JPH0494198A - Electro-magnetic shield material - Google Patents

Electro-magnetic shield material

Info

Publication number
JPH0494198A
JPH0494198A JP21141390A JP21141390A JPH0494198A JP H0494198 A JPH0494198 A JP H0494198A JP 21141390 A JP21141390 A JP 21141390A JP 21141390 A JP21141390 A JP 21141390A JP H0494198 A JPH0494198 A JP H0494198A
Authority
JP
Japan
Prior art keywords
electromagnetic shielding
materials
magnetic
layer material
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21141390A
Other languages
Japanese (ja)
Inventor
Tsutomu Kaido
力 開道
Kunio Izumiyama
泉山 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21141390A priority Critical patent/JPH0494198A/en
Publication of JPH0494198A publication Critical patent/JPH0494198A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To make it possible to perform at least one type of electric, magnetic, and electromagnetic shield by using a material aggregation which comprises a formation body made of assembled materials and produces a printed state between the materials. CONSTITUTION:A material aggregation is a three layer-based material which comprises an outer layer material 1, a middle layer material 2, and a inner layer material. Each material which constitutes the outer layer 1 and the middle, comprises three laminated copper plates having directional and electromagnetic properties. The material for the inner layer is PB permalloy. The permalloy, which constitutes the inner layer material 3 is magnetic-annealed in a hydrogen atmosphere. After it is annealed, the uncovered surfaces of the outer layer material 1 and the middle layer material and the permalloy surface of the inner layer material 3 are copper-plated and further tin-plated thereon. Each layer material 1, 2, and 3, which has received plating treatment, forms the material aggregation so that they may constituted each component, say 4, 5, and 6. The material aggregation or the member molded to be a magnetic shield box, is baked and annealed, which finally results in one piece body.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気、電気、および電磁波に対するシールド
用材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to materials for shielding against magnetic, electrical, and electromagnetic waves.

(従来の技術) 電気特に静電気が他の機器に影響を与えることは、古く
から問題となり、この静電気をシールする対策が取られ
ている。一方、磁気や電磁気のシールドは、最近、電気
電子機器の発達により、磁界や電磁波を発生する機器も
多くなり、かついろいろな環境下で高性能機器が使われ
るようになり、これらに対応すべく大きい問題となって
きた。
(Prior Art) The influence of electricity, particularly static electricity, on other devices has been a problem for a long time, and measures have been taken to seal off this static electricity. On the other hand, with the recent development of electrical and electronic equipment, the number of devices that generate magnetic fields and electromagnetic waves has increased, and high-performance devices are being used in a variety of environments. It has become a big problem.

これらの電磁気シールド技術においては、高いシールド
性を持たせるには、電気、磁気、電磁気の強さや周波数
により、異なった対応をすることが必要であり、さらに
、材料の組合せ、配置などにより異なった性能を示すた
め、複数の種類の材料を組み合わせたり、さらに材料の
形状や方向を考慮してシールドを行なっており、そのた
め、材料の取扱が複雑となっている。
In order to achieve high shielding performance with these electromagnetic shielding technologies, it is necessary to respond differently depending on the strength and frequency of electricity, magnetism, and electromagnetism. In order to demonstrate performance, shielding is performed by combining multiple types of materials, and by taking into account the shape and direction of the materials, which makes handling the materials complicated.

電磁気シールドを施すには、装置、建物等のスペース等
を考慮し、また施工方法、特に施工の容易さも重要であ
る。材料として、例えば、薄い板や箔なども取り扱う必
要があり、これらの張り付け施工等においては、非常に
手間がかかる。これらの作業は、本来の目的の装置や建
物に関する作業以外に行われるものであるが、シールド
用材料が機械的強度を有しないために、装置の本体ケー
スや建物の壁等と兼ね併せて、シールド用材料を使用し
なければ、作業できない。
In order to apply electromagnetic shielding, it is important to consider the space of equipment, buildings, etc., and also the construction method, especially the ease of construction. For example, it is necessary to handle materials such as thin plates and foils, and it is very time-consuming to attach these materials. These works are performed in addition to the work related to the equipment or building, which is the original purpose, but since the shielding material does not have mechanical strength, it is necessary to work on the main body case of the equipment, the wall of the building, etc. Work cannot be done without using shielding materials.

二のように、従来の電磁気シールド材料は、取扱か多数
にわたる場合が多く複雑であり、シールドの施工も余分
に必要となり、新しい改善手段が望まれている。
As mentioned in the second point, conventional electromagnetic shielding materials are complicated and require a large amount of handling, and additional shielding is required, so new means of improvement are desired.

(発明が解決しようとする課題) 本発明は、既に述べた従来技術の問題点を解決し、1つ
の材料で複数個の機能をもたせ、機械強度を有し最終使
用形状のものを、比較的容易に提供する電磁気シールド
用材料を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention solves the problems of the prior art described above, and allows a single material to have multiple functions, has mechanical strength, and is relatively durable in its final use shape. The purpose of the present invention is to provide an electromagnetic shielding material that can be easily provided.

(課題を解決するための手段) 本発明の要旨とするところは、 (1)  材料を組み合わせてつくられる形成体からな
り、材料間が焼き付き状態となっている材料集合体を使
用することを特徴とする電磁気シールド用材料。
(Means for Solving the Problems) The gist of the present invention is as follows: (1) It is characterized by using a material aggregate that is made of a formed body made by combining materials and in which the materials are in a burned-in state. Materials for electromagnetic shielding.

(2)材料が、導電性材料のメッキ層を有するものであ
る前項1記載の電磁気シールド用材料。
(2) The electromagnetic shielding material according to item 1 above, wherein the material has a plating layer of a conductive material.

(3)材料の配置を、高い電磁気シールド製となる電束
、電流、磁束のうちの何れか1つ以上の流れに沿うよう
に、組み合わせて形成された材料集合体である前項1及
び2記載の電磁気シールド用材料。
(3) Items 1 and 2 above, which are material aggregates formed by combining materials such that the materials are arranged so as to follow the flow of any one or more of electric flux, current, and magnetic flux, resulting in high electromagnetic shielding. Materials for electromagnetic shielding.

(4)材料が磁性材料である前項1,2あるいは3記載
の電磁気シールド用材料。
(4) The electromagnetic shielding material according to item 1, 2 or 3 above, wherein the material is a magnetic material.

(5)磁性材料の磁化容易軸を、高い電磁気シールド製
となる磁束流れに沿うように、材料を組み合わせて形成
された磁性材料集合体である前項4記載の電磁気シール
ド用材料。
(5) The material for electromagnetic shielding according to item 4, which is a magnetic material aggregate formed by combining materials such that the axis of easy magnetization of the magnetic material follows the flow of magnetic flux resulting in a high electromagnetic shield.

(6)所定の使用形状になるように、材料の加工、組合
せを行った後、焼き付き状態にすることを特徴とする前
項1. 2. 3.4あるいは5記載の電磁気シールド
用材料。
(6) Item 1 above, characterized in that the materials are processed and combined to form a predetermined shape for use, and then brought into a burned state. 2. The electromagnetic shielding material described in 3.4 or 5.

(7)  プレス加工を施し、最終形状とする前項6記
載の電磁気シールド用材料。
(7) The electromagnetic shielding material according to item 6 above, which is subjected to press processing to obtain a final shape.

(8)端部に取り付け用の噛み合わせ部を有する前項6
あるいは7記載の電磁気シールド用材料。
(8) The preceding item 6 has a mating part for attachment at the end.
Or the electromagnetic shielding material described in 7.

にある。It is in.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

まず、本発明の電磁気シールドとは、静電気などの電気
、磁気および電磁波に関するシールドを意味し、外部か
らのこれらの障害をなくすか軽減したり、或は電気、磁
気及び電磁波を外部に田さないためのものである。本発
明の電磁気シールドは、電気、磁気、電磁波をすべてを
同時にシールドする場合のほか、何れか1つ以上のシー
ルドも含まれる。
First, the electromagnetic shield of the present invention refers to a shield related to electricity such as static electricity, magnetism, and electromagnetic waves, and is intended to eliminate or reduce these interferences from the outside, or to prevent electricity, magnetism, and electromagnetic waves from being transmitted to the outside. It is for. The electromagnetic shield of the present invention includes not only shielding of electricity, magnetism, and electromagnetic waves all at the same time, but also shielding of one or more of them.

電磁気シールド用材料に使用される材料は、導電性材料
や磁性材料であり、後に述べる焼付けができるならば誘
電体等の材料でも良い。
The material used for the electromagnetic shielding material is a conductive material or a magnetic material, and may be a dielectric material or the like as long as it can be baked as described later.

本発明の導電性材料は、銅、アルミニウム、鉄などの導
電性の金属で、2種類以上の導電性合金でもよい。本発
明に使用される磁性材料としては、珪素鋼板などの電磁
鋼板、電磁軟鉄、普通鋼等をはじめ鉄ニツケル合金、鉄
コバルト合金等その他磁性材料を用いてつくられる。こ
れらの導電性材料や磁性材料の形状にも制限はなく、ま
た、磁性材料の種類や形状は1種類でなく2種類以上を
組み合わせたものでも良い。
The conductive material of the present invention may be a conductive metal such as copper, aluminum, or iron, or may be an alloy of two or more types of conductive metals. The magnetic materials used in the present invention include electrical steel sheets such as silicon steel sheets, electromagnetic soft iron, common steel, iron-nickel alloys, iron-cobalt alloys, and other magnetic materials. There are no restrictions on the shapes of these conductive materials and magnetic materials, and the types and shapes of magnetic materials may not be one, but a combination of two or more types.

材料集合体(磁性材料集合体も含む)として使用する場
合、高い電磁気シールドを得るために、所定の電束、電
流、磁束流れに沿って、材料内を通すような板、線状の
材料の配置、形状、種類とすると良い。または、磁束流
れに沿い、磁性材料の磁気容易軸を揃えたりしても良い
。例えば、鉄の場合、磁化容易軸が結晶方位の(100
)であり、この方位を所定の磁束流れに沿うようにすれ
ば良い。
When used as a material assembly (including magnetic material assembly), in order to obtain high electromagnetic shielding, it is necessary to use a plate or wire of material that passes through the material along a predetermined electric flux, current, or magnetic flux flow. It is good to consider the arrangement, shape, and type. Alternatively, the magnetic easy axis of the magnetic material may be aligned along the magnetic flux flow. For example, in the case of iron, the axis of easy magnetization is the crystal orientation (100
), and this direction may be set along a predetermined magnetic flux flow.

材料集合体は、材料間を十分に焼き付かせることにより
、材料間の層間電気抵抗を小さくしたり、或は機械的強
度の高いものにする必要がある。材料間の層間電気抵抗
を小さくする目的は、材料間の電気抵抗を小さくし、材
料から隣合わせる材料に電流を流すことと、材料間の層
に沿い電流を流すことである。高い機械的強度は、構造
物用材料としての機能を持たせるためであるみ層間電気
抵抗を小さくする目的と高い機械的強度を持たせる目的
が同時に要求される場合でも良い。
The material assembly needs to have a low interlayer electrical resistance or a high mechanical strength by sufficiently baking the materials. The purpose of reducing the interlayer electrical resistance between materials is to reduce the electrical resistance between the materials, allowing current to flow from one material to an adjacent material, and to allow current to flow along the layers between the materials. The high mechanical strength is required to function as a material for a structure, but it may be necessary to simultaneously reduce the interlayer electrical resistance and provide high mechanical strength.

磁性材料集合体の場合は、焼き付かせるための焼鈍によ
り、材料間を十分焼き付かせ、層間電気抵抗を小さくし
、所定の形状を確保し、機械的強度を得るだけでなく、
工程上で生じる加工歪も同時に解放されていることが好
しい。これは、磁性材料集合体に優れた磁化特性を持た
せるためのものである。
In the case of magnetic material aggregates, annealing for burning not only ensures sufficient burning between the materials, reduces interlayer electrical resistance, secures a predetermined shape, and obtains mechanical strength.
It is preferable that processing strain caused during the process is also released at the same time. This is to give the magnetic material aggregate excellent magnetization characteristics.

材料集合体で、材料間を十分に焼き付かせ、材料間の層
間電気抵抗を小さくしたり、機械的強度の高いものにす
るには、材料間での焼き付きを生じさせる前に、材料の
表面に導電性材料をメッキした材料を使用すると効果的
である。材料の表面に導電性材料をメッキした材料を使
用すると、組み合わされた材料間の電気抵抗を小さくす
ることができると共に、メッキされた導電性材料がメッ
キされてない素材の材料より焼き付き易い場合には、よ
り高い機械的強度焼鈍を得ることができる。
In order to sufficiently bake between materials in a material aggregate, reduce the interlayer electrical resistance between the materials, and increase mechanical strength, the surface of the materials must be It is effective to use a material plated with a conductive material. Using a material whose surface is plated with a conductive material can reduce the electrical resistance between the combined materials, and can also be used in cases where the plated conductive material is more likely to seize than the unplated material. can obtain higher mechanical strength annealing.

磁性材料の表面にメッキされる導電性材料として、銅、
アルミニウム、ニッケル、錫、亜鉛などおよびこれらの
合金を用いることができる。メッキ厚さは、組み合わさ
れた材料の材料間の電気抵抗を小さくでき、また、材料
間での焼き付きを促進して材料組合せ形成体の機械的強
度を十分ならしめるに必要な厚さであると良い。材料の
表面にメッキされる導電性材料の種類は、メッキの難易
度や要求される電気特性、磁気回路特性によって決定す
る必要がある。
Copper, as a conductive material plated on the surface of magnetic material.
Aluminum, nickel, tin, zinc, etc. and alloys thereof can be used. The plating thickness is the thickness necessary to reduce the electrical resistance between the combined materials, promote seizure between the materials, and ensure sufficient mechanical strength of the material combination formed body. good. The type of conductive material to be plated on the surface of the material must be determined depending on the difficulty of plating and the required electrical and magnetic circuit characteristics.

磁性材料の表面の垂直方向に磁束を流す場合には、導電
性材料として、ニッケルなどの磁化特性の優れたものを
メッキしたものを選択して、磁性材料集合体をつくると
よい。逆に、板や線などの磁性材料の表面方向と平行に
磁束を流す場合には、非磁性の導電性材料をメッキした
ものを使用すれば良い。
When a magnetic flux is caused to flow in a direction perpendicular to the surface of a magnetic material, it is preferable to select a conductive material plated with a material with excellent magnetization properties, such as nickel, to form a magnetic material aggregate. On the other hand, when flowing magnetic flux parallel to the surface direction of a magnetic material such as a plate or wire, a material plated with a non-magnetic conductive material may be used.

電流をある方向だけに流したいなら、導電性の材料と導
電性でない材料を組合せ、材料集合体にしてもよい。例
えば、導電性板状材料と導電性でない板状材料を1枚お
きに積層したものである。
If you want current to flow only in one direction, you can combine conductive and non-conductive materials to form a material aggregate. For example, a conductive plate-like material and a non-conductive plate-like material are laminated every other sheet.

目的が達成されるならば、メッキされた材料だけを使用
せずに、メッキした材料を一部使用したり、部分的にメ
ッキした材料を仕様しても良い。
If the purpose is achieved, instead of using only the plated material, a part of the plated material or a partially plated material may be used.

以上のようにしてつくられた材料集合体を、電磁気シー
ルド用材料として、最終形状を考慮して、焼き付かせる
以前に、材料の形状、組合せ等を計算に入れ加工したも
のを、焼き付き焼鈍しても良く、この場合は、焼き付き
焼鈍後、最終の形状のものが得られることになる。材料
の形状、種類は、1通りでなく、複数通りでも良い。
The material assembly made as described above is used as an electromagnetic shielding material, and is processed by baking and annealing, taking into account the shape, combination, etc. of the materials before baking, taking into consideration the final shape. In this case, the final shape will be obtained after baking annealing. The shape and type of material may not be one, but may be multiple.

最終形状にするため、焼鈍前、後にプレス加工をしても
良く、プレス成形状態で焼鈍しても良い。
In order to obtain the final shape, press working may be performed before or after annealing, or annealing may be performed in a press-formed state.

電磁気シールド用材料の最終形状を、この材料を取り付
けるために、端部に取り付け用の部分を備えたものにす
ると、利用価値が上がることは言うまでもない。例えば
、板状材料を積層して使用する場合、積層端部を一枚お
きに板をはみ出させた電磁気シールド用材料を、他のシ
ールド用部品と噛み合わせれば、組立等が容易になる。
It goes without saying that if the final shape of the electromagnetic shielding material is provided with an attachment part at the end for attaching the material, its utility value will be increased. For example, when plate-shaped materials are used in a stacked manner, assembly is facilitated by interlocking the electromagnetic shielding material, in which the stacked ends are made to protrude from every other plate, with other shielding parts.

板を一枚おきに、はみ出し、噛み合わせる方法に限らず
、複数枚おきにしても良く、また、お互いが噛み合わす
ことができるならば、他の方法でも良い。
The method is not limited to the method of protruding and interlocking every other plate, but it is also possible to use every other plurality of plates, or other methods may be used as long as the plates can be interlocked with each other.

このようにして、つくられた電磁気シールド用材料はミ
任意形状で、所定の磁束流れを可能にし、さらに電磁気
シールド用材料を形成する材料の層間抵抗が低いもので
ある。また、加工も容易であり、積層間の強度が高くで
きるので、機械的にも十分な強度が得られる。
The electromagnetic shielding material produced in this way has an arbitrary shape, allows a predetermined magnetic flux flow, and has a low interlayer resistance of the material forming the electromagnetic shielding material. Furthermore, it is easy to process, and the strength between the laminated layers can be increased, so that sufficient mechanical strength can be obtained.

(実 施 例) 第1図に、電磁気シールド用の材料と、第2図に、その
電磁気シールド用材料を使用した、外部からの電磁気に
対するシールドを行うCRT用の電磁気シールトポ、ツ
クスの実施例を示す。
(Example) Fig. 1 shows an electromagnetic shielding material, and Fig. 2 shows an example of an electromagnetic shielding topo for CRTs that uses the electromagnetic shielding material to shield against external electromagnetism. show.

すなわち、第2図は電磁気シールドボックスを形成する
中央部成形部材4と、左右側部成形部材5.6とからな
り、各成形部材4,5.6は、第1図に示すように、電
磁気シールド用の各材料すなわち外層材料1、中間層材
料2、内層材料3の3層から構成される材料集合体であ
る。外層1および中間層2の各材料は厚さ0.2kmの
方向性電磁鋼板3枚を積層して構成され、内層3の材料
は、厚さ1 amの45%Ni合金であるPBパーマロ
イからなっている(尚第1図において(a)は中央成形
部材4の一部を示す材料集合体4’ 、(b)は右(左
)側部成形体5(6)の一部を示す材料集合体5′を示
している。
That is, FIG. 2 consists of a central molded member 4 forming an electromagnetic shield box, and left and right side molded members 5.6, and each molded member 4, 5.6, as shown in FIG. It is a material assembly composed of three layers of shielding materials, namely an outer layer material 1, an intermediate layer material 2, and an inner layer material 3. The material for the outer layer 1 and the intermediate layer 2 is composed of three grain-oriented electrical steel plates with a thickness of 0.2 km laminated, and the material for the inner layer 3 is made of PB permalloy, which is a 45% Ni alloy, and has a thickness of 1 am. (In Fig. 1, (a) is a material assembly 4' showing a part of the central molded member 4, and (b) is a material assembly showing a part of the right (left) side molded member 5 (6). Body 5' is shown.

これらの電磁鋼板およびパーマロイは、第2図のシール
ボックスを形成する中央成形部材4および右左の側部成
形部材5,6の形状になるように、切断、プレス曲げ加
工を行い、電磁鋼板は3枚を積層してそれぞれ外層材料
1および中間層材料2を構成する。一方向層材3となる
パーマロイは露点−40℃の水素雰囲気中で1100℃
×2時間の磁性焼鈍を行う。その後、被膜のない状態で
の外層材料1および中間層材料2の表面、ならびに外層
材料3のパーマロイ表面に、厚さ1uJaの銅メッキと
さらにその上に錫メッキを施す。
These electromagnetic steel sheets and permalloy were cut and press-bent into the shapes of the central molded member 4 and right and left side molded members 5 and 6 that form the seal box shown in FIG. The outer layer material 1 and the intermediate layer material 2 are formed by laminating the outer layer material 1 and the intermediate layer material 2, respectively. Permalloy, which becomes the unidirectional layer material 3, is heated to 1100℃ in a hydrogen atmosphere with a dew point of -40℃.
Magnetic annealing is performed for ×2 hours. Thereafter, the surfaces of the outer layer material 1 and the intermediate layer material 2 without coatings, as well as the permalloy surface of the outer layer material 3, are plated with copper to a thickness of 1 uJa and further tin plated thereon.

このようにメッキ処理した各層材料1. 2. 3は、
第2図に示す各構成部材4および5,6になるように材
料集合体を形成する。
Each layer material plated in this way 1. 2. 3 is
A material assembly is formed to form each of the constituent members 4, 5, and 6 shown in FIG.

この際、第1図に示すように材料集合体4′における中
間層材料2の両端部は、外層材料1および内層材料3の
両端面より突き出ている突出部7を設けており、また右
側材料集合体5′における他の材料集合体(中央部成形
材)4′との接合部には、中間層材料2の端部が外、内
層材2,3の端面より凹ませた凹溝8を設it(図示し
ていないが左側材料集合体も同様)して、前記突出部7
が凹溝8に嵌合して接合部を形成するようにすると共に
、外層材料1と、中間層材料2は、これらを構成してい
る電磁鋼板の圧延方向が第1図の矢印1’ 、2’ に
示すように各層材料内では同一であるが各層材料間では
直角方向になるように配置し、層間1と2とで磁化容易
軸が直交するようにする。
At this time, as shown in FIG. 1, both ends of the intermediate layer material 2 in the material assembly 4' are provided with protrusions 7 that protrude from both end surfaces of the outer layer material 1 and the inner layer material 3, and the right side material At the joint part of the assembly 5' with another material assembly (center molded material) 4', the end of the intermediate layer material 2 is provided with a groove 8 recessed from the outer end surface of the inner layer materials 2 and 3. (Although not shown, the left material aggregate is also the same) and the protruding portion 7 is
The outer layer material 1 and the intermediate layer material 2 are arranged so that the rolling direction of the electromagnetic steel sheets constituting them is in the direction of the arrow 1' in FIG. As shown in 2', the materials of each layer are the same, but the materials of each layer are arranged in a perpendicular direction, so that the axes of easy magnetization are orthogonal between the layers 1 and 2.

上記した処理および構造を有する材料各集会部材、すな
わち第2図に示す磁気用シールドボックスになるように
成形した部材を、900℃で2時間の焼付け焼鈍を行い
、最終的にはこれらが一体になったものとなる。
Each material assembly member having the above-mentioned treatment and structure, that is, a member molded to form the magnetic shield box shown in Figure 2, is baked and annealed at 900°C for 2 hours, and finally these are integrated into one piece. Be what you become.

このようにして、つくられたCRT用電磁電磁気シール
ドボックス外部を電磁鋼板、内部を高透磁率であるパー
マロイを使用しているので、地磁気やその他の磁界に対
する磁気シールドにも効果が大きく、銅メッキをはじめ
、すべて導電性のもので構成されているので、電磁波に
対するシールドや静電気シールドにも効果がある。
In this way, the CRT electromagnetic shielding box made is made of electromagnetic steel for the outside and permalloy, which has high magnetic permeability, is used for the inside, so it is highly effective in magnetic shielding against geomagnetism and other magnetic fields, and is plated with copper. Since it is made of conductive materials, it is also effective as a shield against electromagnetic waves and as a shield against static electricity.

(発明の効果) 本発明の電磁気シールド用材料は、複数種類の材料を組
み合わせてつくられるので、電気、磁気、電磁波の1種
類或は1種類以上のシールドが可能であり、また電界、
磁界の大きさ、周波数も、1種類或は1種類以上の領域
で使用可能である。
(Effects of the Invention) The electromagnetic shielding material of the present invention is made by combining multiple types of materials, so it can shield one or more types of electricity, magnetism, and electromagnetic waves, and can shield electric fields,
The magnitude and frequency of the magnetic field can also be used in one or more ranges.

従って、いままで、シールド施工する場合に、複数の工
事が必要であるものが、以上のように、1つの電磁気シ
ールド用材料で複数の要求を満足させることが可能なた
め、工事数が、少なくて済む。
Therefore, conventionally, when constructing a shield, multiple works were required, but as described above, it is possible to satisfy multiple requirements with one electromagnetic shielding material, so the number of works is reduced. It's done.

また、本発明の電磁気シールド用材料はいろいろな材料
を組み合わせてつくるので、非常に優れた特性を有する
材料を、積層や束ねることなどして、容易に任意の最終
形状にでき、所定の形状の塊では得られにくい優れた特
性のものが得られる。
In addition, since the electromagnetic shielding material of the present invention is made by combining various materials, materials with extremely excellent properties can be easily formed into any final shape by laminating or bundling, and can be easily formed into any desired final shape. It provides excellent properties that are difficult to obtain in bulk.

電磁気シールド用材料用の磁性材料として、磁化特性の
非常に優れている珪素鋼板を使用でき、最終的に焼鈍工
程を通してつくられるので、加工歪が残らず、良好な磁
気特性を提供するものであり、材料の使用磁束密度を通
常のものより高くできる。また、使用磁性材料の磁化容
易軸を所定の磁束流れに沿うように設計することが可能
であり、磁極間に希望する磁束密度や磁束分布が得られ
易い。
As the magnetic material for electromagnetic shielding materials, silicon steel sheets, which have extremely excellent magnetization properties, can be used, and since they are finally produced through an annealing process, no processing distortion remains and they provide good magnetic properties. , the magnetic flux density of the material used can be higher than usual. Furthermore, it is possible to design the axis of easy magnetization of the magnetic material used to follow a predetermined magnetic flux flow, making it easy to obtain the desired magnetic flux density and magnetic flux distribution between the magnetic poles.

材料が、導電性材料のメッキ層を有する電磁気シールド
用材料であれば、材料間に電流が流れるので、電気のシ
ールドが可能で、あるいは効率的に行え、交流であれば
、磁束変化による渦電流により、電磁気シールド性を高
めることもできる。
If the material is an electromagnetic shielding material that has a plating layer of conductive material, electric current will flow between the materials, making it possible or efficient to shield electricity, and if it is an alternating current, eddy currents due to changes in magnetic flux will flow between the materials. This also makes it possible to improve electromagnetic shielding.

材料の配置を、高い電磁気シールド性となる電束、電流
、磁束のうちの何れか1つ以上の流れに沿うように、組
み合わせて形成したり、材料が磁性材料であれば、磁性
材料の磁化容易軸を、高い電磁気シールド性となる磁束
流れに沿うように、材料を組み合わせて形成したりする
と、電磁気シールド性が高くなるだけでなく、小型軽量
にもできる。
The arrangement of materials may be combined to follow the flow of one or more of electric flux, current, and magnetic flux that provides high electromagnetic shielding, or if the material is a magnetic material, the magnetization of the magnetic material may be If the easy axis is formed by combining materials so as to follow the flow of magnetic flux that provides high electromagnetic shielding, not only will the electromagnetic shielding be high, but the device can also be made smaller and lighter.

所定の使用形状になるように、材料のセン断加工やプレ
ス加工など、組合せを行った後、焼き付き状態にすると
、必要とする形状が任意に容易にできる。
After combining the materials by shearing, pressing, etc. to obtain a predetermined shape for use, the desired shape can be easily formed by combining the materials into a sewn state.

端部に取り付け用の噛み合わせ部を存する電磁気シール
ド用材料であると、改めて、取り付け部の機械加工を行
う必要がなく、非常に便利である。
If the electromagnetic shielding material has a mating part for attachment at the end, there is no need to perform machining of the attachment part again, which is very convenient.

このように、電磁気シールド用材料としては、電気的、
磁気的に理想的なものである。さらに板、線や粒の磁性
材料を目的に合った形状に組合せ、成形などして、焼き
付けることで、小型で任意の形状のヨークを得ることが
可能であり、使用目的に合った形状や大きさの電磁気シ
ールド用材料が、低コストで得られることになる。また
電磁気シールド用材料に要求される機械的強度も焼き付
き強度を考慮すれば得ることが可能である。
In this way, as materials for electromagnetic shielding, electrical,
It is magnetically ideal. Furthermore, by combining magnetic materials such as plates, wires, and grains into a shape that suits the purpose, molding it, and baking it, it is possible to obtain a small yoke of any shape. This means that a material for electromagnetic shielding can be obtained at low cost. Furthermore, the mechanical strength required for the electromagnetic shielding material can be obtained by considering the seizure strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の電磁気シールド用材料(材料集合体
)の斜視図であり、第2図は、電磁気シールド用材料を
使用した、外部からの電磁気に対するシールドを行うC
RT用の電磁気シールドボックスを示す。 1:外層材料 3:内層材料 5.6:左右側部成形部材 7:突出部       8.凹 溝 4’ 、  5’  :材料集合体 2:中間層材料 4:中央成形部材 第1図
Fig. 1 is a perspective view of the electromagnetic shielding material (material aggregate) of the present invention, and Fig. 2 is a perspective view of the electromagnetic shielding material (material aggregate) of the present invention.
An electromagnetic shielding box for RT is shown. 1: Outer layer material 3: Inner layer material 5.6: Left and right side molded members 7: Protrusion 8. Concave grooves 4', 5': Material aggregate 2: Intermediate layer material 4: Central molded member Fig. 1

Claims (8)

【特許請求の範囲】[Claims] (1)材料を組み合わせてつくられる形成体からなり、
材料間が焼き付き状態となっている材料集合体を使用す
ることを特徴とする電磁気シールド用材料。
(1) Consists of a formed body made by combining materials,
An electromagnetic shielding material characterized by using a material aggregate in which the materials are in a burned-in state.
(2)材料が、導電性材料のメッキ層を有するものであ
る請求項1記載の電磁気シールド用材料。
(2) The electromagnetic shielding material according to claim 1, wherein the material has a plating layer of a conductive material.
(3)材料の配置を、高い電磁気シールド性となる電束
、電流、磁束のうちの何れか1つ以上の流れに沿うよう
に、組み合わせて形成された材料集合体である請求項1
及び2記載の電磁気シールド用材料。
(3) Claim 1 which is a material assembly formed by combining materials arranged so as to follow the flow of any one or more of electric flux, current, and magnetic flux that provides high electromagnetic shielding properties.
and the electromagnetic shielding material according to 2.
(4)材料が磁性材料である請求項1,2あるいは3記
載の電磁気シールド用材料。
(4) The electromagnetic shielding material according to claim 1, 2 or 3, wherein the material is a magnetic material.
(5)磁性材料の磁化容易軸を、高い電磁気シールド性
となる磁束流れに沿うように、材料を組み合わせて形成
された磁性材料集合体である請求項4記載の電磁気シー
ルド用材料。
(5) The electromagnetic shielding material according to claim 4, which is a magnetic material aggregate formed by combining materials such that the axis of easy magnetization of the magnetic material follows a magnetic flux flow that provides high electromagnetic shielding properties.
(6)所定の使用形状になるように、材料の加工、組合
せを行った後、焼き付き状態にすることを特徴とする請
求項1,2,3,4あるいは5記載の電磁気シールド用
材料。
(6) The electromagnetic shielding material according to claim 1, 2, 3, 4, or 5, characterized in that the materials are processed and combined so as to have a predetermined shape for use, and then brought into a baked-in state.
(7)プレス加工を施し、最終形状とする請求項6記載
の電磁気シールド用材料。
(7) The electromagnetic shielding material according to claim 6, which is subjected to press processing to obtain a final shape.
(8)端部に取り付け用の噛み合わせ部を有する請求項
6あるいは7記載の電磁気シールド用材料。
(8) The electromagnetic shielding material according to claim 6 or 7, which has a mating part for attachment at the end.
JP21141390A 1990-08-09 1990-08-09 Electro-magnetic shield material Pending JPH0494198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21141390A JPH0494198A (en) 1990-08-09 1990-08-09 Electro-magnetic shield material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21141390A JPH0494198A (en) 1990-08-09 1990-08-09 Electro-magnetic shield material

Publications (1)

Publication Number Publication Date
JPH0494198A true JPH0494198A (en) 1992-03-26

Family

ID=16605548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21141390A Pending JPH0494198A (en) 1990-08-09 1990-08-09 Electro-magnetic shield material

Country Status (1)

Country Link
JP (1) JPH0494198A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343881A (en) * 1992-06-05 1993-12-24 Nkk Corp Magnetic shielding device
WO2004084603A1 (en) 2003-03-17 2004-09-30 Kajima Corporation Open magnetic shield structure and its magnetic frame
JP2009224532A (en) * 2008-03-17 2009-10-01 Kajima Corp Blade material for magnetic shield, and its manufacturing method
JP2010192843A (en) * 2009-02-20 2010-09-02 Nippon Steel Engineering Co Ltd Magnetic shield device
JP2010192850A (en) * 2009-02-20 2010-09-02 Nippon Steel Engineering Co Ltd Magnetic shield device
JP5462416B2 (en) * 2011-11-22 2014-04-02 三菱電機株式会社 Manufacturing method of fine metal wire electromagnetic shield, fine metal wire electromagnetic shield, and stationary induction device including the same
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US8970137B2 (en) 2007-11-30 2015-03-03 Mevion Medical Systems, Inc. Interrupted particle source
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9452301B2 (en) 2005-11-18 2016-09-27 Mevion Medical Systems, Inc. Inner gantry
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343881A (en) * 1992-06-05 1993-12-24 Nkk Corp Magnetic shielding device
US7964803B2 (en) 2003-03-17 2011-06-21 Nippon Steel Corporation Magnetic shield structure having openings and a magnetic material frame therefor
WO2004084603A1 (en) 2003-03-17 2004-09-30 Kajima Corporation Open magnetic shield structure and its magnetic frame
EP1605742A1 (en) * 2003-03-17 2005-12-14 Kajima Corporation Open magnetic shield structure and its magnetic frame
EP1605742A4 (en) * 2003-03-17 2010-03-03 Kajima Corp Open magnetic shield structure and its magnetic frame
USRE48047E1 (en) 2004-07-21 2020-06-09 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US9925395B2 (en) 2005-11-18 2018-03-27 Mevion Medical Systems, Inc. Inner gantry
US10722735B2 (en) 2005-11-18 2020-07-28 Mevion Medical Systems, Inc. Inner gantry
US10279199B2 (en) 2005-11-18 2019-05-07 Mevion Medical Systems, Inc. Inner gantry
US9452301B2 (en) 2005-11-18 2016-09-27 Mevion Medical Systems, Inc. Inner gantry
USRE48317E1 (en) 2007-11-30 2020-11-17 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8970137B2 (en) 2007-11-30 2015-03-03 Mevion Medical Systems, Inc. Interrupted particle source
JP2009224532A (en) * 2008-03-17 2009-10-01 Kajima Corp Blade material for magnetic shield, and its manufacturing method
JP2010192850A (en) * 2009-02-20 2010-09-02 Nippon Steel Engineering Co Ltd Magnetic shield device
JP2010192843A (en) * 2009-02-20 2010-09-02 Nippon Steel Engineering Co Ltd Magnetic shield device
JP5462416B2 (en) * 2011-11-22 2014-04-02 三菱電機株式会社 Manufacturing method of fine metal wire electromagnetic shield, fine metal wire electromagnetic shield, and stationary induction device including the same
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US10368429B2 (en) 2012-09-28 2019-07-30 Mevion Medical Systems, Inc. Magnetic field regenerator
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US9706636B2 (en) 2012-09-28 2017-07-11 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US10155124B2 (en) 2012-09-28 2018-12-18 Mevion Medical Systems, Inc. Controlling particle therapy
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US10456591B2 (en) 2013-09-27 2019-10-29 Mevion Medical Systems, Inc. Particle beam scanning
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US11717700B2 (en) 2014-02-20 2023-08-08 Mevion Medical Systems, Inc. Scanning system
US10434331B2 (en) 2014-02-20 2019-10-08 Mevion Medical Systems, Inc. Scanning system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US11213697B2 (en) 2015-11-10 2022-01-04 Mevion Medical Systems, Inc. Adaptive aperture
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US11786754B2 (en) 2015-11-10 2023-10-17 Mevion Medical Systems, Inc. Adaptive aperture
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor
US11311746B2 (en) 2019-03-08 2022-04-26 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system

Similar Documents

Publication Publication Date Title
JPH0494198A (en) Electro-magnetic shield material
CN102971100B (en) Composite magnetic body and manufacture method thereof
CN106663513B (en) Magnetic core, the manufacturing method of magnetic core and coil component
CN104078193A (en) Inductor and method for manufacturing the same
KR101681405B1 (en) Power inductor
US10707013B2 (en) Sheet for shielding electromagnetic waves for wireless charging and method of manufacturing the same
Govor et al. Properties of a composite magnetically soft material based on coated iron powders
JP2024056104A (en) Inductors
JP2019212806A (en) Inductor
JP2970297B2 (en) High resistance magnetic shield material
CN86101224B (en) Method of manufacturing electromagnetic members
US20040173287A1 (en) Coated ferromagnetic particles and compositions containing the same
CN117079952A (en) Magnetic core and magnetic component
US1731861A (en) Magnetic core
CN110024059B (en) Transformer core for cutting stacked transformer and transformer including the same
WO2018186006A1 (en) Compressed powder magnetic core and magnetic core powder, and production method therefor
US3756788A (en) Laminated magnetic material
KR20180110592A (en) Coil component
US20200098504A1 (en) Inductor
US11328872B2 (en) LC composite component
US11515854B2 (en) LC composite component
US20230104216A1 (en) Wireless charge coil
JP2001118729A (en) Inductor array
JPS6016733B2 (en) Iron core structure of AC electromagnet
JPS618908A (en) Iron core for high frequency