JPH0479939A - Collimator - Google Patents

Collimator

Info

Publication number
JPH0479939A
JPH0479939A JP2194138A JP19413890A JPH0479939A JP H0479939 A JPH0479939 A JP H0479939A JP 2194138 A JP2194138 A JP 2194138A JP 19413890 A JP19413890 A JP 19413890A JP H0479939 A JPH0479939 A JP H0479939A
Authority
JP
Japan
Prior art keywords
collimator
subject
displaced
camera
gamma camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2194138A
Other languages
Japanese (ja)
Inventor
Seiichi Yamamoto
誠一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2194138A priority Critical patent/JPH0479939A/en
Publication of JPH0479939A publication Critical patent/JPH0479939A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4258Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector for detecting non x-ray radiation, e.g. gamma radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Nuclear Medicine (AREA)

Abstract

PURPOSE:To photograph the whole brain region of an inspected body under a condition in which resolving power and sensitivity from the viewpoint of the detection of radioactive isotope (RI) distribution data, are improved by locating a focus at a position displaced from the center position of a collimator. CONSTITUTION:The focus F of the hole axes of radiation permeation holes K1-Kn in parallel with a body axis direction and radiation permeation holes L1-Ln in parallel with a horizontal direction, is displaced from the center position of a collimator 10. As a result, a photographing space of a cone shape whose top is displaced, is formed. Accordingly, in the case of the collimator 10 being set at the fixation surface (o) of a rotary type gamma camera, the camera can be sufficiently neared to the head portion of an inspected body M under a condition in which the contact between the camera and the shoulders of the inspected body M is avoided, by setting the camera so that the cerebellum of the inspected body M may be positioned within the displaced photographing space. That is, even if the gamma camera is made to take shelter on the head portion side of the inspected body M, the whole brain region of the body M can be housed within the projection space, and the whole brain region of the inspected body can be photographed under a condition in which resolving power and sensitivity from the view point of the detection of RI distribution data, are improved.

Description

【発明の詳細な説明】 A、産業上の利用分野 この発明は、被検体内に投与された放射性同位元素(1
)から放出される放射線を検出し、そのR[の分布像を
被検体の断層像として求める装置(例えば、シングルフ
ォトンECT装置)のガンマカメラに利用されるもので
あって、前記ガンマカメラの検出面に取り付けられ、前
記放射線の入射方向を整えるコリメータに関する。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Application Field This invention is directed to the use of radioactive isotopes (1
) is used in a gamma camera of a device (for example, a single photon ECT device) that detects the radiation emitted from the object and obtains the distribution image of the R[ as a tomographic image of the subject, and the detection of the gamma camera The present invention relates to a collimator that is attached to a surface and adjusts the incident direction of the radiation.

B、従来技術 ]リメータは、多数の放射線透過孔を紺横乙こ形成した
鉛製などのもので、放射線の入射方向を整え、R1分布
データの検出上の分解能と感度とを決定付けるものであ
る。
B. Prior art] The remeter is made of lead or the like with a large number of radiation-transmitting holes formed in a dark blue horizontal pattern, and it adjusts the direction of incidence of radiation and determines the resolution and sensitivity for detection of R1 distribution data. be.

このようなコリメータとして、一般によく知られている
のは、被検体の体軸に垂直な孔軸の放射線透過孔を形成
した平行コリメータと呼ばれているものである。平行コ
リメータによる撮影範囲は、ガンマカメラの縦横寸法に
略匹敵するもので、被検体の全身撮影を行う場合などに
よく利用されている。しかし、撮影対象部位が小さい場
合にこの平行コリメータを用いると、その部位の画像も
小さいまま(そのままの大きさ)で撮影されることにな
り、画像の分解能が低下してしまう。そこで、拡大撮影
を可能にするコーンビームコリメータが利用される。第
8図を参照してコーンビームコリメータについて説明す
る。
A generally well-known such collimator is a so-called parallel collimator in which a radiation transmitting hole is formed with a hole axis perpendicular to the body axis of the subject. The photographing range of a parallel collimator is approximately comparable to the vertical and horizontal dimensions of a gamma camera, and is often used when photographing the entire body of a subject. However, if this parallel collimator is used when the region to be photographed is small, the image of that region will also be photographed while remaining small (the same size), resulting in a decrease in image resolution. Therefore, a cone beam collimator is used to enable enlarged imaging. The cone beam collimator will be explained with reference to FIG.

この図はコーンビームコリメータ1の断面を示しており
、符号0は図示を省略しているガンマカメラの検出面で
ある。C4〜CMが放射線透過孔であり、各C5〜C□
はその孔軸が、コーンビームコリメータlの中心位置に
相当する焦点Fを結ふように形成されている。したがっ
て、コーンビームコリメータlの撮影空間は符号Aで示
しているように、正鐘状の撮影空間となり、撮影部位B
′に比べて小さな撮影部位であるrB、をその撮影空間
A内にいっばいに収納して撮影(拡大撮影)することが
できる。
This figure shows a cross section of the cone beam collimator 1, and reference numeral 0 indicates the detection surface of a gamma camera, which is not shown. C4 to CM are radiation transmitting holes, and each C5 to C□
is formed so that its hole axis focuses on a focal point F corresponding to the center position of the cone beam collimator l. Therefore, the imaging space of the cone beam collimator l becomes a bell-shaped imaging space as shown by the symbol A, and the imaging area B
The imaging region rB, which is smaller than rB, can be stored all at once in the imaging space A and photographed (enlarged imaging).

C1発明が解決しようとする課題 比較的小さな撮影部位Bとして人体頭部を例に挙げた場
合、コーンビームコリメータ1では次のような問題点が
生しる。
C1 Problems to be Solved by the Invention When a human head is taken as an example of a relatively small imaging region B, the following problems arise in the cone beam collimator 1.

第7図(a)を参照して説明する。図中、符号2はコー
ンビームコリメータ1をその検出面に装着したガンマカ
メラである。このガンマカメラ2は被検体Mの頭部周囲
を回転走査して、頭部に蓄積されたRIの分布データを
検出し、その分布像を頭部の断層像として撮影する。こ
の撮影時に、R1分布データの検出上の分解能と感度と
を向上させるためには、ガンマカメラ2を被検体Mの頭
部に十分に接近させることが望ましいが、あまり頭部に
近づけすぎるとガンマカメラ2の回転過程においてガン
マカメラ2が被検体Mの肩部に接触シてしまう。したが
って、ガンマカメラ2をその回転半径方向に移動させて
、ある程度被検体Mから遠ざける必要があり、検出上の
分解能と感度との低下を招いていた。
This will be explained with reference to FIG. 7(a). In the figure, reference numeral 2 is a gamma camera having a cone beam collimator 1 mounted on its detection surface. The gamma camera 2 rotates around the head of the subject M, detects distribution data of RI accumulated in the head, and photographs the distribution image as a tomographic image of the head. At the time of imaging, it is desirable to bring the gamma camera 2 sufficiently close to the head of the subject M in order to improve the detection resolution and sensitivity of R1 distribution data. However, if it is too close to the head, the gamma camera 2 During the rotation process of the camera 2, the gamma camera 2 comes into contact with the shoulder of the subject M. Therefore, it is necessary to move the gamma camera 2 in the direction of its rotation radius to some extent away from the subject M, resulting in a decrease in detection resolution and sensitivity.

ガンマカメラ2を被検体Mの肩に接触させないで、頭部
に近づけるには、第7図ら)に示すように、ガンマカメ
ラ2の位置を被検体Mの頭頂部側に移動させることにな
る。この位置にガンマカメラ2をセットすると、脳の全
域がコーンビームコリメータlの撮影空間A内に入らず
、斜線で表した部分(小脳の一部)を撮影できないとい
う問題点がある。
In order to bring the gamma camera 2 closer to the head of the subject M without contacting it with the shoulders, the position of the gamma camera 2 must be moved toward the top of the subject's head, as shown in FIGS. When the gamma camera 2 is set in this position, there is a problem that the entire brain does not fall within the imaging space A of the cone beam collimator 1, and the shaded area (part of the cerebellum) cannot be imaged.

この発明は、このような事情に鑑みてなされたものであ
って、R1分布データの検出上の分解能と感度とを向上
させた状態で、被検体の脳全域を撮影することができる
コリメータをを提供することを目的とする。
This invention was made in view of these circumstances, and provides a collimator that can image the entire brain of a subject while improving the detection resolution and sensitivity of R1 distribution data. The purpose is to provide.

06課題を解決するための手段 この発明は、上記目的を達成するために次のような構成
を備えている。
06 Means for Solving the Problems The present invention has the following configuration to achieve the above object.

即ち、この発明は、被検体に投与した放射線同位元素か
らの放射線を検出器に導く放射線透過孔を、多数並列配
置し、前記放射線透過孔の孔軸が焦点を結ぶように構成
されたコリメータにおいて、前記焦点がコリメータの中
心位置から変位した位置にあることを特徴としている。
That is, the present invention provides a collimator in which a large number of radiation-transmitting holes that guide radiation from a radioactive isotope administered to a subject to a detector are arranged in parallel, and the axes of the radiation-transmitting holes are focused. , the focal point is located at a position displaced from the center position of the collimator.

E1作用 この発明の構成による作用は、次のとおりである。E1 action The effects of the configuration of this invention are as follows.

すなわち、各放射線透過孔の孔軸の焦点が、コリメータ
の中心位置から変位した位置にあるので撮影空間は正鐘
状とはならず、頂点が変位した鐘状の撮影空間となる。
That is, since the focal point of the hole axis of each radiation transmitting hole is located at a position displaced from the center position of the collimator, the imaging space is not bell-shaped, but becomes a bell-shaped imaging space with the apex displaced.

この変位した撮影空間内に被検体の小脳が位置するよう
に、このコリメータを検出器にセットすれば、検出器を
被検体の頭部側に移動させたとしても脳の全域を撮影空
間内に収納することが可能になる。したがって、検出器
と被検体の肩との接触を避けた状態で、検出器を被検体
の頭部に接近させることができ、分解能と感度が向上す
る。
If this collimator is set on the detector so that the subject's cerebellum is located within this displaced imaging space, even if the detector is moved toward the subject's head, the entire brain will be located within the imaging space. It becomes possible to store it. Therefore, the detector can be brought close to the subject's head while avoiding contact between the detector and the subject's shoulders, improving resolution and sensitivity.

F、実施例 以下、この発明の実施例を図面に基づいて説明する。F. Example Embodiments of the present invention will be described below based on the drawings.

まず、この発明のコリメータが装着されるガンマカメラ
回転型のシングルフォトンECT装置について説明する
。第2図はその概略的な側面回である。
First, a gamma camera rotation type single photon ECT device to which the collimator of the present invention is attached will be described. Figure 2 is a schematic lateral view of this.

コリメータlOは角形のガンマカメラ2の検出面Oに固
定され、ガンマカメラ2は支持アーム11に支持されて
いる。支持アーム11の基端は、フレーム12内に設け
られた回動枠13に軸支されており、被検体Mに対して
遠近移動可能になっている。回動枠13はフレーム12
をヘースとして、360°回動可能であり、ガンマカメ
ラ2はこの回動枠13の回転によって、被検体Mの周囲
空間を回転走査し、支持アーム11の遠近移動によって
その回転半径を可変できるように構成されている。なお
、符号14はR1分布像を映し出すモニタである。
The collimator IO is fixed to the detection surface O of a rectangular gamma camera 2, and the gamma camera 2 is supported by a support arm 11. The base end of the support arm 11 is pivotally supported by a rotating frame 13 provided within the frame 12, and is movable near and far with respect to the subject M. Rotating frame 13 is frame 12
The gamma camera 2 can be rotated 360 degrees by rotating the rotation frame 13, and the gamma camera 2 can rotate and scan the space around the subject M by rotating the rotation frame 13, and can change its rotation radius by moving the support arm 11 near and far. It is composed of Note that reference numeral 14 is a monitor that displays the R1 distribution image.

コリメータ10は第3回の斜視図に示すように、体軸方
向におよび、これに直交する水平方向りに多数の放射線
透過孔を並列配置したもので、体軸方向に並列している
放射線透過孔をに、−KNで表し、水平方向りに並列し
ている放射線透過孔をり、−L、で表す。
As shown in the third perspective view, the collimator 10 has a large number of radiation transmitting holes arranged in parallel in the body axis direction and in the horizontal direction perpendicular to this. The holes are denoted by -KN, and the radiation-transmitting holes arranged in parallel in the horizontal direction are denoted by -L.

次にこの実施例のコリメータ10の断面図を第1図に示
す。同図(alは被検体Mの体軸方向の断面図、同図(
b)は体軸に直交する水平方向の断面図である。
Next, a sectional view of the collimator 10 of this embodiment is shown in FIG. The same figure (al is a cross-sectional view of the subject M in the body axis direction, the same figure (
b) is a horizontal cross-sectional view perpendicular to the body axis.

コリメータlOの断面を体軸方向からみると、各放射線
透過孔に1〜に、のうち、最も被検体Mの足側に位置し
ている放射線透過孔に、は、体軸に対して垂直な孔軸の
放射線透過孔となっており、K、以鋒、KNまでの各放
射線透過孔は、K、の孔軸上に焦点Fを結ぶべく、被検
体Mの足側に向かって傾斜したものとなっている。
When the cross section of the collimator IO is viewed from the body axis direction, among the radiation transmitting holes 1 to 1, the radiation transmitting hole located closest to the foot side of the subject M has a hole perpendicular to the body axis. The holes are radiation-transmitting holes on the hole axis, and each of the radiation-transmitting holes K, I-Feng, and KN are inclined toward the leg side of the subject M so that the focal point F is on the hole axis of K. It becomes.

したがって、体軸方向の撮影空間りの形状は、K1の孔
軸を底辺とする直角三角形状となっている。因みに、従
来のコーンビームコリメータ1による撮影空間の形状は
中心位置Yを頂点とする2等辺三角形状のものであり、
これと比べると、コリメータ10の撮影空間りは、被検
体Mの足側に向かって移動したものと言える。
Therefore, the shape of the imaging space in the body axis direction is a right triangular shape with the hole axis of K1 as the base. Incidentally, the shape of the imaging space by the conventional cone beam collimator 1 is an isosceles triangle shape with the center position Y as the apex.
In comparison, it can be said that the imaging space of the collimator 10 has moved toward the leg side of the subject M.

次に、コリメータ10の断面を体軸と直交する水平方向
からみると、各放射線透過孔L1〜L□のうち、コリメ
ータ10の中心に位置する放射線透過TL L、は、被
検体Mの体軸に対して垂直な孔軸をもつ放射線透過孔と
なっており、Loを中心にして左右に広がるL1〜L8
の各放射線透過孔は、Loの孔軸上に焦点Fを結ぶべく
、傾斜した放射線透過孔となっている。
Next, when the cross section of the collimator 10 is viewed from the horizontal direction perpendicular to the body axis, the radiation transmitting holes L1 to L□, which are located at the center of the collimator 10, are the body axis of the subject M. It is a radiation-transmitting hole with a hole axis perpendicular to
Each radiation transmitting hole is an inclined radiation transmitting hole so that the focal point F is on the hole axis of Lo.

したがって、水平方向の撮影空間りの形状は、中心位置
Yを頂点とする2等辺三角形状のものである。
Therefore, the shape of the photographing space in the horizontal direction is an isosceles triangle shape with the center position Y as the apex.

以上のことを総合すると・、コリメータ1oによって形
成される撮影空間りは、第4回の斜視図に示すように、
被検体Mの足側の最外端に頂点をもつ四角鐘状となつい
る。これはガンマカメラ2が角形であるからで、丸形の
ガンマカメラ2の場合は円錐状となる。
To summarize the above, the imaging space formed by the collimator 1o is as shown in the fourth perspective view.
It has a square bell shape with the apex at the outermost end on the foot side of the subject M. This is because the gamma camera 2 has a rectangular shape, and in the case of a round gamma camera 2, it has a conical shape.

この撮影空間りの最外端に小脳が位置するように、被検
体Mの頭部を撮影空間り内に収納すると、ガンマカメラ
2の位置は、第7図の(a)に示したコンビームコリメ
ータ1を装着したときの位置よりも、被検体Mの頭部側
に移動する(第5図参照)。言い換えると、被検体Mの
肩部との接触を避け、かつ、頭部に接近させるため、頭
部側にガンマカメラ2を移動(退避)させても、脳の全
域を撮影空間り内に収めることができる。
When the head of the subject M is housed in the imaging space so that the cerebellum is located at the outermost edge of the imaging space, the position of the gamma camera 2 will be as shown in FIG. 7(a). The collimator 1 is moved closer to the head of the subject M than the position when the collimator 1 is attached (see FIG. 5). In other words, even if the gamma camera 2 is moved (retracted) toward the head side in order to avoid contact with the shoulders of the subject M and bring it close to the head, the entire brain can be contained within the imaging space. be able to.

このような状態で、ガンマカメラ2を360°回転する
ことにより、頭部に蓄積されたRTから放出される放射
線をコリメータ10の各放射線透過孔に、−に、とL1
〜LHを通して検出し、多数のスライス面におけるR1
分布のデータを収集すると、小脳を含めた脳全域からの
R1分布データが検出される。この場合に、ガンマカメ
ラ2は被検体Mの頭部に十分接近しているので、RI分
布データの検出上の分解能と感度とは向上する。
In this state, by rotating the gamma camera 2 by 360 degrees, the radiation emitted from the RT accumulated in the head is directed to each radiation transmitting hole of the collimator 10.
~Detected through LH, R1 in multiple slice planes
When distribution data is collected, R1 distribution data from the entire brain including the cerebellum is detected. In this case, since the gamma camera 2 is sufficiently close to the head of the subject M, the detection resolution and sensitivity of the RI distribution data are improved.

この発明のコリメータ10は、上述した例に限らず、次
のように変形して実施することができる。
The collimator 10 of the present invention is not limited to the example described above, but can be modified and implemented as follows.

■実施例では、被検体Mの足側の最外端に佑、点Fを結
ぶように、各放射線透過孔に1〜に8を傾斜させている
が、とくに、焦点Fが最外端に位置している必要はなく
、若干、焦点Fの位置を変位させてもよい。
■ In the example, each radiation transmitting hole is inclined from 1 to 8 so as to connect the point F to the outermost end of the leg side of the subject M, but in particular, the focal point F is The focal point F does not have to be located at the same position, and the position of the focal point F may be slightly displaced.

■実施例では、体軸方向の放射線透過孔に、〜KNが一
点の焦点Fを結ぶように構成したが、これにも特にこだ
わる必要はない。つまり、第6図に示すように各孔軸が
一点に収束するのではなく、焦点ラインRを形成するよ
うに構成してもよい。
(2) In the embodiment, ~KN was configured so that a single focal point F was connected to the radiation transmitting hole in the body axis direction, but there is no need to be particularly particular about this. That is, the axes of each hole may be configured to form a focal line R instead of converging to one point as shown in FIG.

なお、このコリメータ10は、ガンマカメラ2を複数個
備えたシングルフォトンECT装置にも適用することが
できる。
Note that this collimator 10 can also be applied to a single photon ECT device including a plurality of gamma cameras 2.

G1発明の効果 以上の説明から明らかなように、この発明に係るコリメ
ータによれば、放射線透過孔の孔軸の焦点をコリメータ
の中心位置よりも変位させたので、頂点が変位した錐状
の撮影空間が形成される。
G1 Effect of the Invention As is clear from the above explanation, according to the collimator of the present invention, the focal point of the hole axis of the radiation transmitting hole is displaced from the center position of the collimator, so that a conical image with a displaced apex can be imaged. A space is formed.

したがって、このコリメータを回転型のガンマカメラ(
検出器)にセットする場合、変位した撮影空間内に被検
体の小脳が位置するようにセットすれば、ガンマカメラ
と被検体の肩との接触を避けた状態で、被検体の頭部に
十分接近させることができる。つまり、ガンマカメラを
被検体の頭部側に退避させても、被検体の脳全域を撮影
空間内に収納することができ、R1分布データの検出上
の分解能および感度を向上させた状態で、被検体の脳全
域を撮影することができる。
Therefore, this collimator can be used with a rotating gamma camera (
When setting the gamma camera on the subject's head (detector), if you set it so that the subject's cerebellum is located in the displaced imaging space, you can avoid contact between the gamma camera and the subject's shoulders and ensure that it is close enough to the subject's head. It can be brought closer. In other words, even if the gamma camera is retracted toward the subject's head, the entire brain of the subject can be accommodated within the imaging space, and the detection resolution and sensitivity of R1 distribution data is improved. It is possible to image the entire brain of the subject.

【図面の簡単な説明】[Brief explanation of the drawing]

第1IIないし第6回は、この発明の一実施例に係り、
第1図はコリメータの縦横の断面図、第2図はシングル
フォトンECT装置の概略側面図、第3図はコリメータ
の概略構成を示した斜視図、第4図は撮影空間の形状を
示した斜視図、第5図はガンマカメラと被検体との位置
関係を示した側面図、第6図は撮影空間の変形例を示し
た斜視図である。 また、第7図および第8図は従来例に係り、第7回は従
来のコリメータの欠点を説明する図、第8回はコリメー
タの断面図である。 2・ ガンマカメラ ・・・コリメータ
Parts 1II to 6 relate to an embodiment of this invention,
Figure 1 is a vertical and horizontal cross-sectional view of the collimator, Figure 2 is a schematic side view of the single photon ECT device, Figure 3 is a perspective view showing the schematic configuration of the collimator, and Figure 4 is a perspective view showing the shape of the imaging space. 5 is a side view showing the positional relationship between the gamma camera and the subject, and FIG. 6 is a perspective view showing a modified example of the imaging space. Furthermore, FIGS. 7 and 8 relate to conventional examples, with the seventh part being a diagram for explaining the drawbacks of the conventional collimator, and the eighth part being a cross-sectional view of the collimator. 2. Gamma camera...collimator

Claims (1)

【特許請求の範囲】[Claims] (1)被検体に投与した放射線同位元素からの放射線を
検出器に導く放射線透過孔を、多数並列配置し、前記放
射線透過孔の孔軸が焦点を結ぶように構成されたコリメ
ータにおいて、前記焦点がコリメータの中心位置から変
位した位置にあることを特徴とするコリメータ。
(1) In a collimator configured such that a large number of radiation-transmitting holes that guide radiation from a radioactive isotope administered to a subject to a detector are arranged in parallel, and the axes of the radiation-transmitting holes are focused, the focal point is A collimator characterized in that the is located at a position displaced from the center position of the collimator.
JP2194138A 1990-07-23 1990-07-23 Collimator Pending JPH0479939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2194138A JPH0479939A (en) 1990-07-23 1990-07-23 Collimator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2194138A JPH0479939A (en) 1990-07-23 1990-07-23 Collimator

Publications (1)

Publication Number Publication Date
JPH0479939A true JPH0479939A (en) 1992-03-13

Family

ID=16319543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2194138A Pending JPH0479939A (en) 1990-07-23 1990-07-23 Collimator

Country Status (1)

Country Link
JP (1) JPH0479939A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995014244A1 (en) * 1993-11-16 1995-05-26 Siemens Medical Systems, Inc. Fan-beam collimator with offset focus and scintillation camera system which uses it
WO2000038197A1 (en) * 1998-12-18 2000-06-29 Izzie Boxen Dynamic collimators
JP2006130037A (en) * 2004-11-05 2006-05-25 Asahi Roentgen Kogyo Kk Cone-beam type x-ray ct imaging apparatus for head cervical division
CN102971644A (en) * 2010-09-14 2013-03-13 株式会社东芝 Mo collimator and X-ray detector using same, X-ray inspection device, and CT device
CN103932724A (en) * 2013-01-23 2014-07-23 三星电子株式会社 Radiation generator, anti-scatter grid, and radiation imaging apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995014244A1 (en) * 1993-11-16 1995-05-26 Siemens Medical Systems, Inc. Fan-beam collimator with offset focus and scintillation camera system which uses it
US5430297A (en) * 1993-11-16 1995-07-04 Siemens Medical Systems, Inc. Fan-beam collimator with offset focus and scintillation camera system which uses it
WO2000038197A1 (en) * 1998-12-18 2000-06-29 Izzie Boxen Dynamic collimators
JP2006130037A (en) * 2004-11-05 2006-05-25 Asahi Roentgen Kogyo Kk Cone-beam type x-ray ct imaging apparatus for head cervical division
CN102971644A (en) * 2010-09-14 2013-03-13 株式会社东芝 Mo collimator and X-ray detector using same, X-ray inspection device, and CT device
CN103932724A (en) * 2013-01-23 2014-07-23 三星电子株式会社 Radiation generator, anti-scatter grid, and radiation imaging apparatus
US20140205065A1 (en) * 2013-01-23 2014-07-24 Samsung Electronics Co., Ltd. Radiation generator, anti-scatter grid, and radiation imaging apparatus including at least one of the same

Similar Documents

Publication Publication Date Title
US7671340B2 (en) Adjustable-focal-length collimators method and system
TWI465757B (en) Single photon emission computed tomography instrument and the operating method thereof
JP6670302B2 (en) Digital Flat Panel Detector with Square Shape
JP5283382B2 (en) Nuclear medicine detector
JPH0252640A (en) X-ray ct scanner device
JPH11511035A (en) Multiple sensor arrangement method
US20080087829A1 (en) Single-photon emission computed tomography (SPECT) using helical scanning with multiplexing multi-pinhole apertures
JP2000262515A (en) Method and apparatus for taking radiation image
US8242453B2 (en) Imaging system for nuclear medicine
JP5526062B2 (en) Radiation imaging apparatus and defective pixel position information acquisition method
JPH0479939A (en) Collimator
JP4712270B2 (en) Method for imaging a head region
JP2000075035A (en) Gamma camera
JP7144916B2 (en) Combined whole body PET and CT detector, and apparatus and method thereof
US8859974B2 (en) Adjustable spect detector
JP2006346290A (en) Radiographic image photographing apparatus
JP3108446B2 (en) Scintillation camera
JP3061392B2 (en) Gamma camera device
JP2000237178A (en) X-ray ct device
JPS58116342A (en) Computer tomography apparatus
RU2172137C2 (en) Method for computer tomography and device for medical diagnosis
JPS6239943B2 (en)
JP7485574B2 (en) X-ray CT device, control method for X-ray CT device, and program
JP2011206250A (en) Method and device for acquiring radiation image
JPS5835209Y2 (en) tomography device