JPH0496222A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0496222A
JPH0496222A JP20713490A JP20713490A JPH0496222A JP H0496222 A JPH0496222 A JP H0496222A JP 20713490 A JP20713490 A JP 20713490A JP 20713490 A JP20713490 A JP 20713490A JP H0496222 A JPH0496222 A JP H0496222A
Authority
JP
Japan
Prior art keywords
etching
oxide film
film
nitride film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20713490A
Other languages
Japanese (ja)
Inventor
Atsuyuki Aoyama
敬幸 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20713490A priority Critical patent/JPH0496222A/en
Publication of JPH0496222A publication Critical patent/JPH0496222A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To perform etching of an Si oxide film and an Si nitride film by a dry method without damaging a substrate by etching the Si oxide film and the Si nitride film by exposing these to F-group gas containing specific atoms, and mixed gas of aforesaid F-group gas and H2O, H2. CONSTITUTION:Etching of an Si oxide film 3 and an Si nitride film 4 is performed by exposing these to F-group gas containing F-atoms of HF, F2, XeF2 and to mixed gas of aforesaid F-group gas and H2O, H2. Etching of a nitride film, an oxide film is performed according to an etching property, thickness of semiconductor constitution materials such as single Si, polySi, a nitride film, an oxide film and the kinds of F-group gas, and the materials around them are made to remain. During an etching process, ultraviolet light is directly applied to F-group gas or a substrate 1. After the etching process, annealing is performed. After etching or annealing processes, again a film 6 is formed. Directly before finishing the etching process, F-group gas is changed to F-group gas having low etching speed of the semiconductor substrate.

Description

【発明の詳細な説明】 〔概要〕 Si酸化膜およびSi窒化膜のエツチング法とそれを応
用した半導体装置の製造方法に関し、Si酸化膜および
Si窒化膜のエツチング法とそれを応用した半導体装置
の製造方法に関し、乾式方法で基板にダメージを与える
ことな(Si酸化膜およびSi窒化膜をエツチングする
ことを目的とし、 HF + F 2 、X e F 2等のF原子を含む
F系ガス、およびそのF系ガスとF20、F2等の混合
ガスに曝露することによりSi酸化膜およびSi窒化膜
をエツチングするように構成する。
[Detailed Description of the Invention] [Summary] This article relates to an etching method for Si oxide films and Si nitride films and a method for manufacturing semiconductor devices using the same. Regarding the manufacturing method, it is a dry method that does not damage the substrate (for the purpose of etching Si oxide films and Si nitride films, it uses F-based gases containing F atoms such as HF + F 2 and X e F 2, and The structure is such that the Si oxide film and the Si nitride film are etched by exposing the F-based gas to a mixed gas such as F20 or F2.

[産業上の利用分野] 本発明の半導体装置の製造方法に関するものであり、さ
らに詳しく述べるならば、Si酸化膜およびSi窒化膜
のエツチング法とそれを応用した半導体装置の製造方法
に関するものである。
[Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and more specifically, it relates to a method for etching Si oxide films and Si nitride films, and a method for manufacturing a semiconductor device using the same. .

[従来の技術] 半導体装置の製造工程において、Si酸化膜おおよびS
i窒化膜をエツチングする処理はLOGO8の厚い酸化
膜を形成するためのマスクを除去するために行われてい
る。
[Prior art] In the manufacturing process of semiconductor devices, Si oxide film and S
The process of etching the i-nitride film is performed to remove the mask for forming the thick oxide film of LOGO8.

従来、Si酸化膜およびSi窒化膜のエツチングは、希
HF溶液、燐酸溶液等を使う湿式な方法およびRIE等
の高エネルギー粒子の介在する方法が用いられていた。
Conventionally, for etching Si oxide films and Si nitride films, wet methods using dilute HF solutions, phosphoric acid solutions, etc., and methods using high-energy particles such as RIE have been used.

精密化おおよび微細化の進むLSI製造技術において、
湿度式なプロセスから微細加工に適した乾式なプロセス
への移行は不可欠となっている。ドライエツチング方法
としては、プラズマエツチング、マイクロ波エツチング
、反応性スパッタエツチングなどが知られている。酸化
膜のプラズマエツチングガスとしてはCHF3 、CF
4+H2、CF2などのフッ化炭素が、また窒化膜のプ
ラズマエツチングガスとしてはCF4 、CF4 +8
2などが知られている。
In LSI manufacturing technology, which is becoming more precise and miniaturized,
It has become essential to transition from wet processes to dry processes suitable for microfabrication. As dry etching methods, plasma etching, microwave etching, reactive sputter etching, etc. are known. CHF3, CF is used as a plasma etching gas for the oxide film.
Carbon fluorides such as 4+H2 and CF2 are used, and CF4 and CF4+8 are used as plasma etching gas for nitride films.
2 etc. are known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ドライプロセスの採用に伴い乾式プロセスで使用される
高エネルギー粒子によりダメージがデバイス特性に悪影
響をおよぼすことは問題になっている(例えば、rVL
SI製造技術」日経BP社1989年発行、第261〜
262頁)。
With the adoption of dry processes, it has become a problem that damage caused by high-energy particles used in dry processes can adversely affect device characteristics (for example, rVL
SI Manufacturing Technology” Nikkei BP, 1989, No. 261~
262 pages).

本発明は、乾式方法で基板にダメージを与えることなく
Si酸化膜およびSi窒化膜をエツチングすることを目
的とする。
An object of the present invention is to etch a Si oxide film and a Si nitride film using a dry method without damaging the substrate.

[課題を解決するための手段] 本発明は、この従来技術の問題を解決する方法として、
次の技術的手段工〜Vを措ることを特徴とするSi酸化
膜およびSi窒化膜のエツチング方法である。
[Means for Solving the Problems] The present invention provides a method for solving the problems of the prior art, as follows:
This is a method of etching a Si oxide film and a Si nitride film, which is characterized by taking the following technical steps.

1、HF、Fz 、XeF2等のF原子を含むF系ガス
、およびそのF系ガスとH2O,H,等の混合ガスに曝
露することによりSi酸化膜およびSi窒化膜をエツチ
ングする。
1. The Si oxide film and Si nitride film are etched by exposure to an F-based gas containing F atoms such as HF, Fz, XeF2, etc., and a mixed gas of the F-based gas and H2O, H, etc.

■、エッチング工程中に紫外光をF系ガス又は基板に直
接に照射する。
(2) Directly irradiating the F-based gas or the substrate with ultraviolet light during the etching process.

■、エッチング工程後にアニールを行う。(2) Annealing is performed after the etching process.

IV、エツチングまたはアニール工程後、新しく膜を形
成する。
After IV, etching or annealing process, a new film is formed.

■、エッチング工程終了直前にF系ガスを半導体基板の
エツチング速度が低いF系ガスに切替える。
(2) Immediately before the end of the etching process, the F-based gas is switched to an F-based gas that has a lower etching rate for the semiconductor substrate.

以下、本発明の構成を詳しく説明する。Hereinafter, the configuration of the present invention will be explained in detail.

技J■11且」− F系ガスとしては、HF、Fz 、XeFi原子を含む
F系ガス、およびそのF系ガスとH,01H2等の混合
ガスを使用することができる。これらのガスをAr、N
tなとで希釈したガスも使用することができる。
As the F-based gas, an F-based gas containing HF, Fz, and XeFi atoms, and a mixed gas of the F-based gas and H, 01H2, etc. can be used. These gases are Ar, N
Gases diluted with t etc. can also be used.

F系ガスとSi酸化膜およびSi窒化膜との反応は室温
でも起こり、ある程度高温でも起こるが、これらのガス
をイオン化やプラズマ化する必要はない。
Although the reaction between the F-based gas and the Si oxide film and the Si nitride film occurs at room temperature and even at a certain high temperature, there is no need to ionize or turn these gases into plasma.

窒化膜および酸化膜を選択的に除去するためのマスクと
しては、レジストは水分を含有するので、H2OとF系
ガスとの反応生成物がレジストの下のSiをエツチング
するため好ましくない。
As a mask for selectively removing a nitride film and an oxide film, it is not preferable because the resist contains moisture and the reaction product of H2O and F-based gas etches the Si underneath the resist.

したがって、シングルSi、ポリSi、窒化膜、酸化膜
などの半導体構成材料のエツチング性、厚みおよびF系
ガスの種類などに応じて窒化膜、酸化膜がエツチングさ
れその周辺の材料が残るようにする必要がある。例えば
、比較的にHFばSiエツチングしないが、F2はSi
のエツチングレートは高いので、下地がSiである材料
をエツチングするときはHFをエツチングガスとして使
用することが好ましい、なお、酸化膜及び窒化膜はいず
れが上にあっても、エツチングは可能である。また、酸
化膜・窒化膜の全部の厚みをF系ガスにより除去する方
法が能率が高く好ましいが、これらの膜の途中までは通
常のドライエツチングを行い、エツチング終了直前にF
系ガスによりエツチングを行う方法によってもダメージ
がないエツチングを行うことができる。エツチングの反
応生成物は水洗または真空中処理などにより基板表面か
ら除去される 支血二土丑ユ 上記[I]の工程中にF系ガスに紫外光を照射すること
により、酸化膜及び窒化膜の除去速度を100〜100
0倍高約100ができる。紫外光としてはF、ガスの場
合200〜400nm波長のものを使用することにより
実用的エツチング速度を得ることができる。
Therefore, depending on the etching properties and thickness of semiconductor constituent materials such as single Si, poly-Si, nitride film, and oxide film, as well as the type of F-based gas, the nitride film and oxide film are etched so that the surrounding materials remain. There is a need. For example, HF does not etch Si comparatively, but F2 does not etch Si.
Since the etching rate of is high, it is preferable to use HF as an etching gas when etching a material with a Si base. Note that etching is possible regardless of which of the oxide film and nitride film is on top. . In addition, it is highly efficient and preferable to remove the entire thickness of the oxide film and nitride film using F-based gas, but normal dry etching is performed halfway through these films, and immediately before the end of etching,
Damage-free etching can also be performed by etching using a system gas. The reaction products of etching are removed from the substrate surface by washing with water or processing in a vacuum. Removal speed of 100-100
0x height of about 100 is created. A practical etching rate can be obtained by using F as the ultraviolet light and using a wavelength of 200 to 400 nm in the case of gas.

皮血皿土且ユ 上記[I]  [11]の工程後にアニールを行う。skin and blood plate soil and yu Annealing is performed after the step [I] [11] above.

F系ガスによるSi窒化膜のエツチングにおいて、基板
表面に反応生成物が残留する可能性がある。例えば、N
H4”″と5iFe”−のイオン性膜が考えられる。こ
のような反応生成物は反応後基板表面に残存するので、
これを除去するのにエツチング終了後100℃以上の温
度でアニールを行う。
When etching a Si nitride film using F-based gas, reaction products may remain on the substrate surface. For example, N
An ionic film of H4"" and 5iFe"- can be considered. Since such reaction products remain on the substrate surface after the reaction,
To remove this, annealing is performed at a temperature of 100° C. or higher after etching.

技」U仁J」え双 上記工程により酸化膜及び窒化膜を除去した後、電極、
配線その他の薄膜を通常の方法により成長させる。
After removing the oxide film and nitride film by the above process, the electrode,
Wires and other thin films are grown by conventional methods.

皮血m土且N F系ガスはエツチングレートに多少の相違はあるにせよ
各種物質に対してエツチング性があるので、下地Si基
板も多少はエツチングされる。したがってエツチング中
に最初は被処理物質(S iO21S I N)のエツ
チングレートが高い物質でエツチングし、エツチング終
了直前にSiのエツチングレートが低い物質でエツチン
グする。
Since the skin, blood, and NF gases have etching properties for various substances, although there are some differences in etching rate, the underlying Si substrate is also etched to some extent. Therefore, during etching, the material to be processed (S iO 21 S I N) is first etched with a material having a high etching rate, and just before the end of etching, etching is performed with a material having a low etching rate of Si.

[作用] HF、F2ガスには、Si酸化膜およびSi窒化膜に対
するエツチング能力がある。しかも、ガスを用いる乾式
な方法であり、化学反応のみによってエツチングが進行
するため基板にダメージを与えることもない。
[Function] HF and F2 gases have the ability to etch Si oxide films and Si nitride films. Moreover, since it is a dry method using gas and etching proceeds only by chemical reactions, it does not damage the substrate.

2 F 2+ S iO□→S I F4 + O□↑
  (1)2 F 2 + S 1N−IS s F 
4 + 1 / 2 N x T (2)F2はSiN
および5in2と直接反応する。
2 F 2+ S iO□→S I F4 + O□↑
(1) 2 F 2 + S 1N-IS s F
4 + 1/2 N x T (2) F2 is SiN
and directly reacts with 5in2.

反応生成物であるSiF、は室温で気体である。The reaction product, SiF, is a gas at room temperature.

2HF+2H20→HF2−+8.0’ (3)HFは
H2Oと反応してHF、−を生成する。
2HF+2H20→HF2-+8.0' (3) HF reacts with H2O to generate HF,-.

基板表面に自然に存在する微量の820または気相のH
,OがHFと(3)式により反応し、HF2−と生成す
る。これが酸化物及び窒化物と次のように反応すると考
えられる。
Trace amounts of 820 or gaseous H naturally present on the substrate surface
, O reacts with HF according to equation (3) to produce HF2-. It is thought that this reacts with oxides and nitrides as follows.

4 HF + S i O2→SiF4↑+2H,0T
4HF+5iN−3iF4 ↑+NH4(5)S  i
  Ox  +2Hs  O”  +2HF2−−3 
 i  F4+4Hz  O(6)S  i  F4 
 +8m  O”  +HF*−+Hi  O→2Hs
O’+5iFs”−(7) SiF4−およびNH,’はイオン性化合物であるので
、電荷により基板に吸着している。したがってこれを除
去するには水洗するか、あるいはアニールすることによ
り除去する必要がある。この除去の際に水洗を行うとS
i基板が極薄(酸化されるので、アニールを真空中ある
いは不活性ガス中で行うことにより清浄なSi面を得る
ことができる。
4 HF + Si O2→SiF4↑+2H,0T
4HF+5iN-3iF4 ↑+NH4(5)S i
Ox +2Hs O" +2HF2--3
i F4+4Hz O(6)S i F4
+8m O" +HF*-+Hi O→2Hs
O'+5iFs"-(7) SiF4- and NH,' are ionic compounds, so they are adsorbed to the substrate due to electric charge. Therefore, they must be removed by washing with water or annealing. If you wash it with water when removing it, S
Since the i-substrate is extremely thin (oxidized), a clean Si surface can be obtained by performing annealing in vacuum or in an inert gas.

紫外光照射はF、、HFなどの化合物を励起することに
より上記反応式の反応速度を10〜1100n/hrに
高める(請求項3の方法)6上記方法において酸化膜及
び窒化膜を除去するとダメージがない清浄な面が露出さ
れる。ここに電極などを堆積することにより高性能素子
を作ることができる(請求項4)。
Ultraviolet light irradiation increases the reaction rate of the above reaction formula to 10 to 1100 n/hr by exciting compounds such as F, HF, etc. (Method of Claim 3) 6. Removal of oxide films and nitride films in the above method causes damage. No clean side is exposed. By depositing electrodes and the like here, a high-performance device can be made (claim 4).

F系ガスはレジストを逆パターンに形成可能であるが、
マスクに使用できないので、エツチング物の構造を工夫
しなければならないが、F系ガスを切り替えることによ
り選択比が高い、高精度のエツチングを達成することが
できる。
F-based gas can form the resist in a reverse pattern, but
Since it cannot be used as a mask, the structure of the etching material must be devised, but by switching the F-based gas, highly accurate etching with a high selectivity can be achieved.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

[実施例] LOCOS形成後のSi窒化膜とパッド酸化膜の除去に
本発明を応用した例を第1図〜第4図を参照して説明す
る。
[Example] An example in which the present invention is applied to the removal of a Si nitride film and a pad oxide film after LOCOS formation will be described with reference to FIGS. 1 to 4.

LOGO3形成後の断面構造は第1図(A)のように薄
いSi酸化膜(約10nm)3、Si窒化膜(100n
m)4、パッド酸化膜 (50nm)2の多層構造になっている。LOGO8形
成後のウェハを低圧水銀ランプによる紫外光照射下のF
2ガス雰囲気(1%、Ar希釈)に15m1n曝露した
(第1図(B))ところ、パッド酸か膜2階に露出され
たSi基板1にはポーラスな膜5が形成されていた。表
面に残留したポーラスな膜5は分析の結果NH4”とS
iF、’のイオン性膜であることが分かった。これを水
素雰囲気中150℃でアニールを行いイオン性の膜5を
除去した(第1図(C))。この処理後、ゲート酸化膜
6の形成を通常の熱酸化により行った(第1図(D))
The cross-sectional structure after forming LOGO3 is as shown in Figure 1 (A), which includes a thin Si oxide film (approximately 10 nm) 3 and a Si nitride film (100 nm).
It has a multilayer structure of 4 m) and 2 pad oxide films (50 nm). After forming LOGO8, the wafer was exposed to ultraviolet light using a low-pressure mercury lamp.
When the Si substrate 1 was exposed to a two-gas atmosphere (1%, diluted with Ar) for 15 ml (FIG. 1(B)), a porous film 5 was formed on the Si substrate 1 exposed on the second floor of the pad acid film. As a result of analysis, the porous film 5 remaining on the surface was found to be NH4'' and S.
It was found to be an ionic membrane of iF,'. This was annealed at 150° C. in a hydrogen atmosphere to remove the ionic film 5 (FIG. 1(C)). After this treatment, the gate oxide film 6 was formed by normal thermal oxidation (Fig. 1(D)).
.

水素雰囲気中のアニール後にSi基板の表面をXPSで
分析したところ、N、F、O等の元素は検出されなかっ
た。またサーマルウェーブ法でダメージを測定したとこ
ろダメージはなく、Si結晶の格子が露出されたことは
確認された。
When the surface of the Si substrate was analyzed by XPS after annealing in a hydrogen atmosphere, elements such as N, F, and O were not detected. Further, when damage was measured using a thermal wave method, no damage was found, and it was confirmed that the lattice of the Si crystal was exposed.

[発明の効果] 本発明により、湿式にまつわる諸問題(トレンチ、汚染
等)を解決する乾式な方法でかつ基板にダメージを与え
ることなくSi酸化膜および窒化膜のエツチングができ
る。
[Effects of the Invention] According to the present invention, Si oxide films and nitride films can be etched using a dry method that solves various problems associated with wet etching (trench, contamination, etc.) and without damaging the substrate.

【図面の簡単な説明】 第1図(A)はLOGO3の途中工程を示す図、 第1図(B)は酸化膜及び窒化膜をF系ガスで除去する
工程を示す図、 第1図(C)はアニール工程を示す図、第1図(D)ゲ
ート酸化膜を示す図である。 1−3i基板、2−パッド酸化膜、3−8i窒化膜、4
−パッド酸化膜、5−イオン性反応生成物
[Brief Description of the Drawings] Figure 1 (A) is a diagram showing the intermediate process of LOGO3, Figure 1 (B) is a diagram showing the process of removing the oxide film and nitride film with F-based gas, Figure 1 ( C) is a diagram showing an annealing process, and FIG. 1(D) is a diagram showing a gate oxide film. 1-3i substrate, 2-pad oxide film, 3-8i nitride film, 4
- Pad oxide film, 5- ionic reaction product

Claims (1)

【特許請求の範囲】 1、HF、F_2、XeF_2等のF原子を含むF系ガ
ス、およびそのF系ガスとH_2O、H_2等の混合ガ
スに曝露することによりSi酸化膜およびSi窒化膜を
エッチングする工程を有することを特徴とする半導体装
置の製造方法。 2、前記エッチング工程中に紫外光を前記F系ガス又は
基板に直接に照射することを特徴とする請求項1記載の
半導体装置の製造方法。 3、前記エッチング工程後にアニールを行うことを特徴
とする請求項1または2記載の半導体装置の製造方法。 4、前記エッチングまたはアニール工程後、新しく膜を
形成することを特徴とする請求項1から3までの何れか
1項記載の半導体装置の製造方法である。 5、前記エッチング工程終了直前にF系ガスを半導体基
板のエッチング速度が低いF系ガスに切替えることを特
徴とする請求項1から4までの何れか1項記載の半導体
装置の製造方法。
[Claims] 1. Etching a Si oxide film and a Si nitride film by exposing to an F-based gas containing F atoms such as HF, F_2, and XeF_2, and a mixed gas of the F-based gas and H_2O, H_2, etc. 1. A method for manufacturing a semiconductor device, comprising the step of: 2. The method of manufacturing a semiconductor device according to claim 1, wherein the F-based gas or the substrate is directly irradiated with ultraviolet light during the etching step. 3. The method of manufacturing a semiconductor device according to claim 1 or 2, wherein annealing is performed after the etching step. 4. The method of manufacturing a semiconductor device according to claim 1, wherein a new film is formed after the etching or annealing step. 5. The method of manufacturing a semiconductor device according to claim 1, wherein the F-based gas is switched to an F-based gas having a low etching rate of the semiconductor substrate immediately before the end of the etching step.
JP20713490A 1990-08-03 1990-08-03 Manufacture of semiconductor device Pending JPH0496222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20713490A JPH0496222A (en) 1990-08-03 1990-08-03 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20713490A JPH0496222A (en) 1990-08-03 1990-08-03 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0496222A true JPH0496222A (en) 1992-03-27

Family

ID=16534761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20713490A Pending JPH0496222A (en) 1990-08-03 1990-08-03 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0496222A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050883A1 (en) * 2000-12-18 2002-06-27 Sumitomo Precision Products Co., Ltd Cleaning method and etching method
WO2002101805A1 (en) * 2001-06-08 2002-12-19 Tokyo Electron Limited Thin film forming apparatus cleaning method
US6849471B2 (en) 2003-03-28 2005-02-01 Reflectivity, Inc. Barrier layers for microelectromechanical systems
US6913942B2 (en) 2003-03-28 2005-07-05 Reflectvity, Inc Sacrificial layers for use in fabrications of microelectromechanical devices
US6942811B2 (en) 1999-10-26 2005-09-13 Reflectivity, Inc Method for achieving improved selectivity in an etching process
US6949202B1 (en) 1999-10-26 2005-09-27 Reflectivity, Inc Apparatus and method for flow of process gas in an ultra-clean environment
US6960305B2 (en) 1999-10-26 2005-11-01 Reflectivity, Inc Methods for forming and releasing microelectromechanical structures
US6972891B2 (en) 2003-07-24 2005-12-06 Reflectivity, Inc Micromirror having reduced space between hinge and mirror plate of the micromirror
US6980347B2 (en) 2003-07-03 2005-12-27 Reflectivity, Inc Micromirror having reduced space between hinge and mirror plate of the micromirror
US7019376B2 (en) 2000-08-11 2006-03-28 Reflectivity, Inc Micromirror array device with a small pitch size
US7027200B2 (en) 2002-03-22 2006-04-11 Reflectivity, Inc Etching method used in fabrications of microstructures
US7041224B2 (en) 1999-10-26 2006-05-09 Reflectivity, Inc. Method for vapor phase etching of silicon
US7189332B2 (en) 2001-09-17 2007-03-13 Texas Instruments Incorporated Apparatus and method for detecting an endpoint in a vapor phase etch
US7645704B2 (en) 2003-09-17 2010-01-12 Texas Instruments Incorporated Methods and apparatus of etch process control in fabrications of microstructures
GB2473851A (en) * 2009-09-25 2011-03-30 Point 35 Microstructures Ltd Etching silicon

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041224B2 (en) 1999-10-26 2006-05-09 Reflectivity, Inc. Method for vapor phase etching of silicon
US6942811B2 (en) 1999-10-26 2005-09-13 Reflectivity, Inc Method for achieving improved selectivity in an etching process
US6949202B1 (en) 1999-10-26 2005-09-27 Reflectivity, Inc Apparatus and method for flow of process gas in an ultra-clean environment
US6960305B2 (en) 1999-10-26 2005-11-01 Reflectivity, Inc Methods for forming and releasing microelectromechanical structures
US7019376B2 (en) 2000-08-11 2006-03-28 Reflectivity, Inc Micromirror array device with a small pitch size
WO2002050883A1 (en) * 2000-12-18 2002-06-27 Sumitomo Precision Products Co., Ltd Cleaning method and etching method
US6939409B2 (en) 2000-12-18 2005-09-06 Sumitomo Precision Products Co., Ltd. Cleaning method and etching method
WO2002101805A1 (en) * 2001-06-08 2002-12-19 Tokyo Electron Limited Thin film forming apparatus cleaning method
US6925731B2 (en) 2001-06-08 2005-08-09 Tokyo Electron Limited Thin film forming apparatus cleaning method
US7189332B2 (en) 2001-09-17 2007-03-13 Texas Instruments Incorporated Apparatus and method for detecting an endpoint in a vapor phase etch
US7027200B2 (en) 2002-03-22 2006-04-11 Reflectivity, Inc Etching method used in fabrications of microstructures
US6913942B2 (en) 2003-03-28 2005-07-05 Reflectvity, Inc Sacrificial layers for use in fabrications of microelectromechanical devices
US6849471B2 (en) 2003-03-28 2005-02-01 Reflectivity, Inc. Barrier layers for microelectromechanical systems
US6980347B2 (en) 2003-07-03 2005-12-27 Reflectivity, Inc Micromirror having reduced space between hinge and mirror plate of the micromirror
US7002726B2 (en) 2003-07-24 2006-02-21 Reflectivity, Inc. Micromirror having reduced space between hinge and mirror plate of the micromirror
US6972891B2 (en) 2003-07-24 2005-12-06 Reflectivity, Inc Micromirror having reduced space between hinge and mirror plate of the micromirror
US7645704B2 (en) 2003-09-17 2010-01-12 Texas Instruments Incorporated Methods and apparatus of etch process control in fabrications of microstructures
GB2473851A (en) * 2009-09-25 2011-03-30 Point 35 Microstructures Ltd Etching silicon
JP2013506284A (en) * 2009-09-25 2013-02-21 メムススター リミテッド Improved selectivity of xenon difluoride etching process
GB2473851B (en) * 2009-09-25 2013-04-10 Memsstar Ltd Improved selectivity in a xenon difluoride etch process

Similar Documents

Publication Publication Date Title
KR101691717B1 (en) Etching method to form spacers having multiple film layers
JPH0496222A (en) Manufacture of semiconductor device
JP2574094B2 (en) Etching method
KR100685735B1 (en) Composition for removing polysilicon, method of removing polysilicon and method of manufacturing a semiconductor device using the same
KR0172779B1 (en) Method for removing a photoresist
JPH0629311A (en) Manufacture of semiconductor device
JP2004214631A (en) Nano-laminate of amorphous and polycrystalline silicon
JPS62272541A (en) Surface treating method for semiconductor substrate
JPS63117423A (en) Method of etching silicon dioxide
KR19980073847A (en) Semiconductor Wafer Cleaning Method and Oxide Film Forming Method
CN112185805A (en) Method for manufacturing semiconductor device
JPH04208528A (en) Manufacture of semiconductor device
JPH1140542A (en) Gaseous mixture for etching polysilicon layer and method and etching polysilicon electrode layer by using it
JPH03222417A (en) Manufacture of semiconductor device
JPH03241740A (en) Manufacture of semiconductor device
JPS61251138A (en) Dry etching
KR0168208B1 (en) Polymer removing method
JPS6043829A (en) Dry etching method
JPH03155621A (en) Dry etching method
JPS58147122A (en) Dry etching method for compound semiconductor
JPS6353928A (en) Dry etching
JPH0451520A (en) Manufacture of semiconductor device
JPH04186827A (en) Manufacture of semiconductor device
JP2003519912A (en) Etching and ashing photoresist removal process
JPS6046538B2 (en) Etching method