insulating film having the same thickness as these conductors is provided between the conductors in each layer. By filling in with, it is possible to prevent the disconnection of the conductor by eliminating the step and to suppress the generation of unnecessary diffracted light.

【0042】また、輪帯状電極の幅を、最内周の電極以
外の部分において等間隔にすることにより、任意の位相
分布を形成できるという効果を有する。
Further, by making the widths of the ring-shaped electrodes equidistant in portions other than the innermost electrode, it is possible to form an arbitrary phase distribution.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の可変焦点レンズの構成を示す図であ
る。(a)は断面図。(b)は電極だけを描いた平面
図。(a)は(b)のAーB断面。
FIG. 1 is a diagram showing a configuration of a variable focus lens of the present invention. (A) is sectional drawing. (B) is a plan view showing only electrodes. (A) is an AB cross section of (b).

【図2】 本発明の可変焦点レンズの第1の実施例にお
ける可変焦点レンズの動作を説明する図である。(a)
はレンズの位相分布を示す図。(b)は焦点距離fb
場合に輪帯状電極に印加される電圧の分布を示す図。
(c)は焦点距離fcの場合に輪帯状電極に印加される
電圧の分布を示す図。
FIG. 2 is a diagram for explaining the operation of the variable focus lens in the first example of the variable focus lens of the present invention. (A)
FIG. 4 is a diagram showing a phase distribution of a lens. FIG. 6B is a diagram showing the distribution of the voltage applied to the ring-shaped electrode when the focal length is f b .
(C) is a figure which shows the distribution of the voltage applied to a ring-shaped electrode in the case of a focal length f c .

【図3】 本発明の可変焦点レンズの第2の実施例にお
ける輪帯状電極のパターンを示す平面図である。
FIG. 3 is a plan view showing a pattern of ring-shaped electrodes in a second embodiment of the variable focus lens of the present invention.

【図4】 本発明の可変焦点レンズの第3の実施例にお
ける可変焦点レンズの動作を説明する図である。(a)
はレンズの位相分布を示す図。(b)は焦点距離fb
場合に輪帯状電極に印加される電圧の分布を示す図。
(c)は焦点距離fcの場合に輪帯状電極に印加される
電圧の分布を示す図。
FIG. 4 is a diagram for explaining the operation of the variable focus lens in the third example of the variable focus lens of the present invention. (A)
FIG. 4 is a diagram showing a phase distribution of a lens. FIG. 6B is a diagram showing the distribution of the voltage applied to the ring-shaped electrode when the focal length is f b .
(C) is a figure which shows the distribution of the voltage applied to a ring-shaped electrode in the case of focal length f c .

【図5】 従来の可変焦点レンズにおける電極パターン
を示す図である。
FIG. 5 is a diagram showing an electrode pattern in a conventional variable focus lens.

【符号の説明】[Explanation of symbols]

101、110 ガラス基板 102 電極引き出し線 103、105、107 透明絶縁膜 104 接続部 106 輪帯状電極 108 液晶 109 共通電極 111 最内周の輪帯状電極 201、202 電圧分布 Rm、Rm+1、Rmb、Rmb+1、Rmc、Rmc+1 ゾーン半径 Emb1、Emb2、Emc1、Emc2 輪帯状電極 O レンズの中心 R 半径 301 輪帯状電極 401、402 電圧分布 Rn、Rn+1、Rnb、Rnb+1、Rnc、Rnc+1 半径 Enb1、Enb2、Enc1、Enc2 輪帯状電極 501 電極パターン 502 電極引き出し線 101, 110 glass substrate 102 electrode lead wire 103, 105, 107 transparent insulating film 104 connection portion 106 ring-shaped electrode 108 liquid crystal 109 common electrode 111 innermost ring-shaped electrode 201, 202 voltage distribution Rm, Rm + 1, Rmb, Rmb + 1, Rmc, Rmc + 1 Zone radii Emb1, Emb2, Emc1, Emc2 Center of ring-shaped electrode O lens R Radius 301 Ring-shaped electrode 401, 402 Voltage distribution Rn, Rn + 1, Rnb, Rnb + 1, Rnc, Rnc + 1 Radius Enb1, Enb2, Enc1, Enc2 Ring-shaped electrode 501 Electrode pattern 502 Electrode lead wire

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 屈折率可変材料が輪帯状電極と対向電極
とに挟持されている可変焦点レンズにおいて、前記輪帯
状電極の電極引き出し線が前記輪帯状電極とは異なる面
内にあることを特徴とする可変焦点レンズ。
1. A variable focus lens in which a variable refractive index material is sandwiched between a ring-shaped electrode and a counter electrode, wherein an electrode lead line of the ring-shaped electrode is in a plane different from that of the ring-shaped electrode. Variable focus lens.
【請求項2】 電極引き出し線と、該電極引き出し線と
輪帯状電極とを接続する接続部と、前記輪帯状電極とが
順次積層され、各層において導体間を該導体と同じ厚み
の透明絶縁膜で埋めたことを特徴とする請求項1記載の
可変焦点レンズ。
2. An electrode lead wire, a connecting portion connecting the electrode lead wire and the ring-shaped electrode, and the ring-shaped electrode are sequentially laminated, and a transparent insulating film having the same thickness as the conductor is provided between the conductors in each layer. The variable focus lens according to claim 1, wherein the variable focus lens is filled with.
【請求項3】 屈折率可変材料が液晶であることを特徴
とする請求項1記載の可変焦点レンズ。
3. The variable focus lens according to claim 1, wherein the variable refractive index material is liquid crystal.
【請求項4】 最内周の電極以外の輪帯状電極の幅が等
しいことを特徴とする請求項1記載の可変焦点レンズ。
4. The variable focus lens according to claim 1, wherein the annular electrodes other than the innermost electrode have the same width.
【請求項5】 隣合う複数の輪帯状電極にステップ状に
電圧を印加することを特徴とする請求項1記載の可変焦
点レンズ。
5. The variable focus lens according to claim 1, wherein a voltage is applied stepwise to a plurality of adjacent annular electrodes.
【請求項6】 輪帯状電極が楕円状のパターンを有する
ことを特徴とする請求項1記載の可変焦点レンズ。
6. The variable focus lens according to claim 1, wherein the ring-shaped electrode has an elliptical pattern.
JP26202191A 1991-10-09 1991-10-09 Variable focus lens Pending JPH05100201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26202191A JPH05100201A (en) 1991-10-09 1991-10-09 Variable focus lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26202191A JPH05100201A (en) 1991-10-09 1991-10-09 Variable focus lens

Publications (1)

Publication Number Publication Date
JPH05100201A true JPH05100201A (en) 1993-04-23

Family

ID=17369922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26202191A Pending JPH05100201A (en) 1991-10-09 1991-10-09 Variable focus lens

Country Status (1)

Country Link
JP (1) JPH05100201A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335330A (en) * 1995-06-07 1996-12-17 Internatl Business Mach Corp <Ibm> Optical data device for readout of optical disk with different thickness in axial direction and method for detection of data from said optical disk
JPH09128785A (en) * 1995-08-31 1997-05-16 Pioneer Electron Corp Optical pickup
JPH09211460A (en) * 1996-01-30 1997-08-15 Asahi Glass Co Ltd Light modulator and optical head device using the same
JPH1031435A (en) * 1996-07-16 1998-02-03 Fujitsu Ltd Liquid crystal display panel
JPH10124921A (en) * 1996-08-30 1998-05-15 Sanyo Electric Co Ltd Optical reproducing device
JP2001100258A (en) * 1999-09-29 2001-04-13 Minolta Co Ltd Spatial modulation unit with variable focus position, beam of light deflecting device, focus detection device and camera
JP2001194636A (en) * 2000-01-14 2001-07-19 Minolta Co Ltd Focal position variable space modulation device
JP2001194635A (en) * 2000-01-14 2001-07-19 Minolta Co Ltd Focal position variable space modulation device
JP2002015454A (en) * 2000-06-30 2002-01-18 Pioneer Electronic Corp Liquid crystal unit for correction of aberration, optical pickup device and device fo correction of aberration
JP2003141771A (en) * 2001-11-06 2003-05-16 Sharp Corp Optical pickup device
JP2004101885A (en) * 2002-09-10 2004-04-02 Pioneer Electronic Corp Liquid crystal lens and its driving method, and device
US6778246B2 (en) * 2001-01-26 2004-08-17 University Of Alabama In Huntsville Liquid crystal adaptive lens with closed-loop electrodes and related fabrication methods and control methods
JP2004286961A (en) * 2003-03-20 2004-10-14 Ricoh Co Ltd Optical element, optical deflection element, and image display apparatus
JP2004341488A (en) * 2003-03-12 2004-12-02 Asulab Sa Substrate provided with transparent electrode and device comprising the substrate
JP2004361086A (en) * 2003-05-30 2004-12-24 Olympus Corp Biomolecule analyzer
JP2005148762A (en) * 2004-12-27 2005-06-09 Sharp Corp Exposure device
US7019812B2 (en) * 2001-11-16 2006-03-28 Citizen Watch Co., Ltd. Liquid crystal optical element and an optical device
WO2006035482A1 (en) * 2004-09-27 2006-04-06 Binit Corporation Liquid crystal element having optical zoom function and method for manufacturing the same
WO2006054803A1 (en) 2004-11-22 2006-05-26 Citizen Holdings Co., Ltd. Liquid crystal optical element and manufacturing method thereof
JP2007017511A (en) * 2005-07-05 2007-01-25 Citizen Watch Co Ltd Liquid crystal optical element and camera using the same, and optical pickup device
JP2007017510A (en) * 2005-07-05 2007-01-25 Citizen Watch Co Ltd Liquid crystal optical element and camera using the same, and optical pickup device
WO2005101111A3 (en) * 2004-04-13 2007-03-15 Univ Arizona Patterned electrodes for electroactive liquid-crystal ophthalmic devices
JP2008076926A (en) * 2006-09-25 2008-04-03 Citizen Holdings Co Ltd Liquid crystal lens
JP2008089834A (en) * 2006-09-29 2008-04-17 Citizen Holdings Co Ltd Liquid crystal optical element and liquid crystal optical module
JP2008529064A (en) * 2005-01-21 2008-07-31 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Electroactive adaptive lens with variable focal length
US7423719B2 (en) * 2000-08-31 2008-09-09 Toppan Printing Co., Ltd. Optical film using diffraction grating and display device using the same
US7450487B2 (en) * 2004-06-11 2008-11-11 Samsung Electronics Co., Ltd. Optical pickup apparatus
JP2009175751A (en) * 2009-03-31 2009-08-06 Citizen Holdings Co Ltd Liquid crystal variable-wavelength filter device
JP2009276624A (en) * 2008-05-15 2009-11-26 Dic Corp Liquid crystal lens and eyesight correcting apparatus using the same
JP2010134981A (en) * 2008-12-03 2010-06-17 Citizen Holdings Co Ltd Liquid crystal optical element and optical pickup apparatus
US7755583B2 (en) 2006-06-12 2010-07-13 Johnson & Johnson Vision Care Inc Method to reduce power consumption with electro-optic lenses
US7926940B2 (en) 2007-02-23 2011-04-19 Pixeloptics, Inc. Advanced electro-active optic device
CN102193202A (en) * 2010-03-17 2011-09-21 三星电子株式会社 Image display device using diffractive lens
CN102759837A (en) * 2011-04-27 2012-10-31 点晶科技股份有限公司 Liquid crystal lens
US8358399B2 (en) * 2007-12-14 2013-01-22 Lg Display Co., Ltd. Electrically-driven liquid crystal lens and stereoscopic display device using the same
US8773600B2 (en) 2010-02-15 2014-07-08 Japan Display West Inc. Liquid crystal lens and display device
US8915588B2 (en) 2004-11-02 2014-12-23 E-Vision Smart Optics, Inc. Eyewear including a heads up display
JP2015018200A (en) * 2013-07-12 2015-01-29 點晶科技股▲ふん▼有限公司 Liquid crystal lens and liquid crystal lens module
TWI475278B (en) * 2006-06-05 2015-03-01 Johnson & Johnson Vision Care Adaptive electro-active lens with variable focal length
US9028062B2 (en) 2007-05-04 2015-05-12 Mitsui Chemicals, Inc. Electronic eyeglass frame
US9033494B2 (en) 2007-03-29 2015-05-19 Mitsui Chemicals, Inc. Multifocal lens having a progressive optical power region and a discontinuity
US9124796B2 (en) 2004-11-02 2015-09-01 E-Vision Smart Optics, Inc. Eyewear including a remote control camera
US9122083B2 (en) 2005-10-28 2015-09-01 E-Vision Smart Optics, Inc. Eyewear docking station and electronic module
US9155614B2 (en) 2007-01-22 2015-10-13 E-Vision Smart Optics, Inc. Flexible dynamic electro-active lens
US9323101B2 (en) 1999-07-02 2016-04-26 E-Vision Smart Optics, Inc. Electro-active opthalmic lens having an optical power blending region
US9411172B2 (en) 2007-07-03 2016-08-09 Mitsui Chemicals, Inc. Multifocal lens with a diffractive optical power region
US9801709B2 (en) 2004-11-02 2017-10-31 E-Vision Smart Optics, Inc. Electro-active intraocular lenses
JP2019002977A (en) * 2017-06-13 2019-01-10 義一 澁谷 Spectacles
CN109445146A (en) * 2018-12-29 2019-03-08 南京奥谱依电子科技有限公司 A kind of electrically-controlled liquid crystal planar diffraction micro mirror and preparation method thereof
WO2019179147A1 (en) * 2018-03-19 2019-09-26 京东方科技集团股份有限公司 Liquid crystal cell and drive method therefor, and liquid crystal lens
US10613355B2 (en) 2007-05-04 2020-04-07 E-Vision, Llc Moisture-resistant eye wear
CN111103707A (en) * 2018-10-29 2020-05-05 源奇科技股份有限公司 Electrically controlled optical phase modulation element
JP2021085924A (en) * 2019-11-26 2021-06-03 キヤノン株式会社 Optical apparatus and optical element
US11061252B2 (en) 2007-05-04 2021-07-13 E-Vision, Llc Hinge for electronic spectacles

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335330A (en) * 1995-06-07 1996-12-17 Internatl Business Mach Corp <Ibm> Optical data device for readout of optical disk with different thickness in axial direction and method for detection of data from said optical disk
JPH09128785A (en) * 1995-08-31 1997-05-16 Pioneer Electron Corp Optical pickup
JPH09211460A (en) * 1996-01-30 1997-08-15 Asahi Glass Co Ltd Light modulator and optical head device using the same
JPH1031435A (en) * 1996-07-16 1998-02-03 Fujitsu Ltd Liquid crystal display panel
JPH10124921A (en) * 1996-08-30 1998-05-15 Sanyo Electric Co Ltd Optical reproducing device
US9323101B2 (en) 1999-07-02 2016-04-26 E-Vision Smart Optics, Inc. Electro-active opthalmic lens having an optical power blending region
US9500883B2 (en) 1999-07-02 2016-11-22 E-Vision Smart Optics, Inc. Electro-active opthalmic lens having an optical power blending region
US9411173B1 (en) 1999-07-02 2016-08-09 E-Vision Smart Optics, Inc. Electro-active opthalmic lens having an optical power blending region
JP2001100258A (en) * 1999-09-29 2001-04-13 Minolta Co Ltd Spatial modulation unit with variable focus position, beam of light deflecting device, focus detection device and camera
JP2001194635A (en) * 2000-01-14 2001-07-19 Minolta Co Ltd Focal position variable space modulation device
JP2001194636A (en) * 2000-01-14 2001-07-19 Minolta Co Ltd Focal position variable space modulation device
JP2002015454A (en) * 2000-06-30 2002-01-18 Pioneer Electronic Corp Liquid crystal unit for correction of aberration, optical pickup device and device fo correction of aberration
US7423719B2 (en) * 2000-08-31 2008-09-09 Toppan Printing Co., Ltd. Optical film using diffraction grating and display device using the same
US6778246B2 (en) * 2001-01-26 2004-08-17 University Of Alabama In Huntsville Liquid crystal adaptive lens with closed-loop electrodes and related fabrication methods and control methods
JP2003141771A (en) * 2001-11-06 2003-05-16 Sharp Corp Optical pickup device
US7019812B2 (en) * 2001-11-16 2006-03-28 Citizen Watch Co., Ltd. Liquid crystal optical element and an optical device
JP2004101885A (en) * 2002-09-10 2004-04-02 Pioneer Electronic Corp Liquid crystal lens and its driving method, and device
JP2004341488A (en) * 2003-03-12 2004-12-02 Asulab Sa Substrate provided with transparent electrode and device comprising the substrate
JP4647921B2 (en) * 2003-03-12 2011-03-09 アスラブ・エス アー Substrate with transparent electrode and apparatus including the substrate
JP2004286961A (en) * 2003-03-20 2004-10-14 Ricoh Co Ltd Optical element, optical deflection element, and image display apparatus
JP2004361086A (en) * 2003-05-30 2004-12-24 Olympus Corp Biomolecule analyzer
WO2005101111A3 (en) * 2004-04-13 2007-03-15 Univ Arizona Patterned electrodes for electroactive liquid-crystal ophthalmic devices
US7450487B2 (en) * 2004-06-11 2008-11-11 Samsung Electronics Co., Ltd. Optical pickup apparatus
CN100437219C (en) * 2004-09-27 2008-11-26 碧理科技有限公司 Liquid crystal element having optical zoom function and method for manufacturing the same
WO2006035482A1 (en) * 2004-09-27 2006-04-06 Binit Corporation Liquid crystal element having optical zoom function and method for manufacturing the same
JPWO2006035482A1 (en) * 2004-09-27 2008-05-15 株式会社びにっと Liquid crystal device having optical zoom function and method of manufacturing the same
JP4532500B2 (en) * 2004-09-27 2010-08-25 株式会社びにっと Liquid crystal element having optical zoom function and method for manufacturing the same
US10795411B2 (en) 2004-11-02 2020-10-06 E-Vision Smart Optics, Inc. Eyewear including a remote control camera and a docking station
US8931896B2 (en) 2004-11-02 2015-01-13 E-Vision Smart Optics Inc. Eyewear including a docking station
US9124796B2 (en) 2004-11-02 2015-09-01 E-Vision Smart Optics, Inc. Eyewear including a remote control camera
US11822155B2 (en) 2004-11-02 2023-11-21 E-Vision Smart Optics, Inc. Eyewear including a remote control camera
US11422389B2 (en) 2004-11-02 2022-08-23 E-Vision Smart Optics, Inc. Eyewear including a remote control camera
US9801709B2 (en) 2004-11-02 2017-10-31 E-Vision Smart Optics, Inc. Electro-active intraocular lenses
US11262796B2 (en) 2004-11-02 2022-03-01 E-Vision Smart Optics, Inc. Eyewear including a detachable power supply and display
US11144090B2 (en) 2004-11-02 2021-10-12 E-Vision Smart Optics, Inc. Eyewear including a camera or display
US10092395B2 (en) 2004-11-02 2018-10-09 E-Vision Smart Optics, Inc. Electro-active lens with crossed linear electrodes
US8915588B2 (en) 2004-11-02 2014-12-23 E-Vision Smart Optics, Inc. Eyewear including a heads up display
US10126569B2 (en) 2004-11-02 2018-11-13 E-Vision Smart Optics Inc. Flexible electro-active lens
US10852766B2 (en) 2004-11-02 2020-12-01 E-Vision Smart Optics, Inc. Electro-active elements with crossed linear electrodes
US10159563B2 (en) 2004-11-02 2018-12-25 E-Vision Smart Optics, Inc. Eyewear including a detachable power supply and a display
US10729539B2 (en) 2004-11-02 2020-08-04 E-Vision Smart Optics, Inc. Electro-chromic ophthalmic devices
US10379575B2 (en) 2004-11-02 2019-08-13 E-Vision Smart Optics, Inc. Eyewear including a remote control camera and a docking station
US10172704B2 (en) 2004-11-02 2019-01-08 E-Vision Smart Optics, Inc. Methods and apparatus for actuating an ophthalmic lens in response to ciliary muscle motion
WO2006054803A1 (en) 2004-11-22 2006-05-26 Citizen Holdings Co., Ltd. Liquid crystal optical element and manufacturing method thereof
EP1816507A1 (en) * 2004-11-22 2007-08-08 Citizen Holdings Co., Ltd. Liquid crystal optical element and manufacturing method thereof
EP1816507A4 (en) * 2004-11-22 2009-02-25 Citizen Holdings Co Ltd Liquid crystal optical element and manufacturing method thereof
US7619713B2 (en) 2004-11-22 2009-11-17 Citizen Holdings Co., Inc. Liquid crystal optical element and method for manufacturing thereof
JP2005148762A (en) * 2004-12-27 2005-06-09 Sharp Corp Exposure device
JP2013047823A (en) * 2005-01-21 2013-03-07 Johnson & Johnson Vision Care Inc Adaptive electro-active lens with variable focal length
US8885139B2 (en) 2005-01-21 2014-11-11 Johnson & Johnson Vision Care Adaptive electro-active lens with variable focal length
JP2008529064A (en) * 2005-01-21 2008-07-31 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Electroactive adaptive lens with variable focal length
JP2007017511A (en) * 2005-07-05 2007-01-25 Citizen Watch Co Ltd Liquid crystal optical element and camera using the same, and optical pickup device
JP2007017510A (en) * 2005-07-05 2007-01-25 Citizen Watch Co Ltd Liquid crystal optical element and camera using the same, and optical pickup device
US10114235B2 (en) 2005-10-28 2018-10-30 E-Vision Smart Optics, Inc. Eyewear docking station and electronic module
US9122083B2 (en) 2005-10-28 2015-09-01 E-Vision Smart Optics, Inc. Eyewear docking station and electronic module
TWI475278B (en) * 2006-06-05 2015-03-01 Johnson & Johnson Vision Care Adaptive electro-active lens with variable focal length
US7755583B2 (en) 2006-06-12 2010-07-13 Johnson & Johnson Vision Care Inc Method to reduce power consumption with electro-optic lenses
JP2008076926A (en) * 2006-09-25 2008-04-03 Citizen Holdings Co Ltd Liquid crystal lens
JP2008089834A (en) * 2006-09-29 2008-04-17 Citizen Holdings Co Ltd Liquid crystal optical element and liquid crystal optical module
US9155614B2 (en) 2007-01-22 2015-10-13 E-Vision Smart Optics, Inc. Flexible dynamic electro-active lens
US11474380B2 (en) 2007-01-22 2022-10-18 E-Vision Smart Optics, Inc. Flexible electro-active lens
US7926940B2 (en) 2007-02-23 2011-04-19 Pixeloptics, Inc. Advanced electro-active optic device
US9033494B2 (en) 2007-03-29 2015-05-19 Mitsui Chemicals, Inc. Multifocal lens having a progressive optical power region and a discontinuity
US11061252B2 (en) 2007-05-04 2021-07-13 E-Vision, Llc Hinge for electronic spectacles
US11586057B2 (en) 2007-05-04 2023-02-21 E-Vision, Llc Moisture-resistant eye wear
US9028062B2 (en) 2007-05-04 2015-05-12 Mitsui Chemicals, Inc. Electronic eyeglass frame
US10613355B2 (en) 2007-05-04 2020-04-07 E-Vision, Llc Moisture-resistant eye wear
US9411172B2 (en) 2007-07-03 2016-08-09 Mitsui Chemicals, Inc. Multifocal lens with a diffractive optical power region
US8358399B2 (en) * 2007-12-14 2013-01-22 Lg Display Co., Ltd. Electrically-driven liquid crystal lens and stereoscopic display device using the same
JP2009276624A (en) * 2008-05-15 2009-11-26 Dic Corp Liquid crystal lens and eyesight correcting apparatus using the same
JP2010134981A (en) * 2008-12-03 2010-06-17 Citizen Holdings Co Ltd Liquid crystal optical element and optical pickup apparatus
JP2009175751A (en) * 2009-03-31 2009-08-06 Citizen Holdings Co Ltd Liquid crystal variable-wavelength filter device
US8773600B2 (en) 2010-02-15 2014-07-08 Japan Display West Inc. Liquid crystal lens and display device
US9075242B2 (en) 2010-03-17 2015-07-07 Samsung Display Co., Ltd. Image display device using diffractive lens
JP2011197640A (en) * 2010-03-17 2011-10-06 Samsung Electronics Co Ltd Image display device using diffractive lens
CN102193202A (en) * 2010-03-17 2011-09-21 三星电子株式会社 Image display device using diffractive lens
US9354451B2 (en) 2010-03-17 2016-05-31 Samsung Display Co., Ltd Image display device using diffractive lens
US8988649B2 (en) 2010-03-17 2015-03-24 Samsung Display Co., Ltd. Image display device using a diffractive lens wherein the diffractive lens comprises a first electrode array and a second electrode array and operates as a fresnel zone plate
CN102193202B (en) * 2010-03-17 2015-09-30 三星显示有限公司 Utilize the image display device of diffraction lens
CN102759837A (en) * 2011-04-27 2012-10-31 点晶科技股份有限公司 Liquid crystal lens
JP2012234135A (en) * 2011-04-27 2012-11-29 Silicon Touch Technology Inc Liquid crystal lens
US8421990B2 (en) * 2011-04-27 2013-04-16 Silicon Touch Technology Inc. Liquid crystal lens
US10598960B2 (en) 2012-01-06 2020-03-24 E-Vision Smart Optics, Inc. Eyewear docking station and electronic module
US11971612B2 (en) 2012-01-06 2024-04-30 E-Vision Smart Optics, Inc. Eyewear docking station and electronic module
US11487138B2 (en) 2012-01-06 2022-11-01 E-Vision Smart Optics, Inc. Eyewear docking station and electronic module
JP2015018200A (en) * 2013-07-12 2015-01-29 點晶科技股▲ふん▼有限公司 Liquid crystal lens and liquid crystal lens module
JP2019002977A (en) * 2017-06-13 2019-01-10 義一 澁谷 Spectacles
US11366340B2 (en) 2018-03-19 2022-06-21 Boe Technology Group Co., Ltd. Liquid crystal cell, method of driving liquid crystal cell, and liquid-crystal-based spectacle lens
WO2019179147A1 (en) * 2018-03-19 2019-09-26 京东方科技集团股份有限公司 Liquid crystal cell and drive method therefor, and liquid crystal lens
US10816858B2 (en) 2018-10-29 2020-10-27 Liqxtal Technology Inc. Electrically tunable phase modulation element
JP2020071468A (en) * 2018-10-29 2020-05-07 リクスタル テクノロジー インコーポレイテッド Electrically tunable optical phase modulation element
CN111103707A (en) * 2018-10-29 2020-05-05 源奇科技股份有限公司 Electrically controlled optical phase modulation element
CN109445146B (en) * 2018-12-29 2021-05-07 南京奥谱依电子科技有限公司 Electric control liquid crystal plane diffraction micro-mirror and preparation method thereof
CN109445146A (en) * 2018-12-29 2019-03-08 南京奥谱依电子科技有限公司 A kind of electrically-controlled liquid crystal planar diffraction micro mirror and preparation method thereof
JP2021085924A (en) * 2019-11-26 2021-06-03 キヤノン株式会社 Optical apparatus and optical element

Similar Documents

Publication Publication Date Title
JPH05100201A (en) Variable focus lens
JP4349781B2 (en) Liquid crystal lens and driving method and apparatus thereof
CN104849903B (en) Reflective liquid crystal device including thin film metal grating
JP6285662B2 (en) Variable optical retarder
EP1783538B1 (en) Optical element
US7012734B2 (en) Optical multilayer structure, optical switching device, and image display
CN100492505C (en) Liquid crystal lens element and optical head device
US20210231978A1 (en) Liquid Crystal Lens and Liquid Crystal Glasses
US20080049291A1 (en) Micromirror arry lens with optical surface profiles
US11378862B2 (en) Optical axis tunable liquid crystal lens, electronic apparatus, display apparatus, and method of operating optical axis tunable liquid crystal lens
KR20180052356A (en) Liquid crystal light deflector
CN217467352U (en) Near-to-eye display optical system
JP2016151735A (en) Lens array substrate, electro-optic device, electronic apparatus, and method for manufacturing lens array substrate
KR102187443B1 (en) Optical device and method for manufacturing the same
US10914999B2 (en) Lens, method for fabricating the same, glasses and optical system
US10216060B2 (en) Liquid crystal lens and manufacturing method thereof, display device
JP5205077B2 (en) Liquid crystal optical element
JP2009080286A (en) Optical device
JP2009069486A (en) Liquid crystal optical element
JP7165556B2 (en) Liquid crystal optical modulators, liquid crystal display devices, and holographic devices
WO2012086311A1 (en) Multiple-structure liquid crystal optical element and process for production thereof
US20220057691A1 (en) Tunable optical lens and electronic apparatus employing the same
JP4797496B2 (en) Optical element
US11480836B2 (en) Liquid crystal on silicon device with microlens
JP7131265B2 (en) optical switching element