JPH0479330A - Method of forming laminated wiring - Google Patents

Method of forming laminated wiring

Info

Publication number
JPH0479330A
JPH0479330A JP19530390A JP19530390A JPH0479330A JP H0479330 A JPH0479330 A JP H0479330A JP 19530390 A JP19530390 A JP 19530390A JP 19530390 A JP19530390 A JP 19530390A JP H0479330 A JPH0479330 A JP H0479330A
Authority
JP
Japan
Prior art keywords
film
wiring
silicon film
tungsten silicide
polycrystal silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19530390A
Other languages
Japanese (ja)
Inventor
Toru Nishiwaki
徹 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP19530390A priority Critical patent/JPH0479330A/en
Publication of JPH0479330A publication Critical patent/JPH0479330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To protect cracking of polycide wiring to enable forming highly reliable wiring by coating polycrystal silicon film with silicide chemical of high melting point metal having a particular film thickness relative to the thickness of the polycrystal silicon film. CONSTITUTION:On a semiconductor substrate 1, boron phosphor silicate glass (BPSG) film 2 is developed as a glass film by means of thermal melting flow. The BPSG film 2 is treated for heating under the steam atmosphere to carry out melting flattening of the BPSG film 2. Next, polycrystal silicon film 3 is deposited thereon, further followed by depositing tungsten silicide film 4 thereon. After that, by both photoetching and dry etching, polycide wiring consisting of two layers of polycrystal silicon film 3 and tungsten silicide film 4 is formed. An appropriate ratio of thickness between the tungsten silicide film 4 and polycrystal silicon film 3 is greater than 0.2 and less than 1.3, and when the ratio of thickness therebetween reaches the optimum ratio of 1.0, the ratio of the occurrence of defective wiring products is suppressed low and the wiring resistance is also suppressed low.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は積層配線の形成方法とくに、信頼性の高い積層
配線の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of forming a laminated wiring, and particularly to a method of forming a highly reliable laminated wiring.

従来の技術 半導体装置の配線材料として高融点金属のシリサイド化
合物が耐熱性、耐腐食性、微細加工などの面から広く使
用されるようになってきた。
2. Description of the Related Art Silicide compounds of refractory metals have come to be widely used as wiring materials for semiconductor devices due to their heat resistance, corrosion resistance, microfabrication, and other aspects.

以下、従来の積層配線の製造方法を第4図を用いて説明
する。第4図(a)に示すように、段差を有する半導体
基板1上に熱フローできる薄いガラス膜として、ボロン
・フォスファ・シリケート・ガラス(BPSG)膜2を
例えば常圧CVD法により4500人堆積し、次に第4
図(blに示すようにBPSG膜の熱フローを例えば窒
素雰囲気中で900℃30分行なう。その後多結晶シリ
コン膜3を1500人例えば減圧CVD法により堆積し
、さらにコールドウオール型の減圧CVD法によりタン
グステンシリサイド膜4を2500人堆積する。その後
、周知の写真食刻法により多結晶シリコン膜3とタング
ステンシリサイド膜4の二層よりなるポリサイド配線を
形成する。
Hereinafter, a conventional method for manufacturing a laminated wiring will be explained with reference to FIG. As shown in FIG. 4(a), a boron phosphor silicate glass (BPSG) film 2 is deposited by 4,500 people by, for example, atmospheric pressure CVD as a thin glass film that allows heat to flow on a semiconductor substrate 1 having steps. , then the fourth
As shown in Figure (bl), heat flow of the BPSG film is carried out for 30 minutes at 900°C in a nitrogen atmosphere. Thereafter, a polycrystalline silicon film 3 is deposited by 1500 people, for example, by low pressure CVD method, and then by cold wall type low pressure CVD method. 2,500 layers of tungsten silicide film 4 are deposited. Thereafter, a polycide wiring consisting of two layers of polycrystalline silicon film 3 and tungsten silicide film 4 is formed by a well-known photolithography method.

発明が解決しようとする課題 上記したようにこのような従来技術の構成では、下地凹
凸のある層間絶縁膜上にシリサイド膜4を被着しポリサ
イド配線を形成するとシリサイド膜4の内部応力の為に
タングステンシリサイド膜にクラックが生じ、熱処理を
行なうと下層の多結晶シリコン膜3まで切断してしまい
断線になる。微細化が行なわれると、さらに内部応力が
集中し断線が発生しやすくなる。
Problems to be Solved by the Invention As described above, in the configuration of the prior art, when a silicide film 4 is deposited on an interlayer insulating film with uneven underlying layers and a polycide wiring is formed, internal stress of the silicide film 4 causes Cracks occur in the tungsten silicide film, and when heat treatment is performed, the underlying polycrystalline silicon film 3 is also cut, resulting in disconnection. When miniaturization is performed, internal stress is further concentrated and wire breaks are more likely to occur.

本発明は以上述べた問題を解決し、信頼性の高いポリサ
イド配線の形成方法を提供するものである。
The present invention solves the above-mentioned problems and provides a highly reliable method for forming polycide wiring.

課題を解決するための手段 本発明では、上記課題を解決するために、ポリサイド配
線を形成する際に多結晶シリコン膜とシリサイド膜の膜
厚比を適正化し、またシリサイド膜の組成比の適正化を
行なう。
Means for Solving the Problems In the present invention, in order to solve the above problems, when forming polycide wiring, the film thickness ratio of the polycrystalline silicon film and the silicide film is optimized, and the composition ratio of the silicide film is optimized. Do this.

作用 本発明では、多結晶シリコン膜とシリサイド膜の膜厚比
を適正化し、シリサイド膜の組成比を適正化することに
よりシリサイド膜の膜はかれやポリサイド配線の断線を
防止でき高い信頼性をもつ積層配線を形成できる。
Function: In the present invention, by optimizing the film thickness ratio of the polycrystalline silicon film and the silicide film, and by optimizing the composition ratio of the silicide film, the silicide film can be prevented from flaking and polycide interconnections can be prevented from breaking, resulting in high reliability. Laminated wiring can be formed.

実施例 本発明の第1の実施例を第1図、第2図を用いて詳細に
説明する。
Embodiment A first embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2.

1は凹凸を有する半導体基板又は半導体素子、2はボロ
ン・フォスファ・シリケート・ガラス、3は多結晶シリ
コン膜、4はタングステンシリサイド膜である。
Reference numeral 1 designates a semiconductor substrate or semiconductor element having unevenness, 2 a boron phosphor silicate glass, 3 a polycrystalline silicon film, and 4 a tungsten silicide film.

第1図(a)において半導体基板1上に常圧CVDヲ用
イて熱フローできるガラス膜としてボロン・フォスファ
・シリケート・ガラス(以下B P S G)膜2を成
長する。BPSG膜2の堆積は、例えば常圧CVD法な
どにより行ない、BPSG膜2の膜厚は4500人を用
いた。
In FIG. 1(a), a boron phosphor silicate glass (hereinafter referred to as BPSG) film 2 is grown on a semiconductor substrate 1 by atmospheric pressure CVD as a glass film capable of thermal flow. The BPSG film 2 was deposited by, for example, atmospheric pressure CVD, and the thickness of the BPSG film 2 was 4500.

次に第1図fb)に示すように、BPSG膜2を水蒸気
雰囲気中で熱処理を例えば900℃30分行ない、溶融
平坦化を行なう。次に多結晶シリコン膜3を約1500
人例えば減圧CVD法により堆積し、さらにタングステ
ンシリサイド膜4を例えば、シラン800secm、六
弗化タングステン5secmを使用したコールドウオー
ル型の減圧CVD法により1500人堆積する。その後
、周知の写真食刻法とドライエツチングにより、多結晶
シリコン膜3とタングステンシリサイド膜402層から
なるポリサイド配線を形成する。このとき、タングステ
ンシリサイド膜4にクラック5がポリサイド配線には生
じない。
Next, as shown in FIG. 1 fb), the BPSG film 2 is heat-treated at, for example, 900° C. for 30 minutes in a steam atmosphere to melt and flatten it. Next, a polycrystalline silicon film 3 of about 1500
For example, a tungsten silicide film 4 is deposited by a cold wall type low pressure CVD method using, for example, 800 seconds of silane and 5 seconds of tungsten hexafluoride. Thereafter, a polycide wiring consisting of a polycrystalline silicon film 3 and a tungsten silicide film 402 is formed by well-known photolithography and dry etching. At this time, cracks 5 in the tungsten silicide film 4 do not occur in the polycide wiring.

次に第2図に上記実施例で形成したポリサイド配線の多
結晶シリコン膜3とタングステンシリサイド膜4の膜厚
比とポリサイド配線の断線率を示す。この結果、多結晶
シリコン膜3とタングステンシリサイド膜4の膜厚比が
、1.3以上でポリサイド配線の断線が発注する。本実
施例では多結晶シリコン膜3とタングステンシリサイド
膜4を共に1500人とし断線は発生しない。またタン
グステンシリサイド膜4と多結晶シリコン膜3の膜厚比
を0.2以下にすると配線抵抗が増加するため膜厚比は
0.2以上1.3以下であることか適当であり、最適値
として多結晶シリコン膜3とタングステンシリサイド膜
4の膜厚比か1.0の時は応力による不良発生率が低く
さらに配線抵抗も低い。
Next, FIG. 2 shows the film thickness ratio of the polycrystalline silicon film 3 and tungsten silicide film 4 of the polycide wiring formed in the above embodiment and the disconnection rate of the polycide wiring. As a result, when the film thickness ratio between the polycrystalline silicon film 3 and the tungsten silicide film 4 is 1.3 or more, the polycide wiring becomes disconnected. In this embodiment, both the polycrystalline silicon film 3 and the tungsten silicide film 4 have a thickness of 1,500, and no disconnection occurs. Furthermore, if the film thickness ratio of the tungsten silicide film 4 and the polycrystalline silicon film 3 is set to 0.2 or less, the wiring resistance will increase, so the film thickness ratio should be between 0.2 and 1.3, which is the optimum value. When the film thickness ratio between the polycrystalline silicon film 3 and the tungsten silicide film 4 is 1.0, the failure rate due to stress is low and the wiring resistance is also low.

さらに、第1図に示した構成で、従来問題となっていた
タングステンシリサイド膜4の内部応力によるタングス
テンシリサイド膜4中のクラックの発生を防止できる。
Furthermore, the configuration shown in FIG. 1 can prevent the occurrence of cracks in the tungsten silicide film 4 due to internal stress in the tungsten silicide film 4, which has been a problem in the past.

次に第3図にタングステンシリサイド膜4のタングステ
ンとシリコンの組成比と断線率の関係を示す。この結果
タングステンとシリコンの組成比が2.5以上で断線が
発生しない。本実施例ではシランを800sccm六弗
化タングステン6secmでタングステンシリサイドを
堆積し組成比を2.6としているので断線は発生しない
。また、組成比を3.0以上とするとタングステンンリ
サイド膜の比抵抗が増加し配線抵抗か増加するため、組
成比は2.5以上3.0以下か適している。
Next, FIG. 3 shows the relationship between the composition ratio of tungsten and silicon in the tungsten silicide film 4 and the disconnection rate. As a result, when the composition ratio of tungsten and silicon is 2.5 or more, disconnection does not occur. In this embodiment, tungsten silicide is deposited using 800 sccm of silane and 6 seconds of tungsten hexafluoride, and the composition ratio is set to 2.6, so that no disconnection occurs. Further, if the composition ratio is set to 3.0 or more, the resistivity of the tungsten silicide film increases and the wiring resistance also increases, so a composition ratio of 2.5 or more and 3.0 or less is suitable.

以上のように本実施例によれば、 (1)  ポリサイド配線のタングステンシリサイド膜
と多結晶シリコン膜の膜厚比を0.2以上1.3以下に
することによりタングステンシリサイド膜のクラックを
防止できポリサイド配線の断線を防止できる。
As described above, according to this embodiment, (1) Cracks in the tungsten silicide film can be prevented by setting the film thickness ratio of the tungsten silicide film and the polycrystalline silicon film of the polycide wiring to 0.2 or more and 1.3 or less. Breakage of polycide wiring can be prevented.

(2)  ポリサイド配線のタングステンシリサイド膜
のタングステンシリサイドとシリコンの組成比を2.5
以上3.0以下にすることによりタングステンシリサイ
ド膜のクラックを防止しポリサイド配線の断線を防止で
きる。
(2) The composition ratio of tungsten silicide and silicon in the tungsten silicide film of polycide wiring is 2.5.
By setting the value to 3.0 or less, cracking of the tungsten silicide film and disconnection of the polycide wiring can be prevented.

また、本実施例では、シリサイド化合物としてタングス
テンシリサイドを用いたが、それ以外のTi、Moなと
のケイ化物などでも同様な効果が期待できる。
Further, in this example, tungsten silicide was used as the silicide compound, but similar effects can be expected with other silicides such as Ti and Mo.

発明の効果 本発明によってポリサイド配線のクラックを防止するこ
とで、断線を起こさない信頼性の高い配線を形成できる
Effects of the Invention By preventing cracks in polycide wiring according to the present invention, highly reliable wiring that does not cause disconnection can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における積層配線の製造方法
を示す図、第2図はタングステンシリサイド膜と多結晶
シリコン膜の膜厚比と断線率を示す図、第3図はタング
ステンシリサイド膜の組成比と断線の関係を示す図、第
4図は従来例を説明するための図である。 1・・・・・・半導体基板、2・・・・・・BPS’G
膜、3・・・・・・多結晶シリコン膜、4・・・・・・
タングステンシリサイド膜、5・・・・・・クラック。 代理人の氏名 弁理士 粟野重孝 はか1名第1図 第 2 図 〃θL 第3 f71 !θ1 7ンクステンンリプAトヒ夛奪を晶ンリコンn月貧AI
乙タ ノじり文テン シソゾイド8罠
FIG. 1 is a diagram showing a method for manufacturing a laminated wiring in an embodiment of the present invention, FIG. 2 is a diagram showing the film thickness ratio and disconnection rate of a tungsten silicide film and a polycrystalline silicon film, and FIG. 3 is a diagram showing a tungsten silicide film and a disconnection rate. FIG. 4 is a diagram showing the relationship between the composition ratio and wire breakage, and is a diagram for explaining a conventional example. 1...Semiconductor substrate, 2...BPS'G
Film, 3... Polycrystalline silicon film, 4...
Tungsten silicide film, 5...Crack. Name of agent: Patent attorney Shigetaka Awano (1 person) Figure 1 Figure 2〃θL 3rd f71! θ1 7nxtennlip A Tohi's hijacking and reconn n month poor AI
Otano Jiri Bun Tenshisozoid 8 Trap

Claims (2)

【特許請求の範囲】[Claims] (1)段差を有する半導体基板の主面上にガラス膜を形
成した後、前記ガラス膜をマニールし熱フローする工程
と、前記熱フローしたガラス膜上に多結晶シリコン膜を
被着する工程と、前記多結晶シリコン膜上に高融点金属
のシリサイド化合物を被着する工程を備え、前記シリサ
イド化合物が、前記多結晶シリコン膜の膜厚に対し0.
2以上1.3以下の膜厚であることを特徴とする積層配
線の形成方法。
(1) After forming a glass film on the main surface of a semiconductor substrate having a step, the step of manulating and heat-flowing the glass film, and the step of depositing a polycrystalline silicon film on the heat-flowed glass film. , comprising a step of depositing a silicide compound of a high melting point metal on the polycrystalline silicon film, the silicide compound having a thickness of 0.0.
A method for forming a laminated wiring, characterized in that the film thickness is 2 or more and 1.3 or less.
(2)段差を有する半導体基板の主面上にガラス膜を形
成した後、前記ガラス膜をマニールし熱フローする工程
と前記熱フローしたガラス膜上に多結晶シリコン膜を被
着する工程と、前記多結晶シリコン膜上に高融点金属の
シリサイド化合物を被着する工程を備え、前記シリサイ
ド化合物の高融点金属に対するシリコンの組成比が2.
5以上3.0以下であることを特徴とする積層配線の形
成方法。
(2) After forming a glass film on the main surface of a semiconductor substrate having a step, a step of manulating and heat-flowing the glass film, and a step of depositing a polycrystalline silicon film on the heat-flowed glass film; a step of depositing a silicide compound of a high melting point metal on the polycrystalline silicon film, the silicide compound having a composition ratio of silicon to the high melting point metal of 2.
A method for forming a laminated wiring, characterized in that the ratio is 5 or more and 3.0 or less.
JP19530390A 1990-07-23 1990-07-23 Method of forming laminated wiring Pending JPH0479330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19530390A JPH0479330A (en) 1990-07-23 1990-07-23 Method of forming laminated wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19530390A JPH0479330A (en) 1990-07-23 1990-07-23 Method of forming laminated wiring

Publications (1)

Publication Number Publication Date
JPH0479330A true JPH0479330A (en) 1992-03-12

Family

ID=16338913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19530390A Pending JPH0479330A (en) 1990-07-23 1990-07-23 Method of forming laminated wiring

Country Status (1)

Country Link
JP (1) JPH0479330A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6970226B2 (en) 2003-02-21 2005-11-29 Au Optronics Corp. Liquid crystal display having vacuum layer for isolating heat
US7832916B2 (en) 2004-06-21 2010-11-16 Idemitsu Kosan Co., Ltd. Back chassis integrating reflector, back light and liquid crystal display
US8279375B2 (en) 2007-04-16 2012-10-02 Sharp Kabushiki Kaisha Display apparatus, driving apparatus of display apparatus, and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281350A (en) * 1986-05-29 1987-12-07 Toshiba Corp Semiconductor device and manufacture thereof
JPS6347950A (en) * 1986-08-18 1988-02-29 Mitsubishi Electric Corp Semiconductor device
JPS63133672A (en) * 1986-11-26 1988-06-06 Nec Corp Semiconductor device
JPS63143841A (en) * 1986-12-08 1988-06-16 Nec Corp Semiconductor integrated circuit device and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281350A (en) * 1986-05-29 1987-12-07 Toshiba Corp Semiconductor device and manufacture thereof
JPS6347950A (en) * 1986-08-18 1988-02-29 Mitsubishi Electric Corp Semiconductor device
JPS63133672A (en) * 1986-11-26 1988-06-06 Nec Corp Semiconductor device
JPS63143841A (en) * 1986-12-08 1988-06-16 Nec Corp Semiconductor integrated circuit device and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6970226B2 (en) 2003-02-21 2005-11-29 Au Optronics Corp. Liquid crystal display having vacuum layer for isolating heat
US7832916B2 (en) 2004-06-21 2010-11-16 Idemitsu Kosan Co., Ltd. Back chassis integrating reflector, back light and liquid crystal display
JP4726783B2 (en) * 2004-06-21 2011-07-20 出光興産株式会社 Back chassis integrated reflector, backlight device, and liquid crystal display device
US8279375B2 (en) 2007-04-16 2012-10-02 Sharp Kabushiki Kaisha Display apparatus, driving apparatus of display apparatus, and electronic device

Similar Documents

Publication Publication Date Title
EP0697729B1 (en) Contact structure using barrier metal and method of manufacturing the same
WO1986005321A1 (en) A method in the manufacture of integrated circuits
JP3175721B2 (en) Method for manufacturing semiconductor device
US5332693A (en) Method for manufacturing aluminum wired layer for interconnecting device to device in a semiconductor device
JPH05347272A (en) Manufacture of semiconductor device
US5672543A (en) Volcano defect-free tungsten plug
JPH0936228A (en) Formation of wiring
JP3689756B2 (en) Method for forming gate electrode of semiconductor element
JP2800788B2 (en) Method for manufacturing semiconductor device
JP3027946B2 (en) Semiconductor device and manufacturing method thereof
JP2857369B2 (en) Method for manufacturing insulating film between metal wires of semiconductor device
JPH0479330A (en) Method of forming laminated wiring
JPH10303144A (en) Formation of silicide layer of semiconductor device
KR100248804B1 (en) A method for forming metal wire in semiconductor device
JP2737470B2 (en) Method for manufacturing semiconductor device
JPH04196486A (en) Semiconductor device
JPH04320029A (en) Manufacture of semiconductor device
JP3189399B2 (en) Method for manufacturing semiconductor device
JP2711530B2 (en) Method for forming metal wiring of semiconductor device
JPH09306912A (en) Formation of wiring for semiconductor elements
KR100338114B1 (en) Method for forming metal film in semiconductor device
JPS62291146A (en) Manufacture of semiconductor device
JPH09129880A (en) Formation of gate electrode of semiconductor device
JPH02290018A (en) Manufacture of semiconductor device
JPH0473972A (en) Manufacture of semiconductor device