JPH0497581A - Heat sink of semiconductor device - Google Patents

Heat sink of semiconductor device

Info

Publication number
JPH0497581A
JPH0497581A JP2215570A JP21557090A JPH0497581A JP H0497581 A JPH0497581 A JP H0497581A JP 2215570 A JP2215570 A JP 2215570A JP 21557090 A JP21557090 A JP 21557090A JP H0497581 A JPH0497581 A JP H0497581A
Authority
JP
Japan
Prior art keywords
semiconductor laser
heat sink
laser chip
chip
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2215570A
Other languages
Japanese (ja)
Inventor
Kunio Uehara
上原 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2215570A priority Critical patent/JPH0497581A/en
Publication of JPH0497581A publication Critical patent/JPH0497581A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To realize semiconductor layer chip mounting configuration where the length of a wire is 0.3mm by removing the difference in the levels of the faces, which are connected by the bonding wire, of a semiconductor laser chip and a heat sink. CONSTITUTION:A semiconductor chip 2 is fused together to a heat sink l, and the p-type electrode 21 of the semiconductor chip is coupled with the metallic film 12, which is formed on the surface of the part projecting from the surface where the semiconductor chip is fused together, by a bonding wire 31. The difference in the levels of the p-type electrode face 21 of the semiconductor layer chip and the face 12 coupled by the bonding wire 31 are removed, therefore the length of the wire can be made 0.3mm or less.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザを融着するヒートシンクの構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a heat sink for fusing a semiconductor laser.

〔従来の技術〕[Conventional technology]

半導体レーザが光フアイバ通信の光源とし実用化され実
用化されてすでに久しい。特に幹線系の光フアイバ通信
の光源としては、単一軸モードで発振する分布帰還型半
導体レーザ(distributedfeedback
−1aser diode: D F Bレーザ)が近
年実用化され、1.3μmおよび1.55μm帯での1
〜2Gbpsで動作する半導体レーザの研究開発がおこ
なわれている。
It has already been a long time since semiconductor lasers have been put into practical use as light sources for optical fiber communications. In particular, distributed feedback semiconductor lasers, which oscillate in a single-axis mode, are used as light sources for trunk optical fiber communications.
-1aser diode (DFB laser) has been put into practical use in recent years, and
Research and development is being conducted on semiconductor lasers that operate at ~2 Gbps.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したような高速度で半導体レーザを動作させようと
する場合、半導体レーザチップそのものが十分速い応答
速度を有することが必要なのは勿論のこと、チップの実
装方法にもいくつかの制約が必要になる。その主なもの
は、半導体レーザを信号給電側から見たときのリアクタ
ンス、キャパシタンスを極力減少させることである。
When attempting to operate a semiconductor laser at the high speeds mentioned above, it is not only necessary that the semiconductor laser chip itself has a sufficiently fast response speed, but also requires some restrictions on the method of mounting the chip. . The main thing is to reduce reactance and capacitance as much as possible when the semiconductor laser is viewed from the signal feeding side.

半導体レーザチップは自己発熱による温度上昇で特性、
信頼性に大きな影響を受けるため、特に通信用の半導体
レーザは、半導体レーザチップをヒートシンクに融着し
て用いられる。
Semiconductor laser chips exhibit characteristics due to temperature rise due to self-heating.
Since reliability is greatly affected, semiconductor lasers, especially for communications, are used with a semiconductor laser chip fused to a heat sink.

ヒートシンクの材質としては、熱伝導率が大きく、かつ
半導体レーザチップを構成する半導体材料に近い線膨張
係数を持つものが選択される。第4図に所謂チップ・オ
ン・キャリアと呼ばれる形態に実装された半導体レーザ
の斜視図を示す。半導体レーザチップ2がヒートシンク
1にソルダを用いて融着され、半導体レーザチップの電
[r21と金属ブロック5の間、および半導体レーザチ
ップのもう一方の電極と導通しているヒートシンク上の
金属膜バタン11と絶縁体上の金属膜バタン51の間が
ボンディングワイア31.32によってそれぞれつなが
っている。
As the material for the heat sink, one is selected that has high thermal conductivity and a coefficient of linear expansion close to that of the semiconductor material constituting the semiconductor laser chip. FIG. 4 shows a perspective view of a semiconductor laser mounted in a so-called chip-on-carrier format. The semiconductor laser chip 2 is fused to the heat sink 1 using solder, and a metal film button on the heat sink is electrically connected between the semiconductor laser chip's electrode [r21 and the metal block 5 and with the other electrode of the semiconductor laser chip. 11 and the metal film button 51 on the insulator are connected by bonding wires 31 and 32, respectively.

通常通信用半導体レーザはアノード接地で用いられるた
め、第4図の例では、DFBレーザにおいて一般的なn
型基板、アップサイドアップマウントの構成で金属ブロ
ック5がアノードになるよう配線している。このような
構造においては、ボンディングワイアのりアクタンスが
主たる速度劣化要因である。5Gbps以上の領域で良
好な応答特性を得るためには、−船釣な30μmのワイ
アを用いた場合、ワイア長の合計を0.5mm以下にす
る必要があるとの報告もある。第4図の例のような構成
でボンディングワイアの長さを短縮するためには、絶縁
体上の金属膜バタン51を半導体レーザチップ2に近付
けねばならない。−方、半導体レーザチップからの熱を
金属ブロックらに効率よく伝達するために、ヒートシン
ク自体は、ある程度半導体レーザチップよりも大きな寸
法を必要とする(例:半導体レーザチップの融着面が0
.3mm角の場合、0.6mm角程度)。
Since semiconductor lasers for communications are normally used with a grounded anode, the example in Fig. 4 uses n
The wiring is arranged such that the metal block 5 becomes an anode in a type substrate and an upside-up mount configuration. In such a structure, the bonding wire actance is the main cause of speed deterioration. There is also a report that in order to obtain good response characteristics in the region of 5 Gbps or more, the total wire length needs to be 0.5 mm or less when using 30 μm wires for boat fishing. In order to shorten the length of the bonding wire in the configuration shown in the example shown in FIG. 4, the metal film button 51 on the insulator must be brought closer to the semiconductor laser chip 2. - On the other hand, in order to efficiently transfer the heat from the semiconductor laser chip to the metal blocks, the heat sink itself needs to be larger than the semiconductor laser chip to some extent (for example, the fusion surface of the semiconductor laser chip is
.. In the case of 3mm square, it is about 0.6mm square).

また半導体レーザチップを融着するソルダが広がった部
位13にはワイアボンディングができないため、一方の
ボンディングワイア32の長さを短縮するのにも限りが
あり、ワイア長の合計は1mmを越えてしまう。
In addition, since wire bonding cannot be performed in the area 13 where the solder that fuses the semiconductor laser chip has spread, there is a limit to how much the length of one of the bonding wires 32 can be shortened, and the total wire length exceeds 1 mm. .

これを改善するために金属ブロックを廃止し、ヒートシ
ンク自体を直接ボードにマウントするような構成を考え
てみる。第3図はその一例を示した斜視図である。半導
体レーザチップのp側を極21は、半導体レーザチップ
のn型電極と導通した部位から溝15によって分離され
た金属薄膜12とボンディングワイア31によって結合
される。ヒートシンクからボードへのボンディング31
.32については、半導体レーザーチップの場合と異な
りストレスの心配をする必要が無いため、リアクタンス
が十分小さいリボンリードを用いることができる。半導
体レーザチップからヒートシンクにボンディングする場
合、両者間の段差のせいで一般的なNTCボンデングだ
とキャピラリの大きさや形状、ワイアの弾性、ボンディ
ング面の段差等で、ワイア長、を0.5mm以下にする
ことは難しい、逆にヒートシンクから半導体レーザチッ
プ・ヘボンディングすれば、若干ワイア長を短縮するこ
とができるが、半導体レーザチップの電極21は数Gb
ps以上の領域で動作させるためパッド電極化されてお
り、ボンディングワイアの後打ちに対して十分な強度を
持たせることが困難である。
To improve this, consider a configuration in which the metal block is abolished and the heat sink itself is mounted directly on the board. FIG. 3 is a perspective view showing one example. The p-side pole 21 of the semiconductor laser chip is coupled by a bonding wire 31 to a metal thin film 12 separated by a groove 15 from a portion electrically connected to the n-type electrode of the semiconductor laser chip. Bonding from heat sink to board 31
.. As for 32, there is no need to worry about stress unlike in the case of a semiconductor laser chip, so a ribbon lead with sufficiently low reactance can be used. When bonding from a semiconductor laser chip to a heat sink, due to the level difference between the two, in general NTC bonding, the wire length must be kept at 0.5 mm or less due to the size and shape of the capillary, the elasticity of the wire, the level difference on the bonding surface, etc. On the contrary, if you bond the semiconductor laser chip from the heat sink, you can shorten the wire length slightly, but the electrode 21 of the semiconductor laser chip is several Gb.
In order to operate in a region of ps or more, pad electrodes are used, and it is difficult to provide sufficient strength against bonding wire post-implantation.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体レーザチップを融着するヒートシンクは
、該ヒートシンクの前記半導体レーザチップの電極とワ
イア・ボンディングによって結合される面が、前記半導
体レーザチップを融着する面から突出していることを特
徴とする。
A heat sink for fusing a semiconductor laser chip according to the present invention is characterized in that a surface of the heat sink that is bonded to an electrode of the semiconductor laser chip by wire bonding protrudes from a surface for fusing the semiconductor laser chip. do.

〔実施例1〕 次に本発明の実施例について述べる。第1図は本発明の
一実施例であるヒートシンクに実装された半導体レーザ
の斜視図である。半導体レーザチップ2がビートシンク
1に融着され、半導体レーザチップのp型電極21は半
導体レーザチップを融着した面から突出した部位の表面
に形成された金属薄11112とボンディングワイア3
1で結合されている。半導体レ−ザチップのp型電極面
21と、それとボンディングワイア31で結合された面
12の段差を無くしてあり、そのためボンディングワイ
ア長を0.3mm以下にすることができる。
[Example 1] Next, an example of the present invention will be described. FIG. 1 is a perspective view of a semiconductor laser mounted on a heat sink, which is an embodiment of the present invention. The semiconductor laser chip 2 is fused to the beat sink 1, and the p-type electrode 21 of the semiconductor laser chip is connected to the metal thin 11112 and bonding wire 3 formed on the surface of the portion protruding from the surface to which the semiconductor laser chip is fused.
They are connected by 1. There is no step difference between the p-type electrode surface 21 of the semiconductor laser chip and the surface 12 connected thereto by the bonding wire 31, so that the length of the bonding wire can be reduced to 0.3 mm or less.

〔実施例2〕 第2図は本発明のもうひとつの実施例であるヒートシン
クに実装された半導体レーザの斜視図である。半導体レ
ーザチップのn側電極につながったヒートシンク上の金
属薄M11、および半導体レーザチップのpat極21
とボンディングワイア31で結合された、半導体レーザ
チップを融着した面13から突出した部位の表面に形成
された金属薄膜12がそれぞれヒートシンク側面111
゜112を経由して底面まで延長され、各々がボード上
のストリップライン41.42につながっている。この
例では半導体レーザチップとヒートシンクをつなぐボン
ディングワイア長を短縮するとともに、ヒートシンクと
ボード間のワイア/リードボンディングを不要にして、
実施例1よりもさらに小さなリアクタンスを実現できる
という利点がある。
[Embodiment 2] FIG. 2 is a perspective view of a semiconductor laser mounted on a heat sink, which is another embodiment of the present invention. Thin metal M11 on the heat sink connected to the n-side electrode of the semiconductor laser chip, and pat pole 21 of the semiconductor laser chip
The metal thin film 12 formed on the surface of the portion protruding from the surface 13 to which the semiconductor laser chip is fused and bonded by the bonding wire 31 is connected to the heat sink side surface 111, respectively.
112 to the bottom surface, each connected to strip lines 41 and 42 on the board. In this example, the length of the bonding wire connecting the semiconductor laser chip and the heat sink is shortened, and wire/lead bonding between the heat sink and the board is no longer required.
This embodiment has the advantage that it is possible to realize an even smaller reactance than the first embodiment.

〔発明の効果〕〔Effect of the invention〕

半導体レーザチップとヒートシンクのボンディングワイ
アでつなげる面どうしの間の段差を無くすことによって
、ボンディングワイア長0.3mmの半導体レーザ実装
形態を実現し、当該素子を5Gbpsをこえる領域にお
いて良好に駆動することができた。
By eliminating the level difference between the surfaces connected by the bonding wire of the semiconductor laser chip and the heat sink, a semiconductor laser mounting configuration with a bonding wire length of 0.3 mm has been realized, and the device can be driven satisfactorily in a region exceeding 5 Gbps. did it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は各々本発明の実施例であるヒートシン
クに実装された半導体レーザの斜視図、第3図、第4図
は従来のヒートシンクに実装された半導体レーザの斜視
図である。
1 and 2 are perspective views of a semiconductor laser mounted on a heat sink according to an embodiment of the present invention, and FIGS. 3 and 4 are perspective views of a semiconductor laser mounted on a conventional heat sink.

Claims (1)

【特許請求の範囲】[Claims] 半導体レーザチップを融着するヒートシンクにおいて、
該ヒートシンクの前記半導体レーザチップの電極とワイ
ア・ボンディングによって接合される面が、前記半導体
レーザチップを融着する面から突出していることを特徴
とする半導体レーザチップのヒートシンク。
In the heat sink that fuses the semiconductor laser chip,
A heat sink for a semiconductor laser chip, wherein a surface of the heat sink that is bonded to an electrode of the semiconductor laser chip by wire bonding protrudes from a surface that fuses the semiconductor laser chip.
JP2215570A 1990-08-15 1990-08-15 Heat sink of semiconductor device Pending JPH0497581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2215570A JPH0497581A (en) 1990-08-15 1990-08-15 Heat sink of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2215570A JPH0497581A (en) 1990-08-15 1990-08-15 Heat sink of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0497581A true JPH0497581A (en) 1992-03-30

Family

ID=16674623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2215570A Pending JPH0497581A (en) 1990-08-15 1990-08-15 Heat sink of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0497581A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438580A (en) * 1993-09-24 1995-08-01 Opto Power Corporation Laser package and method of assembly
JP2007227724A (en) * 2006-02-24 2007-09-06 Mitsubishi Electric Corp Semiconductor light-emitting device
JP2018511186A (en) * 2015-03-27 2018-04-19 ジャビル インク Chip on submount module
CN111029896A (en) * 2019-12-23 2020-04-17 常州纵慧芯光半导体科技有限公司 Encapsulation structure of TOF module of EEL laser and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438580A (en) * 1993-09-24 1995-08-01 Opto Power Corporation Laser package and method of assembly
JP2007227724A (en) * 2006-02-24 2007-09-06 Mitsubishi Electric Corp Semiconductor light-emitting device
JP2018511186A (en) * 2015-03-27 2018-04-19 ジャビル インク Chip on submount module
US11431146B2 (en) 2015-03-27 2022-08-30 Jabil Inc. Chip on submount module
JP2022133477A (en) * 2015-03-27 2022-09-13 ジャビル インク Laser diode module, device, and method for making chip on submount module
CN111029896A (en) * 2019-12-23 2020-04-17 常州纵慧芯光半导体科技有限公司 Encapsulation structure of TOF module of EEL laser and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4550333A (en) Light emitting semiconductor mount
US7427524B2 (en) Optoelectronic device packaging assemblies and methods of making the same
JP2000196175A (en) Sub-carrier and semiconductor device
JPH0497581A (en) Heat sink of semiconductor device
JPH05183239A (en) Semiconductor laser
JPH06260723A (en) Semiconductor laser device
JPH06188516A (en) Semiconductor device and fabrication thereof
JPH02306681A (en) Semiconductor laser device
JP2677219B2 (en) Method for manufacturing semiconductor laser
JPS63136684A (en) Photoelectron device, manufacture thereof and lead frame used for the method
JP2003258365A (en) Semiconductor laser device, manufacturing method of thereof and semiconductor laser module
JP2000031582A (en) Optical module
JPS63111682A (en) Submount for optical semiconductor element
JP2868353B2 (en) Method for manufacturing optical semiconductor module
JP2914406B2 (en) Cooled semiconductor laser array module
JP7466773B1 (en) Optical Modules
JPS61234588A (en) Submount for optical semiconductor element
JP2005026333A (en) Semiconductor laser equipment
JPS63318193A (en) Sub-mount for optical semiconductor
JPS6325993A (en) Optical coupling device
JPS62276890A (en) Electronic component
US6549550B2 (en) Method for reducing thermal loss and providing mechanical compliance in a semiconductor package and the semiconductor package formed therefrom
JP2855980B2 (en) Thermoelectric cooling module and cooled semiconductor laser module
JPS60189283A (en) Photoelectric device
JPH04337687A (en) Semiconductor laser module