JPH0472588A - Radar transmit modulation signal generating method and its radar device - Google Patents

Radar transmit modulation signal generating method and its radar device

Info

Publication number
JPH0472588A
JPH0472588A JP2185708A JP18570890A JPH0472588A JP H0472588 A JPH0472588 A JP H0472588A JP 2185708 A JP2185708 A JP 2185708A JP 18570890 A JP18570890 A JP 18570890A JP H0472588 A JPH0472588 A JP H0472588A
Authority
JP
Japan
Prior art keywords
signal
radar
transmission
random number
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2185708A
Other languages
Japanese (ja)
Other versions
JP2560222B2 (en
Inventor
Kenro Nozaki
野崎 憲朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
Communications Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Communications Research Laboratory filed Critical Communications Research Laboratory
Priority to JP2185708A priority Critical patent/JP2560222B2/en
Publication of JPH0472588A publication Critical patent/JPH0472588A/en
Application granted granted Critical
Publication of JP2560222B2 publication Critical patent/JP2560222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To substantially reduce generation of spurious component in a transmit radio wave by switching a hourly smoothly repeated signal as a modulation signal of the transmit radio wave to a short form wave signal synchronized with the repeated signal. CONSTITUTION:A sine wave (a) outputted from a sine wave generator 1, a clock pulse (b) synchronized with this, and a logical product (f) of a first transition detection signal (k) having delay of half-clock for driving a one bit random number generator and a last transition detection signal (e), control a switch circuit 7 to select the sine wave and one bit random number signal. When the output signal (g) is used as a modulation signal of transmit signal, the amplitude is changed smoothly at the time of transmission-receiving switching. When the one bit random number signal having delay of half-clock is used as a transmission-receiving switching signal (i), the previously obtained transmit radio wave is not outputted in a period of receiving. Thus, any spurious component in the transmit radio wave generated by modulation can be substantially reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はレーダ送信変調信号の発生方法及びそのレーダ
装置に関し、特に中・短波帯で使用されるパルスドチャ
ープレーダの送信電波に含まれるスプリアス(不用輻射
)を低減し、距離に対するレーダ感度を一様にするレー
ダ送信変調信号の発生方法及びそのレータ装置に関する
ものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method of generating a radar transmission modulation signal and a radar device thereof, and in particular to a method for generating a radar transmission modulation signal, and particularly to a method for generating a radar transmission modulation signal. The present invention relates to a method for generating a radar transmission modulation signal that reduces unnecessary radiation (unwanted radiation) and makes radar sensitivity uniform over distance, and a radar device for the same.

(従来の技術) レーダの方式の一つにFMCW方式があり、同じ平均送
信電力のパルス方式に比べて送信電力の尖頭値が少なく
てすむ特長がある。このレーダを中・短波帯で実現する
と、送信電波が直接受信機に回り込んでターゲットから
の反射信号を抑圧してしまうために、送信点と受信点を
数十km離すか、送信と受信を時間的に切り替えて同一
地点で送受信する。後者をパルスドチャープレーダ(送
受切り替え型FMCWレーダ、あるいはFMICWレー
ダとも言う)と呼ふ。
(Prior Art) One of the radar systems is the FMCW system, which has the advantage of requiring less peak value of transmission power compared to the pulse system with the same average transmission power. If this radar is implemented in the medium/short wave band, the transmitted radio waves will go directly to the receiver, suppressing the reflected signal from the target. Transmit and receive at the same point by changing the time. The latter is called a pulsed chirp radar (also called a transmission/reception switching type FMCW radar or FMICW radar).

FMCWレーダは時間的に周波数を変えながら観測電波
を送信し、ターゲットからの散乱信号は距離に応じた時
間遅れて受信されるので、そのときの送信電波との周波
数差からターゲットまでの距離を算出する。パルスドチ
ャープレーダは送受信を切り替えるので、散乱信号はレ
ーダが受信状態になっている時間だけ有効に受信機に入
力し、送信の期間に到着した散乱信号は無効となる。タ
ーゲットからの散乱電波が有効に受信される割合を受信
時間率と呼ぶが、距離に対して一様な受信時間率を得る
ために送受信を例えば1ビツト乱数にしたかって切り替
える。
FMCW radar transmits observation radio waves while changing the frequency over time, and the scattered signal from the target is received with a time delay depending on the distance, so the distance to the target is calculated from the frequency difference with the transmitted radio wave at that time. do. Since the pulsed chirp radar switches between transmission and reception, scattered signals are effectively input to the receiver only while the radar is in the receiving state, and scattered signals that arrive during the period of transmission are invalid. The rate at which scattered radio waves from the target are effectively received is called the reception time rate, and in order to obtain a uniform reception time rate with respect to distance, transmission and reception are switched using, for example, a 1-bit random number.

、一般にレーダのターゲットからの散乱信号は距離の4
乗に比例して弱くなるので、距離に対する信号強度の変
化をなるべく少な(するために、レーダ装置や信号処理
過程で特に近距離からの信号を弱めるよう様々な工夫が
なされている。例えば、中間周波増幅器に周波数特性を
持たせたり、正弦波で周波数変調して高次モードを選択
して受信する等である。
, generally the scattered signal from a radar target is at a distance of 4
Since the signal strength decreases in proportion to the power of For example, a frequency amplifier may be given a frequency characteristic, or frequency modulation may be performed using a sine wave to select a higher-order mode for reception.

(発明が解決しようとする課題) パルストチャーブレーダは送信電波を断続するので送受
切り替え信号に対応する変調信号のスペクトルに対応し
て送信電波のスペクトルが広がる。
(Problem to be Solved by the Invention) Since the pulse charcoal radar intermittents the transmission radio waves, the spectrum of the transmission radio waves is expanded in accordance with the spectrum of the modulation signal corresponding to the transmission/reception switching signal.

FMCWレーダとしてターゲットまでの距離を計測する
のに必要なスペクトル成分は搬送波、言い替えると変調
信号の直流成分のみてあり、他のスペクトル成分は全て
スプリアスになる。変調信号に矩型波を基本波形とする
1ビツト乱数を用いると、搬送波から周波数fだけ離れ
た周波数でのパワースペクトルW (f)はAを振幅、
Tをクロック周期として と表わされ、右辺の第1項がスプリアス、第2項が必要
な直流(搬送波)成分に対応する。上式でもわかるとお
り、スプリアスはfのオクターブ当り6dBの割合で低
下する。パルストチャーブレーダでは送信信号が受信の
期間に出てはならないので、矩型波を低域フィルタに通
して滑らかにした信号を変調信号として使い、スプリア
ス強度を下げて占有バンド幅を狭める手法を用いること
はできない。狭いバンドの中に多数の無線局が存在し、
国際的に電波が錯綜する中・短波帯では無線局間の干渉
を防ぐことが強(求められ、広い占有バンド幅を要する
無線局を設置することは困難な状態になっている。
The spectral components necessary for measuring the distance to the target as an FMCW radar are only the carrier wave, in other words, the DC component of the modulation signal, and all other spectral components become spurious. When a 1-bit random number with a rectangular wave as the basic waveform is used for the modulation signal, the power spectrum W (f) at a frequency f apart from the carrier wave is expressed by A as the amplitude,
It is expressed as where T is the clock period, the first term on the right side corresponds to the spurious component, and the second term corresponds to the necessary DC (carrier wave) component. As can be seen from the above equation, the spurious component decreases at a rate of 6 dB per octave of f. In a pulsed char radar, the transmitted signal must not be output during the reception period, so this method uses a rectangular wave smoothed by passing it through a low-pass filter as a modulation signal to reduce the spurious intensity and narrow the occupied bandwidth. cannot be used. There are many radio stations in a narrow band,
In the medium and short wave bands, where radio waves are intertwined internationally, there is a strong need to prevent interference between radio stations, making it difficult to install radio stations that require wide occupied bandwidth.

スプリアス成分を低減するために抵抗、コンデンサによ
る時定数とダイオードの非直線性を利用した波形平滑回
路で受信の期間にかからないように矩型波の立ち上がり
と立ち下がり部分を滑らかにして変調信号とする手法が
あるが、時定数の調整がむずかしく、回路の再現性が悪
い。またクロック周波数の変更に対応するのに難点があ
る。
To reduce spurious components, a waveform smoothing circuit that uses the time constant of resistors and capacitors and the nonlinearity of diodes smoothes the rise and fall portions of the rectangular wave so that they do not overlap during the reception period, and generates a modulation signal. There is a method, but it is difficult to adjust the time constant and the circuit reproducibility is poor. Additionally, there is a difficulty in responding to changes in clock frequency.

ターゲットまでの距離の変化に対応して変わる受信信号
強度を補正するための受信機中間周波増幅器の周波数特
性は必要な特性を得るのがむずかしい。また、正弦波で
周波数変調し、その高次モードを選択して受信する方式
は基本モードに比べて信号強度が弱くなる。
It is difficult to obtain the necessary frequency characteristics of the receiver intermediate frequency amplifier for correcting the received signal strength that changes in response to changes in the distance to the target. Furthermore, in a method in which frequency modulation is performed using a sine wave and the higher-order mode is selected for reception, the signal strength is weaker than in the fundamental mode.

この発明は以上のような困難(欠点、問題点)を克服す
るものであり、パルストチャーブレーダの変調にともな
うスプリアス成分の発生を極限まで低減し、且つ乱数生
成時のクロック周波数の変更に無調整で対応し、更にタ
ーゲットまでの距離によって変わる受信信号の強度を一
様に補正するレーダ送信変調信号の発生方法の提供を目
的とする。
This invention overcomes the above-mentioned difficulties (disadvantages, problems), and reduces to the utmost the generation of spurious components associated with modulation of a pulsed char blade, and also makes it possible to change the clock frequency during random number generation. It is an object of the present invention to provide a method for generating a radar transmission modulation signal that can be used without any adjustment and that can uniformly correct the strength of a received signal that changes depending on the distance to a target.

また口の発明は上記変調信号を発生するレーダ装置の捺
供を目的とする。
Another object of the invention is to provide a radar device that generates the above modulated signal.

(課題を解決するための手段) 本発明のレーダ送信変調信号の発生方法は上記の目的を
達成するために、パルスドチャープレー夕におけるレー
タ送信変調信号の発生方法に於て、時間的に滑らかな繰
り返し信号と該信号に同期した矩型波信号のエツジ部分
とを切り替えることによりレーダ送信変調信号を形成す
ることをその概要とする。
(Means for Solving the Problems) In order to achieve the above object, the method for generating a radar transmission modulation signal of the present invention is a method for generating a radar transmission modulation signal in a pulsed chirp radar. The outline of the method is to form a radar transmission modulation signal by switching between a repetitive signal and an edge portion of a rectangular wave signal synchronized with the repetitive signal.

また本発明のレーダ装置は上記の目的を達成するために
、パルスドチャープ方式のレーダ装置に於て、時間的に
滑らかな繰り返し信号を発生する繰り返し信号発生手段
と、前記繰り返し信号に同期したタイミングにレベルが
変化する矩型波信号を発生する矩型波信号発生手段と、
前記矩型波信号のエツジ部分を検出して該エツジ部分の
信号を前記滑らかな繰り返し信号で置換する信号切り替
え手段を備えることをその概要とする。
Further, in order to achieve the above object, the radar device of the present invention is a pulsed chirp type radar device, and includes a repetitive signal generating means for generating a temporally smooth repetitive signal, and a timing synchronized with the repetitive signal. square wave signal generating means for generating a square wave signal whose level changes;
The outline of the present invention is to include a signal switching means for detecting an edge portion of the rectangular wave signal and replacing the signal of the edge portion with the smooth repeating signal.

(作用) かかる構成に於て、信号発生手段は例えば正弦波信号の
ように時間的に滑らかな繰り返し信号を発生し、矩型波
信号発生手段は前記繰り返し信号に同期したタイミング
にレベルが変化する矩型波信号を発生する。そして、信
号切り替え手段は前記矩型波信号のエツジ部分を検出し
て該エツジ部分の信号を前記滑らかな繰り返し信号で置
換することにより、低減したスプリアス成分を持ち、且
つターゲットまでの距離に対する受信信号強度か−様な
レーダ送信変調信号を得るものである。
(Function) In such a configuration, the signal generating means generates a temporally smooth repetitive signal such as a sine wave signal, and the level of the rectangular wave signal generating means changes at a timing synchronized with the repetitive signal. Generates a square wave signal. The signal switching means detects an edge portion of the rectangular wave signal and replaces the signal of the edge portion with the smooth repetitive signal, so that the received signal has reduced spurious components and corresponds to the distance to the target. This is to obtain radar transmission modulation signals of varying intensities.

(実施例の説明) 以下、添付図面にしたがって本発明による実施例を詳細
に説明する。
(Description of Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第3図は実施例のパルスドチャープレーダのブロック構
成図、第4図は第3図のパルストチャーブレーダの動作
模式図である。
FIG. 3 is a block diagram of the pulsed chirp radar of the embodiment, and FIG. 4 is a schematic diagram of the operation of the pulsed chirp radar of FIG. 3.

第3図に於て掃引信号発生器9は時間に対して直線的に
周波数が増加する周波数掃引信号りを発生する。変調器
11は送受切り替え信号発生器10が供給する変調信号
gにしたがって周波数掃引信号りを振幅変調する。送信
信号は送信増幅器12で所要の電力まで増幅され、送受
切り替えスイッチ13を通して送受信アンテナ14に出
力される。送受切り替えスイッチ13は送受切り替え信
号iに従ってアンテナ14を送信増幅機12か受信機1
5に切り替える。受信機15は周波散播づ信号りと受信
信号の周波数の差の信号をベースバンド信号にとして出
力する。
In FIG. 3, a sweep signal generator 9 generates a frequency sweep signal whose frequency increases linearly with time. The modulator 11 amplitude modulates the frequency sweep signal according to the modulation signal g supplied by the transmission/reception switching signal generator 10. The transmission signal is amplified to the required power by the transmission amplifier 12 and output to the transmission/reception antenna 14 through the transmission/reception changeover switch 13 . The transmission/reception switching switch 13 switches the antenna 14 between the transmission amplifier 12 and the receiver 1 according to the transmission/reception switching signal i.
Switch to 5. The receiver 15 outputs a signal representing the difference in frequency between the frequency spread signal and the received signal as a baseband signal.

第4図に示すように時間とともに周波数が変わる送信信
号は送受切り替え信号iにしたがって断続される。ター
ゲットから散乱される受信信号はターゲットまでの距離
に比例した時間遅れて受信されるが、そのときの送信信
号との周波数の差は距離に比例する。FCMWレーダは
送信信号と受信信号の周波数差からターゲットまでの距
離を算出する。受信信号は第3図の送受切り替えスイッ
チ13が受信機側になっている期間だけ有効に受信機に
入力され、送信の期間に到着したターゲットからの散乱
信号は無効になる。
As shown in FIG. 4, the transmission signal whose frequency changes over time is interrupted in accordance with the transmission/reception switching signal i. The received signal scattered from the target is received with a time delay proportional to the distance to the target, and the difference in frequency from the transmitted signal at that time is proportional to the distance. The FCMW radar calculates the distance to the target from the frequency difference between the transmitted signal and the received signal. The received signal is effectively input to the receiver only during the period when the transmission/reception changeover switch 13 shown in FIG. 3 is on the receiver side, and the scattered signal from the target that arrives during the transmission period becomes invalid.

第1図(a)は実施例の送信切り替え信号発生器のブロ
ック構成図、第1図(b)は第1図(a)の回路のタイ
ミングチャートである。第1図(a)に於て、正弦波発
振器1から出力される正弦波aからクロック発生器2は
第1図(b)に示すように正弦波に同期したクロックパ
ルスbをつくりだし、1ビ、/)乱数発生器3を駆動す
る。このようなりロック発生器2は例えば、正弦波aの
ピークとボトムを検出する不図示のコンパレータ回路と
不図示のフリップフロップ回路によって容易に構成でき
る。立ち上がり検出回路4は乱数信号パルスCの立ち上
がりに対応して半クロック長のパルスdを出力し、立ち
下がり検出回路5は同様に乱数信号パルスCの立ち下が
りに対応して半クロ、。
FIG. 1(a) is a block diagram of the transmission switching signal generator of the embodiment, and FIG. 1(b) is a timing chart of the circuit of FIG. 1(a). In FIG. 1(a), from the sine wave a output from the sine wave oscillator 1, the clock generator 2 generates a clock pulse b synchronized with the sine wave as shown in FIG. 1(b), and generates one bit. , /) drives the random number generator 3. Such a lock generator 2 can be easily constructed by, for example, a comparator circuit (not shown) and a flip-flop circuit (not shown) that detect the peak and bottom of the sine wave a. The rising edge detection circuit 4 outputs a half clock pulse d in response to the rising edge of the random number signal pulse C, and the falling edge detection circuit 5 similarly outputs a half clock length pulse d in response to the falling edge of the random number signal pulse C.

り長のパルスeを出力する。半クロツク遅延回路6はパ
ルスdをさらに半クロック遅らせる。正弦波信号aと半
クロツク遅延回路8によって半クロック遅れた1ビット
乱数信号iはスイッチ回路7の入力に供給される。半ク
ロック遅れた立ち上がり検出信号にと立ち下がり検出信
号eの論理和fがスイッチ回路7の制御信号となり、検
出信号によってスイッチ回路7の出力gとして正弦波か
1ビット乱数信号が選択される。この信号を送信電波の
変調信号gに使えば送受切り替え時に滑らかに振幅が変
化し、スプリアスの少ない送信電波が得られる。また、
半クロツク遅延したlビット乱数信号を送受信の切り替
え信号iとして使えば、上記のようにして得られた送信
電波は受信の期間に出力されない。
outputs a pulse e with a longer length. Half clock delay circuit 6 delays pulse d by a further half clock. The sine wave signal a and the 1-bit random number signal i delayed by half a clock by the half clock delay circuit 8 are supplied to the input of the switch circuit 7. The logical sum f of the rising detection signal delayed by half a clock and the falling detection signal e becomes a control signal for the switch circuit 7, and a sine wave or a 1-bit random number signal is selected as the output g of the switch circuit 7 depending on the detection signal. If this signal is used as the modulation signal g of the transmitted radio wave, the amplitude will change smoothly when switching between transmission and reception, and a transmitted radio wave with less spurious will be obtained. Also,
If the l-bit random number signal delayed by half a clock is used as the transmission/reception switching signal i, the transmission radio wave obtained as described above will not be output during the reception period.

第1図(a)のブロック図に於て正弦波発振器l以外の
各構成要素は時定数回路を含まない。従って正弦波aの
周波数を変えても各信号間のタイミングの関係は維持さ
れる。
In the block diagram of FIG. 1(a), each component other than the sine wave oscillator l does not include a time constant circuit. Therefore, even if the frequency of the sine wave a is changed, the timing relationship between each signal is maintained.

1ビツト乱数としてクロック周波数200kH2の最長
系列疑似ランダム符号(以下M系列と呼ぶ)パルスと、
上記のようにして立ち上がりと立ち下がりを滑らかに接
続した信号のスペクトルを第2図(a)と(b)にそれ
ぞれ示す。M系列パルスは全体として6[dB/オクタ
ーブ]の低減率であるのに対し、滑らかにした信号は1
5[dB/オクターブ]の低減1になり、スプリアスを
低減する上で本発明の効果は明白である。参考までに、
抵抗、コンデンサ、ダイオードを組ミ合わせた平滑回路
による信号の低減率は11゜5 [dB/オクターブ]
であった。
A longest sequence pseudorandom code (hereinafter referred to as M sequence) pulse with a clock frequency of 200kHz as a 1-bit random number,
The spectra of the signal whose rising and falling edges are smoothly connected as described above are shown in FIGS. 2(a) and 2(b), respectively. The M-sequence pulse has an overall reduction rate of 6 [dB/octave], whereas the smoothed signal has a reduction rate of 1
The reduction is 1 by 5 [dB/octave], and the effect of the present invention in reducing spurious signals is obvious. For your reference,
The signal reduction rate by a smoothing circuit that combines resistors, capacitors, and diodes is 11°5 [dB/octave]
Met.

一般に距離dにあるターゲットからの受信fg 号強度
p (d)は PtG2λ2 p(d)” (4x)・6・ で表わされる。但しptは送信電力、Gはアンテナ利得
、λは電波の波長である。パルスドチャープレーダでは
受信機に入力する平均受信信号強度Pr(d)は Pr (d)  =RTR(cl)  ・ p (d)
て表わされる。ここでRTR(d)は送受切り替えにと
もなう受信時間率で、時間tに対する送信信号の変調波
形をT (t)、受信の重み付は関数の波形をR(t)
とすると で表わされる。
Generally, the received fg signal strength p (d) from a target at distance d is expressed as PtG2λ2 p(d)'' (4x)・6・ where pt is the transmission power, G is the antenna gain, and λ is the wavelength of the radio wave. In a pulsed chirp radar, the average received signal strength Pr(d) input to the receiver is Pr(d) = RTR(cl) ・ p(d)
It is expressed as Here, RTR(d) is the reception time rate due to switching between transmission and reception, the modulation waveform of the transmission signal for time t is T(t), and the reception weighting is the waveform of the function R(t).
It is expressed as .

正弦波は位相角の小さいところでは位相角の2乗の曲線
で近似できるので、T (t)とR(t)に上記正弦波
で接続した滑らかな1ビツト乱数波形を使うとRTR(
cl)は距離dの4乗に比例する関数となり、平均受信
信号強度Pr(d)  は近距離では距離に対して−様
な値になる。
A sine wave can be approximated by a curve of the square of the phase angle when the phase angle is small, so if we use a smooth 1-bit random number waveform connected to T (t) and R (t) with the above sine wave, RTR (
cl) is a function proportional to the fourth power of the distance d, and the average received signal strength Pr(d) takes a negative value with respect to the distance at short distances.

なお、上記実施例では時間的に滑らかな繰り返し信号と
して正弦波を用いたが、変調器の特性等に応じて適当な
波形を選択することが可能である。
In the above embodiment, a sine wave is used as a temporally smooth repetitive signal, but it is possible to select an appropriate waveform depending on the characteristics of the modulator, etc.

また該信号に同期した矩形波信号として1ビツト乱数波
形を用いたが、これに限らず、時間的に滑らかな繰り返
し信号に同期したパルス信号をレダの要求する特性に応
じて適当に選択することが可能である。
Furthermore, although a 1-bit random number waveform was used as the rectangular wave signal synchronized with the signal, the present invention is not limited to this, and a pulse signal synchronized with a temporally smooth repetitive signal may be appropriately selected according to the characteristics required by the radar. is possible.

上記実施例では周波数掃引信号りとして時間的に周波数
が増加する信号を用いたが、時間的に周波数が減少する
信号を用いることもできる。
In the above embodiment, a signal whose frequency increases over time is used as the frequency sweep signal, but a signal whose frequency decreases over time may also be used.

(発明の効果) 以上述べたごとく本発明によれば、パルスドチャープレ
ーダの送信変調信号として時間的に滑らかな繰り返し信
号と、該信号に同期した矩形波信号を切り換えることに
より、レーダ送信電波に含まれるスプリアスを大幅に低
減し、周波数資源を有効に利用することが可能になる。
(Effects of the Invention) As described above, according to the present invention, by switching between a temporally smooth repetitive signal and a rectangular wave signal synchronized with the signal as a transmission modulation signal of a pulsed chirp radar, the signal is included in radar transmission radio waves. This makes it possible to significantly reduce spurious signals caused by noise and make effective use of frequency resources.

また、同等付加的な装置やデータ処理を施す事なくレー
タの距離感度特性を補正し、ターゲットからの散乱信号
強度の距離による違いをなくすことが可能になる。
In addition, it is possible to correct the distance sensitivity characteristics of the radar without using equivalent additional equipment or data processing, and eliminate differences in scattered signal intensity due to distance from the target.

また、本発明によれば変調波形発生部分の回路に時定数
を含まないので、時間的に滑らかな繰り返し信号の周波
数を変えるだけで、該信号に同期した矩形波信号のクロ
ックを変えて、容易にレダの特性を変えることができる
Further, according to the present invention, since the circuit of the modulation waveform generation part does not include a time constant, the clock of the rectangular wave signal synchronized with the signal can be easily changed by simply changing the frequency of the temporally smooth repetitive signal. It is possible to change Leda's characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明による実施例の送信切り替え信号
発生器のブロック図、第1図(b )は第1図(a)の
回路のタイミングチャート、第2図(a)は1ビツト乱
数パルスのパワースペクトル、第2図(b)は第2図(
a)と同じクロック周波数で本発明に記した方法でパル
スの立ち上がりと立ち下がりを滑らかな繰り返し信号に
接続した波形のパワースペクトル、 第3図は実施例のバルドチャープレーダのブロック図、 第4図は第3図のパルスドチャープレーダの送受信信号
の模式図。 図中1は正弦波発振器、2はクロック発生器、3は1ビ
ツト乱数発生器、4は立ち上り検出回路、5は立ち下り
検出回路、6は半クロツク遅延回路、7はスイッチ回路
、8は半クロツク遅延回路、9は掃引信号発生器、10
は送受切り替え信号発生器、11は変調器、12は送信
増幅器、13は送受切り替え器、14は送受信アンテナ
、15は受信機である。 図中、aは正弦波信号、bはクロックパルス、c ハ1
ビット乱数パルス、dは立ち上がり検出信号、eは立ち
下がり検出信号、fはdとeの論理和、gは変調信号、
hは周波数掃引信号、iは送受切り替え信号、jは送信
信号、kはベースバンド信号である。 特許出願人 郵政省通信総合研究所長 第1図 a) 第2図(b) 第11!1(bl 第3図
FIG. 1(a) is a block diagram of a transmission switching signal generator according to an embodiment of the present invention, FIG. 1(b) is a timing chart of the circuit of FIG. 1(a), and FIG. 2(a) is a 1-bit The power spectrum of the random number pulse, Figure 2 (b) is shown in Figure 2 (
The power spectrum of a waveform in which the rising and falling pulses are connected to a smooth repeating signal using the method described in the present invention at the same clock frequency as in a). Figure 3 is a block diagram of the Wald chirped radar of the embodiment. Figure 4 3 is a schematic diagram of transmission and reception signals of the pulsed chirp radar in FIG. 3. FIG. In the figure, 1 is a sine wave oscillator, 2 is a clock generator, 3 is a 1-bit random number generator, 4 is a rising edge detection circuit, 5 is a falling edge detection circuit, 6 is a half clock delay circuit, 7 is a switch circuit, and 8 is a half clock delay circuit. clock delay circuit, 9 a sweep signal generator, 10
1 is a transmitting/receiving switching signal generator, 11 is a modulator, 12 is a transmitting amplifier, 13 is a transmitting/receiving switch, 14 is a transmitting/receiving antenna, and 15 is a receiver. In the figure, a is a sine wave signal, b is a clock pulse, c is a 1
Bit random number pulse, d is a rising detection signal, e is a falling detection signal, f is the logical sum of d and e, g is a modulation signal,
h is a frequency sweep signal, i is a transmission/reception switching signal, j is a transmission signal, and k is a baseband signal. Patent Applicant: Director, Telecommunications Research Institute, Ministry of Posts and Telecommunications Figure 1a) Figure 2(b) Figure 11!1 (bl Figure 3)

Claims (2)

【特許請求の範囲】[Claims] (1)パルスドチャープレーダにおけるレーダ送信変調
信号の発生方法に於て、 時間的に滑らかな繰り返し信号と該信号に同期した矩型
波信号のエッジ部分とを切り替えることによりレーダ送
信変調信号を形成することを特徴とするレーダ送信変調
信号の発生方法。
(1) In a method of generating a radar transmission modulation signal in a pulsed chirp radar, a radar transmission modulation signal is formed by switching between a temporally smooth repetitive signal and an edge portion of a rectangular wave signal synchronized with the signal. A method of generating a radar transmission modulation signal, characterized in that:
(2)パルスドチャープ方式のレーダ装置に於て、時間
的に滑らかな繰り返し信号を発生する繰り返し信号発生
手段と、 前記繰り返し信号に同期したタイミングにレベルが変化
する矩型波信号を発生する矩型波信号発生手段と、 前記矩型波信号のエッジ部分を検出して該エッジ部分の
信号を前記繰り返し信号で置換する信号切り替え手段を
備えることを特徴とするレーダ装置。
(2) In a pulsed chirp type radar device, a repetitive signal generating means that generates a temporally smooth repetitive signal, and a rectangular wave signal that generates a rectangular wave signal whose level changes at a timing synchronized with the repetitive signal. A radar device comprising: a wave signal generating means; and a signal switching means for detecting an edge portion of the rectangular wave signal and replacing the signal of the edge portion with the repetitive signal.
JP2185708A 1990-07-13 1990-07-13 Pulsed chirp radar transmission modulation signal forming method and pulsed chirp radar device Expired - Lifetime JP2560222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2185708A JP2560222B2 (en) 1990-07-13 1990-07-13 Pulsed chirp radar transmission modulation signal forming method and pulsed chirp radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2185708A JP2560222B2 (en) 1990-07-13 1990-07-13 Pulsed chirp radar transmission modulation signal forming method and pulsed chirp radar device

Publications (2)

Publication Number Publication Date
JPH0472588A true JPH0472588A (en) 1992-03-06
JP2560222B2 JP2560222B2 (en) 1996-12-04

Family

ID=16175474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2185708A Expired - Lifetime JP2560222B2 (en) 1990-07-13 1990-07-13 Pulsed chirp radar transmission modulation signal forming method and pulsed chirp radar device

Country Status (1)

Country Link
JP (1) JP2560222B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013614A1 (en) * 2004-08-02 2006-02-09 Mitsubishi Denki Kabushiki Kaisha Radar
JP2008224321A (en) * 2007-03-09 2008-09-25 Toshiba Corp Radar apparatus
KR20170058279A (en) * 2015-11-09 2017-05-26 인피니언 테크놀로지스 아게 Frequency modulation scheme for fmcw radar
WO2022097749A1 (en) * 2020-11-09 2022-05-12 国立研究開発法人宇宙航空研究開発機構 Distance measuring device, distance measuring method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142121A (en) * 1977-05-17 1978-12-11 Matsushita Electric Ind Co Ltd Waveform shaping device
JPS5767868A (en) * 1980-10-09 1982-04-24 Westinghouse Electric Corp Transmitter for solid pulse radar
JPS60172444U (en) * 1984-04-23 1985-11-15 日本電気株式会社 modulator
JPS63184413A (en) * 1987-01-26 1988-07-29 Nec Corp Pulse waveform shaping system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142121A (en) * 1977-05-17 1978-12-11 Matsushita Electric Ind Co Ltd Waveform shaping device
JPS5767868A (en) * 1980-10-09 1982-04-24 Westinghouse Electric Corp Transmitter for solid pulse radar
JPS60172444U (en) * 1984-04-23 1985-11-15 日本電気株式会社 modulator
JPS63184413A (en) * 1987-01-26 1988-07-29 Nec Corp Pulse waveform shaping system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013614A1 (en) * 2004-08-02 2006-02-09 Mitsubishi Denki Kabushiki Kaisha Radar
JPWO2006013614A1 (en) * 2004-08-02 2008-05-01 三菱電機株式会社 Radar equipment
US7671788B2 (en) 2004-08-02 2010-03-02 Mitsubishi Electric Corporation Apparatus and method for suppression of unnecessary signals in a radar system
JP4668198B2 (en) * 2004-08-02 2011-04-13 三菱電機株式会社 Radar equipment
JP2008224321A (en) * 2007-03-09 2008-09-25 Toshiba Corp Radar apparatus
KR20170058279A (en) * 2015-11-09 2017-05-26 인피니언 테크놀로지스 아게 Frequency modulation scheme for fmcw radar
US10502824B2 (en) 2015-11-09 2019-12-10 Infineon Technologies Ag Frequency modulation scheme for FMCW radar
WO2022097749A1 (en) * 2020-11-09 2022-05-12 国立研究開発法人宇宙航空研究開発機構 Distance measuring device, distance measuring method, and program
JP2022076378A (en) * 2020-11-09 2022-05-19 国立研究開発法人宇宙航空研究開発機構 Ranging device, ranging method, and program

Also Published As

Publication number Publication date
JP2560222B2 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
EP0809118B1 (en) Continuous wave wideband precision ranging radar
AU2002333123B2 (en) Spread spectrum radar with leak compensation at baseband
EP1290470B1 (en) Low probability of intercept coherent radar altimeter
JP4567292B2 (en) Pulse radar that does not interfere with communication signal and method for generating the pulse
AU2002333123A1 (en) Spread spectrum radar with leak compensation at baseband
US10491306B2 (en) RF-photonic pulse doppler radar
US4357709A (en) Apparatus for regenerating signals within a frequency band
EP1716433A1 (en) Methods and apparatus for randomly modulating radar altimeters
JPH0472588A (en) Radar transmit modulation signal generating method and its radar device
EP3696570A1 (en) Radar transceiver
JP2985104B2 (en) Test equipment for radar evaluation
US5061933A (en) Short-range radar system
JP2534659B2 (en) Pulse compression radar transceiver
JPH05264729A (en) Range finder
JP2001168835A (en) Method for spread spectrum modulation and system thereof
JP2566095B2 (en) Unwanted signal suppression radar device
Caldeirinha et al. Disruptive future of radar based on all-digital pn signal processing
JP2002372579A (en) Fm pulse radar device group
JPS6225276A (en) Obstacle detecting device
SU915081A1 (en) Signal analyzer
Acampora High power radar implementation of coherent waveforms
JPH05312939A (en) Radar apparatus
Kandar et al. Development of an imaging radar instrumentation system using DS-UWB wireless technology
Salous et al. FMCW waveforms for UHF/SHF wideband channel sounders
RU1840905C (en) Radar signal modulation type discriminator

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term