JPH048619A - Car stabilizer device - Google Patents

Car stabilizer device

Info

Publication number
JPH048619A
JPH048619A JP11078890A JP11078890A JPH048619A JP H048619 A JPH048619 A JP H048619A JP 11078890 A JP11078890 A JP 11078890A JP 11078890 A JP11078890 A JP 11078890A JP H048619 A JPH048619 A JP H048619A
Authority
JP
Japan
Prior art keywords
cylinder
hydraulic
stabilizer
internal pressure
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11078890A
Other languages
Japanese (ja)
Inventor
Masatsugu Yokote
正継 横手
Fukashi Sugasawa
菅沢 深
Toshihiro Yamamura
智弘 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11078890A priority Critical patent/JPH048619A/en
Priority to GB9108790A priority patent/GB2243349A/en
Priority to DE19914113736 priority patent/DE4113736A1/en
Publication of JPH048619A publication Critical patent/JPH048619A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/06Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected fluid
    • B60G21/073Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected fluid between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/15Fluid spring
    • B60G2202/154Fluid spring with an accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/24Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/419Gears
    • B60G2204/4192Gears rack and pinion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/80Interactive suspensions; arrangement affecting more than one suspension unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/80Interactive suspensions; arrangement affecting more than one suspension unit
    • B60G2204/82Interactive suspensions; arrangement affecting more than one suspension unit left and right unit on same axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/80Interactive suspensions; arrangement affecting more than one suspension unit
    • B60G2204/83Type of interconnection
    • B60G2204/8304Type of interconnection using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/012Rolling condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/24Steering, cornering

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To enhance the comfort in sitting in a car cabin, secure rolling stiffness, and provide controllability for it in accordance with the running condition by equipping a car with a stabilizer device of fluid pressure type, and therein controlling the internal pressure of the stabilizer according to the car running condition. CONSTITUTION:A controller 36 reads sensing signals G from a crosswise acceleration sensor 38 and judges whether or not the reading value ¦G¦ is greater than the reference value G0. In the case of 'No', it is considered to be in a cornering state with a small crosswise acceleration, and piston 30b of a control cylinder 30 is put in the neutral position. In the case of 'Yes', the piston 30b is moved in the direction of boosting the working pressure in compression side cylinder chambers U, L. This constitution prevents worsening of the comfort in car cabin even while running with bounces. Also the car steering characteristics under cornering can be controlled optimally.

Description

【発明の詳細な説明】 (産業上の利用分野] 本願発明は、車両用スタビライザ装置に係り、特に、ス
タビライザとして油圧式等、流体圧式スタビライザを用
いた車両用スタビライザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a vehicle stabilizer device, and particularly relates to a vehicle stabilizer device using a hydraulic stabilizer such as a hydraulic stabilizer as the stabilizer.

〔従来の技術〕[Conventional technology]

従来の車両用スタビライザ装置としては、例えば実開昭
60−76506号記載のもの(考案の名称は「油圧式
スタビライザ」)が知られている。
As a conventional vehicle stabilizer device, for example, the one described in Japanese Utility Model Application Laid-Open No. 60-76506 (name of the device is "hydraulic stabilizer") is known.

この従来装置は、車両左右のサスペンションリンク及び
車体間の上下方向に各々介装させた片ロッド・複動形の
油圧シリンダを有し、この左右の油圧シリンダ間で一方
の上側シリンダ室と他方の下側シリンダ室とを油圧配管
を介して交差状態で連通させ、この油圧配管の途中には
夫々オリフィスを挿入するとともに、各油圧シリンダの
上側シリンダ室ζオリフィスとの間の油圧配管部分に、
作動油を弾撥的に付勢するばね機構を連通させている。
This conventional device has single-rod, double-acting hydraulic cylinders installed in the vertical direction between the left and right suspension links and the vehicle body, and between the left and right hydraulic cylinders, one upper cylinder chamber and the other The lower cylinder chamber is communicated with the lower cylinder chamber in an intersecting state via hydraulic piping, and orifices are inserted in the middle of each hydraulic piping, and the hydraulic piping portion between each hydraulic cylinder and the upper cylinder chamber ζ orifice is
A spring mechanism that elastically biases the hydraulic oil is communicated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述した従来装置においては、オリフィ
スがクロスした管路途中に夫々挿入され、バウンス時、
ロール時共に作動油がオリフィスを通過するようになっ
ていたため、バウンス時にも減衰力が発生し、バウンス
を伴う不整路走行時における減衰力が大きくなってゴツ
ゴツ感が増し、乗心地が悪化するという問題があった。
However, in the conventional device described above, the orifices are inserted in the middle of the crossed pipes, and when bouncing,
Because the hydraulic oil passed through the orifice both during rolls, damping force was generated during bounces as well, and when driving on uneven roads accompanied by bounces, the damping force increases, increasing the bumpy feeling and worsening ride comfort. There was a problem.

一方、ばね機構のばね力を予め調整しておくことは可能
であるが、旋回時のロール剛性が横加速度の大小に応じ
てその都度変更できないため、係る従来の装置構成をロ
ール剛性前後配分制御によるステア特性制御には適用し
難いという状況にあった。
On the other hand, although it is possible to adjust the spring force of the spring mechanism in advance, the roll stiffness during turning cannot be changed each time according to the magnitude of lateral acceleration. The situation was that it was difficult to apply this method to steering characteristic control.

本願発明は、このような従来装置の有する問題及び状況
に鑑みてなされたもので、その解決しようとする課題は
、バウンスを伴う不整路走行の場合でも乗心地を損ねる
ことなく、一方、ロール変化に対しては所望のロール剛
性を確保でき且つそのロール剛性を走行状態に応じて制
御できるようにすることである。
The present invention has been made in view of the problems and circumstances of the conventional device, and aims to solve the problem without impairing ride comfort even when driving on an uneven road accompanied by bounce, while at the same time preventing roll change. The objective is to ensure a desired roll stiffness and to be able to control the roll stiffness according to the running conditions.

〔課題を解決するための手段] 上記課題を解決するため、請求項(1)記載の発明は、
車両左右のサスペンションリンク及び車体間に個別に立
設され且つ左右同士で対を成す両ロッド・複動形の流体
圧シリンダと、この対を成す流体圧シリンダ間で一方の
上側シリンダ室と他方の下側シリンダ室とを相互に接続
する第1の管路と、この第1の管路夫々に第2の管路を
介して連通され且つ作動流体を弾撥的に付勢する流体室
と、前記第2の管路夫々に介挿された絞り弁とを有する
スタビライザを設けるとともに、このスタビライザの内
圧を変更可能な内圧可変手段と、この内圧可変手段の作
動を車両の走行状態に応じて制御する制御手段とを設け
ている。
[Means for solving the problem] In order to solve the above problem, the invention described in claim (1)
Double-rod, double-acting type fluid pressure cylinders are installed individually between the left and right suspension links and the vehicle body, and form a pair on the left and right, and between the paired fluid pressure cylinders, one upper cylinder chamber and the other a first conduit interconnecting the lower cylinder chamber; a fluid chamber communicating with each of the first conduits via a second conduit and elastically biasing the working fluid; A stabilizer having a throttle valve inserted in each of the second pipes is provided, an internal pressure variable means capable of changing the internal pressure of the stabilizer, and an operation of the internal pressure variable means is controlled according to the running state of the vehicle. A control means is provided.

また請求項(2)記載の発明では、請求項(1)記載構
成の内、内圧可変手段を、両ロッド・複動形の流体圧シ
リンダと、この流体圧シリンダの両シリンダ室を前記第
1の管路の夫々に連通させる第3の管路と、前記流体圧
シリンダのピストンロッドを前記制御手段の指令に基づ
き軸方向に移動可能なロッド移動機構とを備えて構成し
ている。
Further, in the invention described in claim (2), in the configuration described in claim (1), the internal pressure variable means is provided in a double-rod, double-acting type fluid pressure cylinder, and both cylinder chambers of this fluid pressure cylinder are connected to the first cylinder chamber. and a rod moving mechanism capable of moving the piston rod of the fluid pressure cylinder in the axial direction based on a command from the control means.

〔作用] 本願各発明において、車両がバウンスすると、左右輪の
流体圧シリンダは、その上側、下側シリンダ室の一方が
左右同時に圧縮し且つ他方が左右同時に伸長する。この
ため、圧縮されたシリンダ室の作動流体は互いにクロス
した第1の管路を通って反対側流体圧シリンダの伸長し
たシリンダ室に入る。このように作動流体が絞り弁を通
過せず、しかも流体圧シリンダは両ロッド形であって、
上側、下側シリンダ室の容積変化が同じであるから、第
1の管路内の作動流体量に変化はなく、第2の管路を作
動流体が流れることもない。つまり、絞り弁による減衰
力も、流体室による反力も生しることなく、不整路であ
ってもスタビライザ装置によって乗心地が悪化すること
もない。
[Operation] In each of the inventions of the present application, when the vehicle bounces, one of the upper and lower cylinder chambers of the left and right wheels compresses at the same time, and the other expands at the same time. Therefore, the compressed working fluid in the cylinder chamber enters the extended cylinder chamber of the opposite hydraulic cylinder through the first conduits that cross each other. In this way, the working fluid does not pass through the throttle valve, and the fluid pressure cylinder is double rod-shaped.
Since the volume changes of the upper and lower cylinder chambers are the same, there is no change in the amount of working fluid in the first conduit, and no working fluid flows through the second conduit. In other words, neither the damping force caused by the throttle valve nor the reaction force caused by the fluid chamber is produced, and the ride comfort is not deteriorated by the stabilizer device even on an uneven road.

一方、旋回時に例えば左輪側が沈み込み右輪側が浮き上
がるロールを生したとする。これにより、左輪側流体圧
シリンダのストロークが縮小し、右輪側流体圧シリンダ
のストロークが伸長して、クロス接続された2対のシリ
ンダ室の内の一方が共に圧縮され、その圧力上昇によっ
て作動流体が流体室に流れ込んで弾撥的に付勢される。
On the other hand, suppose that when turning, for example, a roll occurs in which the left wheel sinks and the right wheel lifts up. As a result, the stroke of the left wheel side hydraulic cylinder is reduced, and the right wheel side hydraulic cylinder's stroke is extended, and one of the two pairs of cross-connected cylinder chambers is compressed together, and the increase in pressure causes the cylinder chamber to operate. Fluid flows into the fluid chamber and is elastically biased.

また伸長するシリンダ室の夫々には流体室から作動流体
が流れ込む。そこで、絞り弁は通過する作動流体量に応
じた減衰力を発生させるとともに、車体沈み込み側の流
体圧シリンダがその沈み込みに抗する力を発生し、車体
浮き上がり側の流体圧シリンダがその浮き上がりに抗す
る力を発生する。このとき、制御手段は例えば横加速度
に応した指令を内圧可変手段に送り、内圧可変手段はロ
ール抑制側シリンダ室の内圧を制御する。したがって、
左右の流体圧シリンダで発生するロール剛性は、制御手
段によって自在に制御され、車体ロールが適宜抑制され
る。これにより、車両前後においてロール剛性の分担率
を適宜制御することにより、左右輪の荷重移動量の比に
因るステア特性を積極的に制御できる。
Moreover, working fluid flows into each of the extending cylinder chambers from the fluid chamber. Therefore, the throttle valve generates a damping force according to the amount of working fluid that passes through it, and the fluid pressure cylinder on the sinking side of the car body generates a force to resist the sinking, and the fluid pressure cylinder on the side of the car body lifts up. Generates a force that resists. At this time, the control means sends, for example, a command corresponding to the lateral acceleration to the internal pressure variable means, and the internal pressure variable means controls the internal pressure of the roll suppression side cylinder chamber. therefore,
The roll stiffness generated in the left and right hydraulic cylinders is freely controlled by the control means, and vehicle body roll is appropriately suppressed. As a result, by appropriately controlling the share of roll stiffness between the front and rear of the vehicle, it is possible to actively control the steering characteristics that depend on the ratio of the amount of load movement between the left and right wheels.

一方、ロール中の凹凸やバウンス時の過渡的大振動入力
に因る圧力変動は流体室によって吸収され、車体振動が
絞り弁によって減衰される。
On the other hand, pressure fluctuations due to irregularities in the roll or transient large vibration input during bounce are absorbed by the fluid chamber, and vehicle body vibration is attenuated by the throttle valve.

〔実施例〕〔Example〕

以下、本願発明の一実施例を添付図面の第1図及び第2
図に基づき説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2 of the accompanying drawings.
This will be explained based on the diagram.

まず第1図において、2L、2Rは車両の左輪。First, in Fig. 1, 2L and 2R are the left wheels of the vehicle.

右輪を、4は車輪支持部材としてのナックルを、6は車
体を夫々示す。ナックル4の上端部と車体6との間には
、ショックアブソーバ8Aを内蔵するサスペンションス
トラット8がその軸方向にストローク可能に取り付けら
れ、このサスペンションストラット8のハネ上、ハネ下
相当位置にはコイルスプリング10が装備されている。
4 indicates the right wheel, 4 indicates a knuckle as a wheel support member, and 6 indicates the vehicle body. A suspension strut 8 having a built-in shock absorber 8A is attached between the upper end of the knuckle 4 and the vehicle body 6 so as to be able to stroke in the axial direction, and coil springs are installed at the upper and lower positions of the suspension strut 8. Equipped with 10.

またナックル4の下端部と車体6との間には、サスペン
ションリンクとしてのロアアーム12が取り付けられ、
このロアアーム12がナックル4の上下動に伴って揺動
軸回りに揺動可能になっている。
Furthermore, a lower arm 12 as a suspension link is attached between the lower end of the knuckle 4 and the vehicle body 6.
This lower arm 12 can swing around a swing axis as the knuckle 4 moves up and down.

また、本実施例の車両はスタビライザ装置14を装備し
ている。このスタビライザ装置14は、左右のナックル
4及び車体6間に個別に介装された油圧式のスタビライ
ザ16と、このスタビライザ16による旋回時のロール
剛性を制御する制御部18とを備えている。
Further, the vehicle of this embodiment is equipped with a stabilizer device 14. The stabilizer device 14 includes a hydraulic stabilizer 16 that is individually interposed between the left and right knuckles 4 and the vehicle body 6, and a control section 18 that controls the roll rigidity of the stabilizer 16 when turning.

スタビライザ16は、流体圧シリンダとしての油圧シリ
ンダ2OL、2ORと、絞り弁22L。
The stabilizer 16 includes hydraulic cylinders 2OL and 2OR as fluid pressure cylinders, and a throttle valve 22L.

22R及び流体室としての油室24L、24Rとを有し
、これらの各要素が第1の油圧配管26A26B(第1
の管路)及び第2の油圧配管28A。
22R and oil chambers 24L and 24R as fluid chambers, and each of these elements is connected to a first hydraulic pipe 26A26B (first
pipe) and second hydraulic pipe 28A.

28B(第2の管路)によって相互に接続された構造に
なっている。
28B (second conduit).

油圧シリンダ2OL、2ORの夫々は、シリンダチュー
ブ20aと、このシリンダチューブ2゜a内を2つのシ
リンダ室U、Lに分離し且っ摺動可能なピストン20b
と、このピストン20bに固設され軸側方向に延びるピ
ストンロッド20cとを有した両ロッド、複動形に構成
され、夫々の摺動部分は液密状態でシールされている。
Each of the hydraulic cylinders 2OL and 2OR includes a cylinder tube 20a and a slidable piston 20b that separates the inside of the cylinder tube 2a into two cylinder chambers U and L.
and a piston rod 20c that is fixedly attached to the piston 20b and extends in the axial direction.The two rods are of a double-acting type, and the sliding portions of each rod are sealed in a liquid-tight state.

このような構造を有する油圧シリンダ20L、2ORは
、各々、ピストンロッド20cの一方の端部がロアアー
ム12に取り付けられ、他方の端部がフリーな状態に置
かれるとともに、このフリ一端例のシリンダデユープ2
0aの端部が車体6に揺動可能に支持され、これによっ
て、油圧シリンダ2OL2ORが左右のハネ上、ハネ下
関に各々立設されている。
In each of the hydraulic cylinders 20L and 2OR having such a structure, one end of the piston rod 20c is attached to the lower arm 12, and the other end is left in a free state, and the cylinder duplex 2, which is an example of one end of the piston rod 20c, is attached to the lower arm 12.
The end portions of the hydraulic cylinders 0a are swingably supported by the vehicle body 6, whereby hydraulic cylinders 2OL2OR are erected on the left and right upper and lower hinges, respectively.

そして、左輪側油圧シリンダ2OLの上側シリンダ室U
が第1の油圧配管26Aを介して右輪側油圧シリンダ2
0Rの下側シリンダ室りに接続され、左輪側油圧シリン
ダ2OLの下側シリンダ室りが第1の油圧配管26Bを
介して右輪側油圧シリンダ2ORの上側シリンダ室Uに
接続され、これにより、相互にクロス接続の状態にある
。また、第1の油圧配管26A、26Bの途中位置には
、夫々、第2の油圧配管28A、28Bが接続されてい
る。この第2の油圧配管28A、28Bは油室24L、
24Rに各々接続されるとともに、その配管28A、2
8Bの途中に絞り弁22L、22Rが個別に介装されて
いる。
Then, the upper cylinder chamber U of the left wheel side hydraulic cylinder 2OL
is connected to the right wheel side hydraulic cylinder 2 via the first hydraulic pipe 26A.
It is connected to the lower cylinder chamber of 0R, and the lower cylinder chamber of the left wheel hydraulic cylinder 2OL is connected to the upper cylinder chamber U of the right wheel hydraulic cylinder 2OR via the first hydraulic piping 26B. They are cross-connected to each other. Further, second hydraulic pipes 28A, 28B are connected to intermediate positions of the first hydraulic pipes 26A, 26B, respectively. The second hydraulic pipes 28A, 28B include an oil chamber 24L,
24R, and its piping 28A, 2
Throttle valves 22L and 22R are individually interposed in the middle of 8B.

油室24L、24Rの各々は、シリンダチューブ24a
と、このシリンダチューブ24a内で摺動可能なピスト
ン24bと、このピストン24bを押圧する所定ばね定
数のスプリング24cとを有し、シリンダチューブ24
a内のスプリング24cとは反対側にシリンダ室りが形
成されている。
Each of the oil chambers 24L and 24R is connected to a cylinder tube 24a.
The cylinder tube 24 has a piston 24b that is slidable within the cylinder tube 24a, and a spring 24c having a predetermined spring constant that presses the piston 24b.
A cylinder chamber is formed on the opposite side of the spring 24c inside the spring 24c.

このシリンダ室りが第2の油圧配管28A(28B)に
連通している。ここで、ピストン24b及びスプリング
24cが付勢機構を成す。
This cylinder chamber communicates with the second hydraulic piping 28A (28B). Here, the piston 24b and the spring 24c constitute a biasing mechanism.

一方、前記制御部18は、コントロールシリンダ30と
、第3の管路としての第3の油圧配管32A、32Bと
、電動モータ34と、コントローラ36、及び横加速度
センサ38とを有する。
On the other hand, the control section 18 includes a control cylinder 30, third hydraulic pipes 32A and 32B as third pipes, an electric motor 34, a controller 36, and a lateral acceleration sensor 38.

この内、コントロールシリンダ30は前述した油圧シリ
ンダ2OL、2ORと同様に、両ロッド複動形に構成さ
れており、シリンダチューブ30aと、このシリンダチ
ューブ30a内を2つのシリンダ室R1,R2に分離し
且つ摺動可能なピストン30bと、このピストン30b
に固設され軸両方向に延びるピストンロッド30cとを
有し、夫々の摺動部分が液密状態でシールされている。
Of these, the control cylinder 30 is configured as a double-rod double-acting type like the aforementioned hydraulic cylinders 2OL and 2OR, and has a cylinder tube 30a and the inside of this cylinder tube 30a separated into two cylinder chambers R1 and R2. and a slidable piston 30b, and this piston 30b.
The piston rod 30c is fixed to the piston rod 30c and extends in both axial directions, and each sliding portion is sealed in a liquid-tight manner.

この内、シリンダ室R1,R2は第3の油圧配管32A
、32Bを介して、第1の油圧配管26A。
Among these, the cylinder chambers R1 and R2 are connected to the third hydraulic pipe 32A.
, 32B, the first hydraulic line 26A.

26Bに各々連通している。また、ピストンロッド30
cの一端はフリーな状態に置かれ、他端にラック30d
が形成されている。このラック30dには電動モータ3
4のビニオン34aが噛み合うようになっている。ここ
で、電動モータ34゜ピニオン34a及びラック30d
がロッド移動機構を成す。
26B. In addition, the piston rod 30
One end of c is placed in a free state, and a rack 30d is placed on the other end.
is formed. This rack 30d has an electric motor 3
No. 4 binions 34a are engaged with each other. Here, the electric motor 34° pinion 34a and the rack 30d
constitutes the rod moving mechanism.

さらに、コントローラ36は本実施例ではマイクロコン
ピュータ及びモータ駆動回路を搭載して構成され、横加
速度センサ38の検出信号Gを入力して後述する第2図
の処理を行い、電動モータ34を駆動するモータ駆動信
号iを出力するようになっている。横加速度センサ38
は車体の所定位置に設置され、慣性力の方向に応じた正
負の横加速度信号Gを電圧信号の形で検出する。なお、
電動モータ34には図示しない回転角センサが取り付け
られ、このセンサ信号がコントローラ36に供給され、
モータ駆動処理に供される。
Further, in this embodiment, the controller 36 is configured to include a microcomputer and a motor drive circuit, inputs the detection signal G of the lateral acceleration sensor 38, performs the processing shown in FIG. 2 described later, and drives the electric motor 34. It outputs a motor drive signal i. Lateral acceleration sensor 38
is installed at a predetermined position on the vehicle body, and detects a positive or negative lateral acceleration signal G in the form of a voltage signal depending on the direction of the inertial force. In addition,
A rotation angle sensor (not shown) is attached to the electric motor 34, and this sensor signal is supplied to the controller 36.
Provided for motor drive processing.

以上の構成において、コントロールシリンダ30、第3
の油圧配管32A、32B及び電動モータ34が内圧可
変手段を形成し、コントローラ36及び横加速度センサ
38が制御手段を形成している。
In the above configuration, the control cylinder 30, the third
The hydraulic pipes 32A, 32B and the electric motor 34 form an internal pressure variable means, and the controller 36 and the lateral acceleration sensor 38 form a control means.

次に、本実施例の動作を説明する。Next, the operation of this embodiment will be explained.

まず、コントローラ36で行われる第2図の処理を説明
する。コントローラ36は、同図ステップ■において横
加速度センサ38の検出信号Gを読み込み、ステップ■
に移行する。このステップ■では、ステップ■での読み
込み値ICIが基準値G0よりも大きいか否かを判断す
る。基準値G。
First, the processing shown in FIG. 2 performed by the controller 36 will be explained. The controller 36 reads the detection signal G of the lateral acceleration sensor 38 in step (2) in the figure, and then proceeds to step (2).
to move to. In this step (2), it is determined whether the read value ICI at step (2) is larger than the reference value G0. Standard value G.

は横加速度が大きいか否かを判断する闇値である。is a dark value that determines whether the lateral acceleration is large or not.

そこで、ステップ■の判断で「NO」の場合は横加速度
が小さい旋回状態であるとしてステップ■に移行し、コ
ントロールシリンダ30のピストン30bを中立位置に
制御する。この位置制御は図示しない電動モータ34の
回転角センサの検出信号と中立指令値とが一致するまで
モータ駆動信号iを供給することにより行う。一方、ス
テップ■の判断でrYES、の場合は横加速度が大きい
旋回状態であるとしてステップ■に移行し、コントロー
ルシリンダ30のピストン30bZ、圧縮側シリンダ室
U、Lの作動圧が高められる方向にモータ駆動信号iを
出力する。このときも、電動モータ34の回転角センサ
の検出信号によって位置決めを行う。次いでステップ■
の制御終了か否かの判断を行い、制御終了でない場合は
上述の処理を繰り返す。
Therefore, if the determination in step (2) is "NO", it is assumed that the turning state is low in lateral acceleration, and the process moves to step (2), where the piston 30b of the control cylinder 30 is controlled to the neutral position. This position control is performed by supplying the motor drive signal i until the detection signal of the rotation angle sensor of the electric motor 34 (not shown) matches the neutral command value. On the other hand, if the judgment in step (2) is rYES, it is assumed that the turning state has a large lateral acceleration, and the process moves to step (2). Outputs drive signal i. At this time as well, positioning is performed based on the detection signal of the rotation angle sensor of the electric motor 34. Next step ■
It is determined whether or not the control has ended, and if the control has not ended, the above-mentioned process is repeated.

続いて全体動作を説明する。Next, the overall operation will be explained.

車両が良路を定速で直進しているものとすると、横加速
度センサ38の検出信号G=0であるから、前述した第
2図の処理を行うも、コントロールシリンダ30のピス
トンロッド30cは例えばシリンダ室R1及びR2の容
積が等しくなる所定の中立位置に保持される。このため
、一方の第1.第2の油圧配管26A、28A及び他方
の第1.第2の油圧配管26B、28Bの内圧が互いに
等しい。この走行状態では、車輪2L、2Rにバウンド
 リバウンドが生しないので、左右の油圧シリンダ2O
L、2ORのストローク変化も発生せず、配管26A、
26B、28A、28B内に作動油の流れが生じない。
Assuming that the vehicle is traveling straight on a good road at a constant speed, the detection signal G of the lateral acceleration sensor 38 is 0, so although the process shown in FIG. 2 described above is performed, the piston rod 30c of the control cylinder 30 is It is maintained at a predetermined neutral position where the volumes of cylinder chambers R1 and R2 are equal. For this reason, one of the first . The second hydraulic pipes 26A, 28A and the other first hydraulic pipe. The internal pressures of the second hydraulic pipes 26B and 28B are equal to each other. In this running condition, there is no bound rebound in the wheels 2L and 2R, so the left and right hydraulic cylinders 2O
There was no stroke change in L, 2OR, and piping 26A,
No flow of hydraulic oil occurs within 26B, 28A, and 28B.

従って、絞り弁22L、22R及び配管26A、26B
、28A、28Bの流路抵抗により減衰力も発生するこ
とも無く、所定のサスペンション特性が保持される。
Therefore, the throttle valves 22L, 22R and the pipes 26A, 26B
, 28A, 28B, no damping force is generated due to the flow path resistance, and predetermined suspension characteristics are maintained.

この直進中に、路面凹凸によってバウンスが生じたとす
る。このとき、横加速度センサ38の検出信号Gは零を
保持するから、上述と同様にコントロールシリンダ30
は配管内の圧力制御に関与しない。そこで、仮に、凸部
通過によって車輪2L、2Rが共にバウンドし、油圧シ
リンダ2OL2ORのピストン20bが共に車体上方に
移動しようとすると、上側シリンダ室Uが共に同時に圧
縮されるとともに、下側シリンダ室りが共に同時に負圧
状態に移行する。これにより、上側シリンダ室U内の作
動油は互いに第1の油圧配管26A(26B)を通って
反対側シリンダの下側シリンダ室りに流れ込む。しかし
1.上側、下側シリンダ室U、Lの容積変化が両ロッド
形のために互いに等しいので、第1.第2の油圧配管2
6A、26B、28A、28B内の油量変化は生じない
。これは、凹部通過によって車輪2L、2Rが共にリバ
ウンドし、下側シリンダ室りが共に圧縮された場合も同
様である。
Assume that while the vehicle is traveling straight, a bounce occurs due to unevenness of the road surface. At this time, since the detection signal G of the lateral acceleration sensor 38 remains zero, the control cylinder 30
is not involved in pressure control within the piping. Therefore, if both the wheels 2L and 2R bounce as they pass through the convex portion and the pistons 20b of the hydraulic cylinders 2OL2OR both try to move upwards in the vehicle body, both the upper cylinder chambers U will be compressed at the same time, and the lower cylinder chambers will also be compressed. Both transition to a negative pressure state at the same time. As a result, the hydraulic oil in the upper cylinder chamber U flows into the lower cylinder chamber of the opposite cylinder through the first hydraulic piping 26A (26B). But 1. Since the volume changes of the upper and lower cylinder chambers U and L are equal due to both rod shapes, the first. Second hydraulic piping 2
There is no change in the amount of oil in 6A, 26B, 28A, and 28B. This also applies when both wheels 2L and 2R rebound by passing through the recess and both lower cylinder chambers are compressed.

つまり、バウンド、リバウンド時共に第2の油圧配管2
8A、28B内の油量変化は生じないから、作動油が絞
り弁28A、28Bを通過することもなく、減衰力も殆
ど発生せず、ハネ反力も生じない。これにより、サスペ
ンション装置全体の減衰力はほぼショックアブソーバ8
A、8Aに依るもののみとなり、従来のようにバウンス
を伴う不整路走行に起因して絞り弁22L、22Hによ
る減衰力が生じることもなく、ソフトな減衰特性によっ
て路面からの振動入力が吸収され、乗心地の悪化が防止
される。
In other words, during both bounce and rebound, the second hydraulic pipe 2
Since the amount of oil in 8A and 28B does not change, the hydraulic oil does not pass through the throttle valves 28A and 28B, hardly any damping force is generated, and no spring reaction force is generated. As a result, the damping force of the entire suspension system is approximately equal to that of the shock absorber 8.
A and 8A, and there is no damping force generated by the throttle valves 22L and 22H due to uneven road driving with bounce as in the past, and the vibration input from the road surface is absorbed by the soft damping characteristics. , deterioration of riding comfort is prevented.

さらに、上述の直進状態から旋回状態に移行したとする
。この旋回が例えば右旋回であって、車両後ろ側からみ
て左輪2L側が沈み込み、右輪2R側が浮き上がる方向
のロール(第1図中の矢印A参照)が発生しようとした
とする。この旋回に際して、横加速度センサ38は慣性
力を検知して旋回方向に応じて正負の加速度信号Gをコ
ントローラ36に出力し、コントローラ36は第2図の
処理を行って、所定の旋回状態の場合にロール抑制回転
方向(いまの例では第1図中の時計方向)に電動モータ
34を回転させる。これにより、ピストンロッド30c
を第1図中の右端方向aに所定距離だけ移動させる。
Furthermore, suppose that the vehicle shifts from the straight-ahead state described above to a turning state. Assume that this turning is, for example, a right turning, and a roll (see arrow A in FIG. 1) is about to occur in which the left wheel 2L side sinks and the right wheel 2R side lifts up when viewed from the rear of the vehicle. During this turning, the lateral acceleration sensor 38 detects the inertial force and outputs a positive or negative acceleration signal G to the controller 36 according to the turning direction, and the controller 36 performs the processing shown in FIG. Then, the electric motor 34 is rotated in the roll suppression rotation direction (in the present example, clockwise in FIG. 1). As a result, the piston rod 30c
is moved by a predetermined distance in the right end direction a in FIG.

このため、コントロールシリンダ30の電動モータ側の
シリンダ室R1が圧縮され、シリンダ室R1内部の作動
油が第3の油圧配管32’Aを介して第1の油圧配管2
6A側に流入するとともに、他方のシリンダ室R2が負
圧状態になる。そこで、第1の油圧配管26Aの内圧、
即ち左輪側油圧シリンダ2OLの上側シリンダ室U及び
右輪側油圧シリンダ2ORの下側シリンダ室りの作動圧
が上昇するとともに、油室24Lのシリンダ室りの圧力
も徐々に上昇する。一方、油室24Rのシリンダ室りか
ら作動油が第1.第2の油圧配管26B28B及び左輪
側油圧シリンダ20Lの下側シリンダ室り、右輪側油圧
シリンダ20Rの上側シリンダ室Rに徐々に供給される
Therefore, the cylinder chamber R1 on the electric motor side of the control cylinder 30 is compressed, and the hydraulic oil inside the cylinder chamber R1 is transferred to the first hydraulic piping 2 via the third hydraulic piping 32'A.
While flowing into the 6A side, the other cylinder chamber R2 becomes in a negative pressure state. Therefore, the internal pressure of the first hydraulic pipe 26A,
That is, the working pressure in the upper cylinder chamber U of the left-wheel hydraulic cylinder 2OL and the lower cylinder chamber of the right-wheel hydraulic cylinder 2OR increases, and the pressure in the cylinder chamber of the oil chamber 24L also gradually increases. On the other hand, hydraulic oil flows from the cylinder chamber of the oil chamber 24R into the first cylinder chamber. It is gradually supplied to the second hydraulic pipe 26B28B, the lower cylinder chamber of the left wheel hydraulic cylinder 20L, and the upper cylinder chamber R of the right wheel hydraulic cylinder 20R.

つまり、各ショックアブソーバ8Aの減衰力のほか、絞
り弁22L、22Rを通過する作動油量に応じた絞り効
果によって、左輪側油圧シリンダ20Lの上側シリンダ
室Uでは車体の沈み込みに抗する減衰力が発生し、且つ
、右輪側油圧シリンダ2ORの下側シリンダ室りでは車
体の浮き上がりに抗する減衰力が発生する。これにより
、図中のA方向のロールに抵抗する回転モーメントが生
じて、ロールが事前に且つ積極的に抑制される。
In other words, in addition to the damping force of each shock absorber 8A, due to the throttling effect according to the amount of hydraulic fluid passing through the throttle valves 22L and 22R, the upper cylinder chamber U of the left wheel hydraulic cylinder 20L has a damping force that resists the sinking of the vehicle body. At the same time, a damping force is generated in the lower cylinder chamber of the right wheel side hydraulic cylinder 2OR to resist the lifting of the vehicle body. This creates a rotational moment that resists the roll in direction A in the figure, and the roll is proactively and proactively suppressed.

この回転モーメントは旋回中の横加速度の変化に応して
調整され、旋回が終了すると、前述した直進走行に対応
した中立状態に自動復帰される。
This rotational moment is adjusted according to changes in lateral acceleration during the turn, and when the turn is completed, the vehicle is automatically returned to the neutral state corresponding to the aforementioned straight running.

左旋回の場合には、上述した動作が左右反対になるもの
の同一である。
In the case of a left turn, the above-mentioned operations are the same, although the left and right directions are reversed.

そこで、本実施例の構成によれば、電動モータ34を駆
動するに際してモータ回転位置を調整することにより、
コントロールシリンダ30のピストン30bの位置が中
立位置より深く或いは浅く制御される。この深浅制御に
応じてスタビライザ16の内圧が変わり、同一の慣性力
に対するロール剛性が可変される。このようにコントロ
ールシリンダ30を使って旋回状態に応してロール剛性
が調整されるから、油圧式スタビライザであっても、例
えばロール剛性を高めて左右の荷重移動量を大きくする
など、その値を自在に変更できる。
Therefore, according to the configuration of this embodiment, by adjusting the motor rotational position when driving the electric motor 34,
The position of the piston 30b of the control cylinder 30 is controlled to be deeper or shallower than the neutral position. The internal pressure of the stabilizer 16 changes according to this depth/shallow control, and the roll rigidity for the same inertial force is varied. In this way, the control cylinder 30 is used to adjust the roll stiffness according to the turning state, so even with a hydraulic stabilizer, the value can be adjusted by increasing the roll stiffness and increasing the amount of left and right load movement. Can be changed freely.

このようにすれば、車両前後においてロール剛性の分担
比、即ち荷重移動量を自在に変えることができ、コーナ
リングフォースの和を車両前後で変えてステア特性を確
実に制御できるという利点が出る。
In this way, it is possible to freely change the sharing ratio of roll stiffness, that is, the amount of load movement between the front and rear of the vehicle, and there is an advantage that the sum of cornering forces can be changed between the front and rear of the vehicle to reliably control the steering characteristics.

一方、旋回中の路面凹凸通過時やバウンス時において、
過渡的大振動が油圧シリンダ2OL、2ORに入力した
とする。これにより、油圧シリンダ2OL、20Rの上
側、下側シリンダ室ULはパルス状の圧力変動を生じる
が、この圧力変動は油室24L、24Rのスプリング2
4cの伸縮によって吸収されるとともに、その急激な油
量変化に応じて絞り弁22L、22Rで高い減衰力が発
生し、緩衝効果を得ることができる。
On the other hand, when passing uneven road surfaces or bouncing while turning,
Assume that a large transient vibration is input to the hydraulic cylinders 2OL and 2OR. As a result, pulse-like pressure fluctuations occur in the upper and lower cylinder chambers UL of the hydraulic cylinders 2OL and 20R, but this pressure fluctuation is caused by the spring 2 of the oil chambers 24L and 24R.
In addition to being absorbed by the expansion and contraction of oil 4c, a high damping force is generated in the throttle valves 22L and 22R in response to the sudden change in oil amount, and a buffering effect can be obtained.

ところで、本実施例において、サスペンションの異常状
態発生など、何らかの都合でコントロールシリンダ30
による内圧制御を中止した場合でも、第1の油圧配管2
6A、26Bのクロス接続によってシリンダピストン2
0bの移動状況に応じたロール抑制効果を得ることがで
きる。
By the way, in this embodiment, the control cylinder 30 is closed due to some reason such as the occurrence of an abnormal state in the suspension.
Even if the internal pressure control by
Cylinder piston 2 by cross connection of 6A and 26B
It is possible to obtain a roll suppression effect according to the movement status of 0b.

また、本実施例では内圧可変手段を、ラック・ピニオン
機構を介して電動モータ34がコントロールシリンダ3
0を制御するようにしているため、その構成が簡素化さ
れる。
Further, in this embodiment, the internal pressure variable means is controlled by the electric motor 34 via the rack and pinion mechanism.
0 is controlled, the configuration is simplified.

なお、本願発明における第2の油圧配管に接続された流
体室は、必ずしも前述した構成に限定されることなく、
例えば第3図に示す如くアキュムレータ40L、40R
であってもよく、この第3図の構成によれば構成が簡単
で安価である。
Note that the fluid chamber connected to the second hydraulic piping in the present invention is not necessarily limited to the above-described configuration,
For example, as shown in Fig. 3, accumulators 40L and 40R
The configuration shown in FIG. 3 is simple and inexpensive.

また、本願発明における作動流体は、上述した如く作動
油を用いるものに限定されることなく、例えば、非圧縮
性の気体を作動流体として用いるものであってもよく、
その場合には左右輪のハネ上、バネ下問及びコントロー
ルシリンダに前記実施例と同様の構成の空気圧シリンダ
を用いればよい。
Further, the working fluid in the present invention is not limited to using hydraulic oil as described above, and for example, incompressible gas may be used as the working fluid,
In that case, pneumatic cylinders having the same structure as in the above embodiment may be used for the upper and lower springs of the left and right wheels and the control cylinder.

さらに、本願発明の内圧可変手段の一部を成すコントロ
ールシリンダの構成も必ずしも前述したものに限定され
ることなく、例えば、略中央付近に固定隔壁が設けられ
たシリンダチューブと、隔壁を液密的に貫通するロッド
と、このロッドの隔壁を挟んだ軸方向両側に摺動可能に
取り付けられ当該隔壁との間で一対の油室を形成する2
個のフリーピストンと、一端が各フリーピストンに係止
され且つ他端がロッドに固定のストッパに係止されたス
プリングとを備えたアクチュエータであってもよい。
Furthermore, the configuration of the control cylinder that forms part of the internal pressure variable means of the present invention is not necessarily limited to that described above, and may include, for example, a cylinder tube with a fixed partition wall provided approximately in the center, and a cylinder tube with a partition wall liquid-tight. A pair of oil chambers are formed between a rod that penetrates the rod and the partition wall that is slidably attached to both sides of the rod in the axial direction across the partition wall.
The actuator may include a plurality of free pistons and a spring whose one end is engaged with each free piston and whose other end is engaged with a stopper fixed to a rod.

さらにまた、左右輪に設ける流体圧シリンダの取付は方
は、前記実施例とは反対であって、シリンダチューブを
ロアアーム側に取り付け、ロッドを車体側に取り付けて
もよい。
Furthermore, the mounting method of the fluid pressure cylinders provided on the left and right wheels may be opposite to that of the above embodiment, and the cylinder tube may be mounted on the lower arm side and the rod may be mounted on the vehicle body side.

さらにまた、本願発明における制御手段は、前述したよ
うに横加速度に応じて内圧可変手段を制御するのみなら
ず、例えば操舵角や操舵速度に応して内圧可変手段を制
御してもよいし、また車速に応して、例えば高速になる
ほどロール剛性を高くするなどの手法としてもよい。
Furthermore, the control means in the present invention may not only control the internal pressure variable means according to the lateral acceleration as described above, but may also control the internal pressure variable means according to the steering angle or steering speed, for example. Further, depending on the vehicle speed, for example, the roll stiffness may be increased as the vehicle speed increases.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本願各発明では、左右輪に設けた一
対の両ロッド・複動形の流体圧シリンダの上側、下側シ
リンダ室を相互に第1の管路でクロス接続し、この管路
夫々の途中に、絞り弁が介挿された第2の管路を介して
流体室を夫々連通させたスタビライザを設け、このスタ
ビライザの内圧を走行状態に応じて制御するようにした
ため、絞り弁の挿入位置がクロス接続の管路から外れて
いること、及び、流体圧シリンダのストローク変化に伴
う上側、下側シリンダ室の容積変化が同じであることか
ら、バウンス時であっても従来例とは異なり、第2の管
路を通過する作動流体量に変化は無く、したがって、絞
り弁で減衰力が発生されず、例えばバウンスを伴う不整
路を走行するような場合でも、スタビライザ装置による
減衰力は殆ど発生しないから、乗心地が悪化することも
ない。一方、ロール時には、クロス配管したスタビライ
ザによって流体圧によるロール剛性を発揮させるととも
に、そのロール剛性を積極的に制御できるから、ロール
抑制は元より、車両左右方向の荷重移動量を車両前後で
アクティブに制御することにより、とくに旋回中の車両
ステア特性が最適に制御される。さらに、路面からの過
渡的大振動入力に対しては、流体室及び絞り弁によって
確実な緩衝効果を得ることができる。
As explained above, in each invention of the present application, the upper and lower cylinder chambers of a pair of double-rod, double-acting type fluid pressure cylinders provided on the left and right wheels are cross-connected to each other by a first pipe line, and this pipe line In the middle of each, a stabilizer is provided in which the fluid chambers are communicated through a second pipe line in which a throttle valve is inserted, and the internal pressure of this stabilizer is controlled according to the running condition. This is different from the conventional example even during bounce because the insertion position is outside the cross-connection pipe and the volume changes in the upper and lower cylinder chambers are the same as the stroke of the fluid pressure cylinder changes. In contrast, there is no change in the amount of working fluid passing through the second pipe, so the damping force is not generated by the throttle valve, and even when driving on an uneven road with bounce, for example, the damping force by the stabilizer device is Since it hardly occurs, the riding comfort does not deteriorate. On the other hand, when rolling, the cross-piped stabilizer exerts roll rigidity using fluid pressure, and the roll rigidity can be actively controlled.This not only suppresses roll, but also actively controls the amount of load movement in the left-right direction of the vehicle. Through this control, the steering characteristics of the vehicle, especially during turning, can be optimally controlled. Furthermore, the fluid chamber and the throttle valve can provide a reliable damping effect against large transient vibration input from the road surface.

とくに、請求項(2)記載の発明にあっては、上述した
各効果のほか、両ロッド・複動形シリンダの採用によっ
て、内圧可変手段のアクチュエータ部分の構成が簡単化
され、且つ、左右同比率の圧力制御を行えるという利点
がある。
In particular, in the invention described in claim (2), in addition to the above-mentioned effects, by employing a double rod/double acting cylinder, the structure of the actuator portion of the internal pressure variable means is simplified, and the left and right ratios are the same. It has the advantage of being able to control the rate of pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願発明の一実施例を示す概略構成図、第2図
は第1図中のコントローラでの処理概要を示すフローチ
ャート、第3図は流体室のその他の例を示す部分回路図
である。 図中の主要符号は、4・・・ナックル、6・・・車体、
12・・・ロアアーム、14・・・スタビライザ装置、
16・・・スタビライザ、2OL、2OR・・・油圧シ
リンダ、22L、22R・・・絞り弁、24L、24R
・・・油室、26A、26B・・・第1の油圧配管、2
8A。 28B・・・第2の油圧配管、30・・・コントロール
シリンダ、32A、32B・・・第3の油圧配管、34
・・・電動モータ、36・・・コントローラ、38・・
・横加速度センサ、40L、40R・・・アキュムレー
タ、である。
FIG. 1 is a schematic configuration diagram showing one embodiment of the present invention, FIG. 2 is a flowchart showing an outline of processing in the controller in FIG. 1, and FIG. 3 is a partial circuit diagram showing another example of the fluid chamber. be. The main symbols in the diagram are 4...knuckle, 6...car body,
12... Lower arm, 14... Stabilizer device,
16... Stabilizer, 2OL, 2OR... Hydraulic cylinder, 22L, 22R... Throttle valve, 24L, 24R
...Oil chamber, 26A, 26B...First hydraulic piping, 2
8A. 28B...Second hydraulic piping, 30...Control cylinder, 32A, 32B...Third hydraulic piping, 34
...Electric motor, 36...Controller, 38...
- Lateral acceleration sensors, 40L, 40R... accumulators.

Claims (2)

【特許請求の範囲】[Claims] (1)車両左右のサスペンションリンク及び車体間に個
別に立設され且つ左右同士で対を成す両ロッド・複動形
の流体圧シリンダと、この対を成す流体圧シリンダ間で
一方の上側シリンダ室と他方の下側シリンダ室とを相互
に接続する第1の管路と、この第1の管路夫々に第2の
管路を介して連通され且つ作動流体を弾撥的に付勢する
流体室と、前記第2の管路夫々に介挿された絞り弁とを
有するスタビライザを設けるとともに、 このスタビライザの内圧を変更可能な内圧可変手段と、
この内圧可変手段の作動を車両の走行状態に応じて制御
する制御手段とを設けたことを特徴とする車両用スタビ
ライザ装置。
(1) Double-rod, double-acting fluid pressure cylinders that are individually installed between the left and right suspension links and the vehicle body and that form a pair on the left and right, and one upper cylinder chamber between the paired fluid pressure cylinders. and the other lower cylinder chamber, and a fluid that communicates with each of the first pipes via a second pipe and elastically biases the working fluid. a stabilizer having a chamber and a throttle valve inserted in each of the second pipes, and an internal pressure variable means capable of changing the internal pressure of the stabilizer;
A stabilizer device for a vehicle, comprising: control means for controlling the operation of the internal pressure variable means according to the running condition of the vehicle.
(2)前記内圧可変手段は、両ロッド・複動形の流体圧
シリンダと、この流体圧シリンダの両シリンダ室を前記
第1の管路の夫々に連通させる第3の管路と、前記流体
圧シリンダのピストンロッドを前記制御手段の指令に基
づき軸方向に移動可能なロッド移動機構とを備えたこと
を特徴とする請求項(1)記載の車両用スタビライザ装
置。
(2) The internal pressure variable means includes a double-rod, double-acting type fluid pressure cylinder, a third pipe line that communicates both cylinder chambers of the fluid pressure cylinder with each of the first pipe lines, and a third pipe line that communicates the two cylinder chambers of the hydraulic cylinder with each of the first pipe lines, The stabilizer device for a vehicle according to claim 1, further comprising a rod moving mechanism capable of moving the piston rod of the pressure cylinder in the axial direction based on a command from the control means.
JP11078890A 1990-04-26 1990-04-26 Car stabilizer device Pending JPH048619A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11078890A JPH048619A (en) 1990-04-26 1990-04-26 Car stabilizer device
GB9108790A GB2243349A (en) 1990-04-26 1991-04-24 Hydraulic stabilizer system with means for varying roll rigidity
DE19914113736 DE4113736A1 (en) 1990-04-26 1991-04-26 STABILIZING DEVICE FOR VEHICLES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11078890A JPH048619A (en) 1990-04-26 1990-04-26 Car stabilizer device

Publications (1)

Publication Number Publication Date
JPH048619A true JPH048619A (en) 1992-01-13

Family

ID=14544647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11078890A Pending JPH048619A (en) 1990-04-26 1990-04-26 Car stabilizer device

Country Status (3)

Country Link
JP (1) JPH048619A (en)
DE (1) DE4113736A1 (en)
GB (1) GB2243349A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050055497A (en) * 2003-12-08 2005-06-13 현대자동차주식회사 A vehicle control apparatus and a method for simultaneous controlling rolling and pitching
JP2012517925A (en) * 2009-02-16 2012-08-09 マリア、フィリップ ディ Active suspension system and fluid pressure driven ram for use in the active suspension system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2128200B1 (en) * 1995-03-30 1999-12-01 Cuenda Juan Antonio Cuenda SUSPENSION SYSTEM FOR AUTOMOBILE.
US5785344A (en) * 1996-01-22 1998-07-28 Tenneco Automotive Inc. Active roll control
DE29608188U1 (en) * 1996-05-06 1997-06-05 Boeller Motorsporttechnik Gmbh Hydraulic axle stabilizer
DE19630442C1 (en) * 1996-07-27 1998-02-05 Amg Motorenbau & Entw Gmbh Device for the transverse stabilization of a motor vehicle
DE19637159B4 (en) 1996-09-12 2004-09-23 Wolfgang Weiss Wheel suspension with automatic camber adjustment
US5803213A (en) * 1997-02-03 1998-09-08 Honeywell Inc. Heavy load vibration isolation apparatus
DE19853873A1 (en) 1998-11-23 2000-05-25 Zahnradfabrik Friedrichshafen Suspension and rolling motion stabilizer for motor vehicles with balanced piston surfaces and piston ring surfaces combined with active displacement unit to achieve required rolling motion and traveling stiffness
GB2390580B (en) * 2002-06-11 2006-02-15 Harvey Bailey Eng Ltd Roll control system
US7751959B2 (en) * 2005-06-21 2010-07-06 Tenneco Automotive Operating Company Inc. Semi-active suspension system with anti-roll for a vehicle
DE102011078262B4 (en) 2011-06-29 2020-12-10 Ford Global Technologies, Llc Independent wheel suspension with automatic camber adjustment
CN108327479A (en) * 2018-01-25 2018-07-27 湖南大学 A kind of active power for offroad vehicle adjusts suspension system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2890064A (en) * 1957-03-01 1959-06-09 Edwin B Hudson Fluid pressure actuated stabilizer for motor vehicles
DE2048323A1 (en) * 1970-10-01 1972-04-06 Daimler Benz Ag, 7000 Stuttgart Device for stabilizing the vehicle superstructure against inclination in curves
GB1484673A (en) * 1973-11-28 1977-09-01 Automotive Prod Co Ltd Vehicle suspensions
AU501791B2 (en) * 1975-09-25 1979-06-28 F. W Thornhill Antiroll suspension
BE878031A (en) * 1979-08-02 1979-12-03 Fruythof August VEHICLE AND HYDRAULIC STABILIZER USED WITH IT
JPH0676506A (en) * 1992-08-31 1994-03-18 Sony Corp Magnetic head device and recording and/or reproducing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050055497A (en) * 2003-12-08 2005-06-13 현대자동차주식회사 A vehicle control apparatus and a method for simultaneous controlling rolling and pitching
JP2012517925A (en) * 2009-02-16 2012-08-09 マリア、フィリップ ディ Active suspension system and fluid pressure driven ram for use in the active suspension system

Also Published As

Publication number Publication date
GB9108790D0 (en) 1991-06-12
DE4113736A1 (en) 1991-10-31
GB2243349A (en) 1991-10-30

Similar Documents

Publication Publication Date Title
JP7147528B2 (en) Stabilizer device and stabilizer system including the same
US8960697B2 (en) Suspension device for vehicle
JP3038832B2 (en) Vehicle damping force control device
US8165749B2 (en) Control system for adjustable damping force damper
JP4615858B2 (en) Automobile suspension system and control method of the system
JPH0419210A (en) Oscillation damping device for vehicle
JP7354936B2 (en) Vehicle stabilizer system
JPH048619A (en) Car stabilizer device
JP2022024696A (en) Stabilizer system
JPS6280109A (en) Suspension controlling device
JP3087410B2 (en) Vehicle damping device
JP5549889B2 (en) Vehicle suspension system
JPH04100724A (en) Active stabilizer for vehicle
JPH048246B2 (en)
JPH06183240A (en) Oscillation damping device
JPH0419212A (en) Suspension device for vehicle
JPH0443113A (en) Suspension device for vehicle
JP2917425B2 (en) Roll damping force control device for vehicles
JPH0747366B2 (en) Suspension device for automobile
JPH0532111A (en) Car swing damping device
JPH04135909A (en) Wheel load shift control device
JPS6240204B2 (en)
JPH0419213A (en) Stabilizer for vehicle
JPS6328709A (en) Stabilizer device
JP2506423B2 (en) Active suspension device