JPH0471933A - Travel control device for vehicle - Google Patents

Travel control device for vehicle

Info

Publication number
JPH0471933A
JPH0471933A JP2183495A JP18349590A JPH0471933A JP H0471933 A JPH0471933 A JP H0471933A JP 2183495 A JP2183495 A JP 2183495A JP 18349590 A JP18349590 A JP 18349590A JP H0471933 A JPH0471933 A JP H0471933A
Authority
JP
Japan
Prior art keywords
vehicle
speed
acceleration
distance
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2183495A
Other languages
Japanese (ja)
Inventor
Setsuo Tokoro
節夫 所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2183495A priority Critical patent/JPH0471933A/en
Publication of JPH0471933A publication Critical patent/JPH0471933A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0084Neural networks

Landscapes

  • Controls For Constant Speed Travelling (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

PURPOSE:To allow a comfortable constant speed travel coinciding with actual drive characteristics by reflecting the past travel data of a driver's own vehicle upon speed control, using a distance from a forward vehicle and time series values of speed deviation and acceleration of the driver's own vehicle within the predetermined time as control parameters. CONSTITUTION:A distance between a forward vehicle and a driver's own vehicle is detected with a distance sensor 10 such as a laser radar device at every predetermined time, and the output thereof is inputted to a pre-processing circuit 20, together with output from a steering angle sensor 16 and a torque sensor 18. In addition, each parameter operated or processed for saving in the aforesaid pre-processing circuit 20 is inputted to a neural network 22 comprising a hierarchical structure of input, intermediate and output layers, and converting and outputting a signal through the predetermined rule according to a total of input signals weighted with the predetermined value (coupling factor). An acceleration or deceleration control magnitude is thereby controlled, according to time series values within the predetermined time for controlling a throttle actuator 24, a brake actuator 26 and a gear change controller 28.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は車両用走行制御装置、特に車両の過去の走行履
歴に応じて車両を定速で走行させる車両用走行制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vehicle travel control device, and particularly to a vehicle travel control device that causes a vehicle to travel at a constant speed according to the past travel history of the vehicle.

[従来の技術] 従来より、特に高速道路において運転操作性を向上させ
るべく車両を設定した速度で定速走行させる制御装置が
開発されている。
[Prior Art] Conventionally, control devices have been developed that cause a vehicle to travel at a constant speed at a set speed in order to improve driving operability, particularly on expressways.

この種の装置としては、例えば特開昭60−21543
2号公報に開示された車両走行制御装置が知られている
。この車両走行制御装置においては、車両運転者がアク
セル操作をしなくても自車速を設定車速に、または車間
距離を安全車間距離に保持することを目的とし、自軍速
から算出された安全車間距離内における先行車の有無を
検出する先行車検出手段を設け、先行車がある時には車
間距離が安全車間距離となるように自軍速を制御し、ま
た先行車がない時には自軍速か設定車速となるように制
御して走行するものである。
As this type of device, for example, Japanese Patent Application Laid-Open No. 60-21543
A vehicle travel control device disclosed in Publication No. 2 is known. In this vehicle running control device, the purpose of this device is to maintain the own vehicle speed at the set vehicle speed or the following distance at a safe following distance without the need for the vehicle driver to operate the accelerator. A preceding vehicle detection means is provided to detect the presence or absence of a preceding vehicle within the vehicle, and when there is a preceding vehicle, the vehicle speed is controlled so that the following distance becomes a safe distance, and when there is no preceding vehicle, the vehicle speed is controlled to be either the own vehicle speed or the set vehicle speed. It runs under control.

[発明が解決しようとする課題] しかしながら、このような従来装置の制御においては、
現在の自車速及び車間距離のみに基づいて自車速を設定
車速に、あるいは車間距離を安全車間距離に保持すべく
制御するものであり、必ずしも実際の運転者の運転特性
に合致せず、快適な走行を保証することができないとい
う問題があった。
[Problems to be solved by the invention] However, in controlling such conventional devices,
This control is based only on the current vehicle speed and following distance to maintain the own vehicle speed at a set speed or the following distance to a safe distance, and does not necessarily match the actual driving characteristics of the driver and may not be comfortable. There was a problem in that running could not be guaranteed.

すなわち、例えば先行車が自車両の車線から隣接車線に
車線変更等を行い、先行車がある場合の状況から先行車
がない場合の状況へ急激に変化した状況を考察してみる
。この場合、安全車間距離による車速制御から設定車速
による車速制御へ制御系統が切り換わるが、通常の車両
運転者であれば現在は先行車が存在しないものの数秒前
までは先行車が存在し、現在の自車速はこの数秒前の状
況に対応すべく設定されたことを認識しているため、自
車両を徐々に加速して快適な車速に設定すべくスロット
ルを漸次操作することとなるが、このような従来装置で
は数秒前までは先行車が存在したという状況を認識して
いないため、瞬時に設定車速に車両を合致させるべ(急
激な加速制御を行ってしまうのである。
That is, for example, consider a situation in which a preceding vehicle changes lanes from its own lane to an adjacent lane, and the situation suddenly changes from a situation where there is a preceding vehicle to a situation where there is no preceding vehicle. In this case, the control system switches from vehicle speed control based on the safe inter-vehicle distance to vehicle speed control based on the set vehicle speed, but for a normal vehicle driver, although there is currently no vehicle in front, there was a vehicle in front until a few seconds ago, and the current The driver recognizes that his own vehicle speed was set in response to the situation a few seconds ago, so he gradually operates the throttle to gradually accelerate the vehicle and set it to a comfortable vehicle speed. Conventional devices do not recognize the presence of a preceding vehicle until several seconds ago, so they must instantly match the vehicle speed to the set vehicle speed (and perform rapid acceleration control).

本発明は上記従来の課題に鑑みなされたものであり、そ
の目的は車両の過去の走行履歴をも考慮して車速制御を
行うことにより、実際の運転特性に合致した快適な定速
走行を行うことが可能な車両用走行制御装置を提供する
ことにある。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to perform comfortable constant-speed driving that matches the actual driving characteristics by controlling the vehicle speed in consideration of the past driving history of the vehicle. The object of the present invention is to provide a vehicle travel control device that can perform the following functions.

[課題を解決するための手段] 上記目的を達成するために、本発明に係る車両用走行制
御装置は前方車両と自車両との車間距離を検出する車間
距離検出手段と、自車両の速度を検出する車速検出手段
と、自車両の加速度を検出する加速度検出手段と、検出
された車速と予め定められた目標車速との差である速度
偏差を算出する演算手段と、検出された車間距離、加速
度及び算出された速度偏差の所定時間内の時系列値を人
力し、人力の加重和に応じて出力するニューラルユニッ
ト群からなる層を多層接続してなるニューラルネットワ
ークを用いて所定時間内の時系列値に応じて加減速制御
量を算出する算出手段と、算出された加減速制御量に応
じて目標車速となるように自車両の速度を制御する制御
手段とを有することを特徴としている。
[Means for Solving the Problems] In order to achieve the above object, the vehicle travel control device according to the present invention includes an inter-vehicle distance detection means for detecting the inter-vehicle distance between the vehicle in front and the own vehicle, and a means for detecting the inter-vehicle distance between the vehicle in front and the own vehicle. A vehicle speed detection means for detecting, an acceleration detection means for detecting the acceleration of the own vehicle, a calculation means for calculating a speed deviation which is a difference between the detected vehicle speed and a predetermined target vehicle speed, a detected inter-vehicle distance, Time-series values of acceleration and calculated speed deviation within a predetermined time are manually input, and the time within a predetermined time is calculated using a neural network formed by connecting multiple layers of neural units that output according to the weighted sum of the human input. The present invention is characterized by having a calculation means for calculating an acceleration/deceleration control amount according to the series value, and a control means for controlling the speed of the own vehicle so as to reach a target vehicle speed according to the calculated acceleration/deceleration control amount.

[作用] 本発明の車両用走行制御装置はこのような構成を有して
おり、前方車との車間距離、自車速と目標車速との差で
ある速度偏差及び自車両の加速度の所定時間内の時系列
値を制御パラメータとして用いることにより過去の走行
履歴を制御に反映させるのである。
[Function] The vehicle running control device of the present invention has such a configuration, and is capable of controlling the distance between the vehicle in front and the vehicle ahead, the speed deviation which is the difference between the own vehicle speed and the target vehicle speed, and the acceleration of the own vehicle within a predetermined time. By using the time series values of , as control parameters, past driving history is reflected in the control.

例えば、前方車両が隣接車線に車線変更した場合には、
その変更は車間距離の時系列データの変化として現われ
、過去の走行履歴が認識される。
For example, if the vehicle in front changes lanes to the adjacent lane,
The change appears as a change in the time-series data of the distance between vehicles, and the past driving history is recognized.

そして、これら時系列値を入力データの複雑な前処理不
要なニューラルネットワークを用いて処理することによ
り、過去の走行履歴に応じたM1速制御を容易かつ高速
に行うことができる。
By processing these time-series values using a neural network that does not require complicated preprocessing of input data, M1 speed control according to past driving history can be performed easily and quickly.

[実施例] 以下、図面を用いながら本発明に係る車両用走行制御装
置の好適な実施例を説明する。
[Embodiments] Hereinafter, preferred embodiments of the vehicle travel control device according to the present invention will be described with reference to the drawings.

第1図は本実施例における構成ブロック図である。レー
ザレーダ装置等の距離センサ10は例えば自車両のバン
パー近傍に取付けられ、所定時間Δを毎に前方車両と自
車両との車間距離を検出する。そして、検出された車間
距MLは順次前処理回路20に送られる。
FIG. 1 is a block diagram of the configuration of this embodiment. A distance sensor 10 such as a laser radar device is attached, for example, near the bumper of the own vehicle, and detects the inter-vehicle distance between the preceding vehicle and the own vehicle at every predetermined time Δ. Then, the detected inter-vehicle distance ML is sequentially sent to the preprocessing circuit 20.

一方、車速センサ12及び加速度センサ14はそれぞれ
自車両の速度■、加速度gを所定時間Δを毎に検出し、
これらのデータは順次前処理回路20に送られる。
On the other hand, the vehicle speed sensor 12 and the acceleration sensor 14 detect the speed ■ and acceleration g of the own vehicle at predetermined time intervals Δ, respectively.
These data are sequentially sent to the preprocessing circuit 20.

さらに、操舵角センサ16及びトルクセンサ18はそれ
ぞれ自車両の操舵角θS、駆動トルクTDを検出し、同
様にして順次前処理回路20に送られる。なお、駆動ト
ルクはエンジン回転数やエンジン負荷信号、或いはギヤ
比により算出しても良い。
Furthermore, the steering angle sensor 16 and the torque sensor 18 detect the steering angle θS and drive torque TD of the own vehicle, respectively, and similarly, the detected values are sequentially sent to the preprocessing circuit 20. Note that the driving torque may be calculated based on the engine rotation speed, engine load signal, or gear ratio.

前処理回路20は不図示の記憶ユニット及び演算処理ユ
ニットを有しており、Δを毎に各センサから送られてく
る車間距離L1車速V、加速度gのデータの内、所定時
間内のデータを順次その記憶ユニットに格納していく。
The preprocessing circuit 20 has a storage unit and an arithmetic processing unit (not shown), and stores data within a predetermined time among the data of inter-vehicle distance L1, vehicle speed V, and acceleration g sent from each sensor every Δ. The information is sequentially stored in the storage unit.

この所定時間は車間距離L1車車速1加速度g各検出信
号に応じて定められ、例えば車間圧1lItLの場合に
はこの所定時間はN ・Δt (NLは0または自然数
)と定めし られ現在の車間圧ML (0)からNL・Δを前の車間
距離L(NL)が格納されることとなる。
This predetermined time is determined according to the following detection signals: inter-vehicle distance L1 vehicle vehicle speed 1 acceleration g For example, in the case of inter-vehicle pressure 1lItL, this predetermined time is determined as N Δt (NL is 0 or a natural number), and the current inter-vehicle distance is From pressure ML (0) to NL·Δ, the previous inter-vehicle distance L (NL) is stored.

車速V及び加速度gに関しても、それぞれ所定時間をN
v ・Δt (NvはOまたは自然数)及びN ・Δt
 (N  はOまたは自然数)と定め、8g 現在の車速v(0)からNv争Δを前の車速V(Nv)
及び現在の加速度g(0)からNgΔを前の加速度g(
N)が格納されることとなる。
Regarding vehicle speed V and acceleration g, each predetermined time is N.
v ・Δt (Nv is O or a natural number) and N ・Δt
(N is O or a natural number), 8g From the current vehicle speed v (0), Nv conflict Δ is the previous vehicle speed V (Nv)
and from the current acceleration g(0) to NgΔ the previous acceleration g(
N) will be stored.

ここで、車速Vに関しては、さらに車両運転者が設定し
た目標車速V との速度偏差ΔV ”” V 。
Here, regarding the vehicle speed V, there is also a speed deviation ΔV "" V from the target vehicle speed V set by the vehicle driver.

Vを演算処理ユニットにて順次算出して格納する。V is sequentially calculated and stored in the arithmetic processing unit.

なお、本実施例においては加速度gを検出する際に加速
度センサ14を用いたが、このように別にセンサを設け
ず、速度センサ12からの速度■を演算処理ユニットに
て微分することにより加速度gを検出しても良い。
In this embodiment, the acceleration sensor 14 is used to detect the acceleration g, but instead of providing a separate sensor, the acceleration may be detected.

このように加速度センサ14あるいは速度センサ12か
らの速度Vの微分により検出された加速度gは勿論車両
の加速度を示すわけであるが、車両が平坦路を走行して
いる場合と登板路や降板路を走行している場合とではそ
の加速度gを実現するために必要な駆動トルクは異なっ
てくる。すなわち、検出された加速度gを用いてスロッ
トルやブレーキ等を制御する場合においては、同一駆動
トルクを与えても車両が登板路、降板路及び平坦路を走
行している場合では車両走行に与える影響が異なるので
あり、従ってこの加速度gを基に車両走行を制御する際
にはこの加速度gか平坦路における加速度なのか、ある
いは登板路、降板路における加速度なのかを判断する必
要かある。
The acceleration g detected by differentiating the speed V from the acceleration sensor 14 or the speed sensor 12 of course indicates the acceleration of the vehicle, but it is different when the vehicle is running on a flat road, on an uphill road or on a downhill road. The driving torque required to achieve that acceleration g differs depending on when the vehicle is traveling. In other words, when controlling the throttle, brake, etc. using the detected acceleration g, even if the same driving torque is applied, the effect on vehicle running when the vehicle is running on an uphill road, a downhill road, or a flat road. Therefore, when controlling vehicle travel based on this acceleration g, it is necessary to judge whether this acceleration g is an acceleration on a flat road, or an acceleration on a climbing road or a descending road.

このため、本実施例においては推定加速度g。Therefore, in this embodiment, the estimated acceleration g.

なる物理量を新たに導入している。この推定加速度g。A new physical quantity is introduced. This estimated acceleration g.

は車両が平坦路を走行していると仮定した場合の推定加
速度であり、以下に示すように駆動トルクTD及び車速
Vを用いて算出される。
is an estimated acceleration assuming that the vehicle is traveling on a flat road, and is calculated using the drive torque TD and the vehicle speed V as shown below.

g  −C−T  −C−V  −C31D2 c、、c2.c3 :定数 そして、この推定加速度goを用いることにより、例え
ば車両が登板路を走行中は同一駆動トルクでも実際の加
速度は低いためg−go〈0となり、降板路を走行中は
逆にg  g o > 0となり、従って加速度gと推
定加速度g。との大小関係により車両が現在登板路を走
行中かあるいは降板路を走行中かが判断可能となる。
g -C-T -C-V -C31D2 c,,c2. c3: Constant Then, by using this estimated acceleration go, for example, when the vehicle is running on an uphill road, the actual acceleration is low even with the same driving torque, so g-go <0, and conversely, when the vehicle is running on a downhill road, g g o > 0, so acceleration g and estimated acceleration g. It is possible to determine whether the vehicle is currently running on the uphill road or downhill road based on the size relationship between the two.

このように、車間距離L1加速度g1車速Vと目標車速
■。との速度偏差ΔV、加速度gと推定加速度g との
差、操舵角θS1駆動トルクTDが前処置回路20で算
出あるいは格納処理された後、これら各パラメータは算
出手段としてのニューラルネットワーク22に出力され
る。
In this way, inter-vehicle distance L1 acceleration g1 vehicle speed V and target vehicle speed ■. After the speed deviation ΔV, the difference between the acceleration g and the estimated acceleration g, and the steering angle θS1 drive torque TD are calculated or stored in the preprocessing circuit 20, these parameters are output to the neural network 22 as a calculation means. Ru.

以下、第2図を用いてこのニューラルネットワーク22
で行われる処理を説明する。
Below, using FIG. 2, this neural network 22
We will explain the processing performed in .

周知の如く、ニューラルネットワークは入力層、中間層
及び出力層の階層構造からなり、各層はニューラルユニ
ット群から構成される。ニューラルユニットは所定の重
み付け(結合係数)WIjが付加された入力の総和に応
じて一定の規則で変換し出力するユニットである。この
規則としては種々の関数が用いられるが、本実施例にお
いては人力の総和“net”を net−ΣWI jI + とした時、 f=1/ il+exp [−(net+a)]l但し
、αは定数 なる51g1oid関数を用いることとした。この関数
の値域は0〜1て、入力値が大きくなるにつれ1に、そ
して小さくなるにつれOに近づく特性を示す。
As is well known, a neural network has a hierarchical structure of an input layer, an intermediate layer, and an output layer, and each layer is composed of a group of neural units. The neural unit is a unit that converts and outputs according to a certain rule according to the sum of inputs to which a predetermined weighting (coupling coefficient) WIj is added. Various functions are used as this rule, but in this example, when the total human power "net" is net-ΣWI jI +, f=1/il+exp [-(net+a)]l, where α is a constant We decided to use the 51g1oid function. The value range of this function is 0 to 1, and as the input value becomes larger, it approaches 1, and as the input value becomes smaller, it approaches O.

さて、前処理回路20からの各パラメータ、すなわち車
間距離L(0)〜L(NL)、速度偏差Δv(0)Nv
(Nv)、加速度g (0) 〜g(N )、目標速度
V。、車速■、加速度gと推定加速度g との差ggo
1操舵角θSは第2図に示されたニューラルネットワー
クの人力層を構成する各ニューラルユニットに入力され
る。また、現在のスロットル開度θTH及びブレーキ操
作量θBもフィードバックさせるべくこの人力層に人力
される。
Now, each parameter from the preprocessing circuit 20, namely, inter-vehicle distance L(0) to L(NL), speed deviation Δv(0)Nv
(Nv), acceleration g(0) to g(N), target speed V. , vehicle speed ■, difference between acceleration g and estimated acceleration ggo
One steering angle θS is input to each neural unit constituting the human layer of the neural network shown in FIG. Further, the current throttle opening degree θTH and brake operation amount θB are also manually inputted to this human power level in order to be fed back.

このように各パラメータが入力層の各ニューラルユニッ
トに入力された後、同様のニューラルユニット群からな
る中間層及び出力層で所定の変換処理が行われる。すな
わち、中間層の第j番目に位置するニューラルユニット
に入力される人力層(D第i 番目のニューラルユニッ
トの出力値を1.、この時の重み付けすなわち結合係数
をw、とすると、この第j番目のニューラルユニットに
入力される入力値の総和net−は、 net、−ΣWlj°Ii であり、その出力は前述したようにsigmoid関数
を用いて、 y−=f (net、) J       J となる。そして、中間層に存在する全てのニューラルユ
ニットにて前述の処理が行われ、その出力値が出力層の
各ニューラルユニ・ントに人力される。
After each parameter is input to each neural unit in the input layer in this way, a predetermined conversion process is performed in the intermediate layer and output layer, which are made up of a group of similar neural units. That is, if the output value of the i-th neural unit in the human layer (D) input to the j-th neural unit in the intermediate layer is 1, and the weighting or connection coefficient at this time is w, then this j-th The total sum net- of the input values input to the th neural unit is net, -ΣWlj°Ii, and the output is y-=f (net,) J J using the sigmoid function as described above. Then, the above-mentioned processing is performed in all the neural units existing in the intermediate layer, and the output value is inputted to each neural unit in the output layer.

出力層のニューラルユニットにおいても、中間層と同様
の変換処理が行われる。すなわち、出力層に位置する第
j番目のニューラルユニットに入力される中間層の第1
番目のニューラルユニットからの出力をyl、この時の
重み付けをW8.″と1              
       1Jすると、この第j番目のニューラル
ユニットに人力される入力値の総和net、”は net −”ΣW・・  @ y・ J         IJ      Iとなり、この
時の出力値O1は、 O・−f (net、−) J            J となる。なお、入力層から中間層への重み付けwl、及
び中間層から出力層への重み付けW、j のlコ 値は、出力層からの実際の出力値と望ましい出力値との
差が減少するように予め学習により調整しておく。すな
わち、熟練運転者が実際に運転して各重み付けを決定す
れば良い。
The same conversion process as in the intermediate layer is also performed in the neural unit of the output layer. In other words, the first neural unit in the intermediate layer that is input to the jth neural unit located in the output layer
The output from the th neural unit is yl, and the weighting at this time is W8. ″ and 1
1J, the total sum of input values input to this j-th neural unit, net, becomes net - ΣW... @ y J IJ I, and the output value O1 at this time is O - f (net , -) J J . Note that the weighting wl from the input layer to the hidden layer and the weighting W, j from the hidden layer to the output layer are set such that the difference between the actual output value from the output layer and the desired output value is reduced. Adjust in advance by learning. In other words, each weighting may be determined by a skilled driver actually driving the vehicle.

また、各ニューラルユニットにて入力値の総和から出力
値を変換する際に、その都度変換関数fを用いて演算す
るのではなく、ROM等に予め人力される総和値とその
時の出力値とをマ・ノブとして記憶させ、演算処理を行
うことなくこのROMから読み出すことにより変換処理
を行っても良い。
In addition, when converting the output value from the sum of input values in each neural unit, instead of calculating using the conversion function f each time, the sum value manually entered in advance in ROM etc. and the output value at that time are The conversion process may be performed by storing the data as a master knob and reading it from this ROM without performing arithmetic processing.

このようにニューラルネットワークを用いることにより
、−組の人力画像情報からこれに対応した一組の出力値
が得られることとなるが、出力層を構成する各ニューラ
ルユニットには所定の状態が対応しており、この出力層
からの出力値によりスロットルアクチュエータをどれだ
け駆動すべきかの制御信号ΔθT11、ブレーキアクチ
ュエータをどれだけ駆動すべきかの制御信号Δθ3及び
変速機の変速比をどこに設定するかの制御信号へ〇。
By using a neural network in this way, a set of output values corresponding to the - set of human image information can be obtained, but each neural unit that makes up the output layer corresponds to a predetermined state. Based on the output value from this output layer, a control signal ΔθT11 indicates how much the throttle actuator should be driven, a control signal Δθ3 indicates how much the brake actuator should be driven, and a control signal indicates where the gear ratio of the transmission should be set. To〇.

が判定される。is determined.

そして、これら各制御信号Δ、11、Δθ8、 Δθ 
はそれぞれ制御手段としてのスロットルアク■ チュエータ24、ブレーキアクチュエータ26、変速制
御器28に出力され、車速を目標車速に設定するために
必要なスロットル開度θTl+、ブレーキ操作量θ8、
変速比θ、が出力されて制御される。
Then, each of these control signals Δ, 11, Δθ8, Δθ
are respectively output to the throttle actuator 24, brake actuator 26, and shift controller 28 as control means, and are the throttle opening θTl+, the brake operation amount θ8, and the amount necessary to set the vehicle speed to the target vehicle speed.
The gear ratio θ is output and controlled.

このように、本実施例においては車間距離L1速度偏差
ΔV、加速度gを時系列データとして取り扱い、この時
系列データを車両の走行履歴の反映としてとらえてニュ
ーラルネットワークにより処理するものであり、その瞬
間瞬間の車両の走行状況に応じた制御を行うのではなく
、過去の車両の走行履歴をも考慮して現在の車両の走行
を制御するものであり、より実際の運転者の運転間隔に
合致した制御を行うことが可能となり、より快適な追従
走行を行うことができる。
In this way, in this embodiment, the inter-vehicle distance L1, the speed deviation ΔV, and the acceleration g are treated as time series data, and this time series data is treated as a reflection of the vehicle's travel history and processed by the neural network. Rather than performing control according to the vehicle's driving situation at the moment, it also takes into account the vehicle's past driving history and controls the current driving of the vehicle, which more closely matches the actual driving interval of the driver. It becomes possible to perform control, and more comfortable follow-up driving can be performed.

[発明の効果] 以上説明したように、本発明に係る車両用走行制御装置
によれば、車両の走行履歴を考慮して車両の走行を制御
するので、種々の運転状況により柔軟に対応することが
可能となり、快適な追従走行を行うことができる効果が
ある。
[Effects of the Invention] As explained above, according to the vehicle running control device according to the present invention, since the running of the vehicle is controlled in consideration of the running history of the vehicle, it is possible to respond more flexibly to various driving situations. This has the effect of allowing comfortable follow-up driving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る車両用走行制御装置の実施例の構
成ブロック図、 第2図は同実施例におけるニューラルネットワークの説
明図である。 距離センサ 車速センサ 加速度センサ 操舵角センサ トルクセンサ 前処理回路 ニューラルネットワーク スロットルアクチュエータ ブレーキアクチュエータ 変速制御器
FIG. 1 is a configuration block diagram of an embodiment of a vehicle travel control device according to the present invention, and FIG. 2 is an explanatory diagram of a neural network in the same embodiment. Distance sensor Vehicle speed sensor Acceleration sensor Steering angle sensor Torque sensor Preprocessing circuit Neural network Throttle actuator Brake actuator Shift controller

Claims (1)

【特許請求の範囲】 前方車両と自車両との車間距離を検出する車間距離検出
手段と、 自車両の速度を検出する車速検出手段と、 自車両の加速度を検出する加速度検出手段と、検出され
た車速と予め定められた目標車速との差である速度偏差
を算出する演算手段と、 検出された車間距離、加速度及び算出された速度偏差の
所定時間内の時系列値を入力し、入力の加重和に応じて
出力するニューラルユニット群からなる層を多層接続し
てなるニューラルネットワークを用いて所定時間内の時
系列値に応じて加減速制御量を算出する算出手段と、 算出された加減速制御量に応じて目標車速となるように
自車両の速度を制御する制御手段と、を有することを特
徴とする車両用走行制御装置。
[Scope of Claims] Inter-vehicle distance detection means for detecting the distance between the preceding vehicle and the own vehicle; vehicle speed detection means for detecting the speed of the own vehicle; acceleration detection means for detecting the acceleration of the own vehicle; a calculation means for calculating a speed deviation which is the difference between the calculated vehicle speed and a predetermined target vehicle speed; Calculating means for calculating an acceleration/deceleration control amount according to time series values within a predetermined time using a neural network formed by connecting multiple layers of neural units that output according to a weighted sum, and the calculated acceleration/deceleration. 1. A vehicle travel control device comprising: control means for controlling the speed of the own vehicle so that the speed of the host vehicle reaches a target vehicle speed according to a control amount.
JP2183495A 1990-07-10 1990-07-10 Travel control device for vehicle Pending JPH0471933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2183495A JPH0471933A (en) 1990-07-10 1990-07-10 Travel control device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2183495A JPH0471933A (en) 1990-07-10 1990-07-10 Travel control device for vehicle

Publications (1)

Publication Number Publication Date
JPH0471933A true JPH0471933A (en) 1992-03-06

Family

ID=16136823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2183495A Pending JPH0471933A (en) 1990-07-10 1990-07-10 Travel control device for vehicle

Country Status (1)

Country Link
JP (1) JPH0471933A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06270715A (en) * 1993-01-12 1994-09-27 Motohiro Okada Cruise controlling device mainly for automobile
JPH07108849A (en) * 1993-10-13 1995-04-25 Hitachi Ltd Vehicular automatic traveling control device
DE19523111A1 (en) * 1995-06-26 1997-01-02 Daimler Benz Ag Regulation of distance between motor vehicles, between vehicle behind and vehicle in front
JP2003502586A (en) * 1999-06-12 2003-01-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング System for adjusting the tension of the belt section of a belt-type transmission
JP2007508196A (en) * 2003-10-17 2007-04-05 フオルクスヴアーゲン アクチエンゲゼルシヤフト Car with occupant protection system
JP2015148545A (en) * 2014-02-07 2015-08-20 株式会社豊田中央研究所 vehicle control device and program
JP2017058006A (en) * 2015-09-18 2017-03-23 トヨタ自動車株式会社 Drive force control device
JP2017144886A (en) * 2016-02-17 2017-08-24 本田技研工業株式会社 Vehicle control device, vehicle control method, and vehicle control program
CN108356364A (en) * 2018-05-14 2018-08-03 宝鸡市新福泉机械科技发展有限责任公司 A kind of herringbone bear processing unit (plant) and its turning and method for milling
WO2019159534A1 (en) * 2018-02-15 2019-08-22 株式会社明電舎 Vehicle speed control device and vehicle speed control method
WO2021149435A1 (en) * 2020-01-22 2021-07-29 株式会社明電舎 Automatic driving robot control device and control method
WO2022227720A1 (en) * 2021-04-27 2022-11-03 湖北文理学院 Vehicle speed tracking control method and apparatus, and device and storage medium

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06270715A (en) * 1993-01-12 1994-09-27 Motohiro Okada Cruise controlling device mainly for automobile
JPH07108849A (en) * 1993-10-13 1995-04-25 Hitachi Ltd Vehicular automatic traveling control device
DE19523111A1 (en) * 1995-06-26 1997-01-02 Daimler Benz Ag Regulation of distance between motor vehicles, between vehicle behind and vehicle in front
JP2003502586A (en) * 1999-06-12 2003-01-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング System for adjusting the tension of the belt section of a belt-type transmission
JP2007508196A (en) * 2003-10-17 2007-04-05 フオルクスヴアーゲン アクチエンゲゼルシヤフト Car with occupant protection system
JP2007508197A (en) * 2003-10-17 2007-04-05 フオルクスヴアーゲン アクチエンゲゼルシヤフト Crew protection system for automobiles
JP2015148545A (en) * 2014-02-07 2015-08-20 株式会社豊田中央研究所 vehicle control device and program
JP2017058006A (en) * 2015-09-18 2017-03-23 トヨタ自動車株式会社 Drive force control device
JP2017144886A (en) * 2016-02-17 2017-08-24 本田技研工業株式会社 Vehicle control device, vehicle control method, and vehicle control program
WO2019159534A1 (en) * 2018-02-15 2019-08-22 株式会社明電舎 Vehicle speed control device and vehicle speed control method
CN108356364A (en) * 2018-05-14 2018-08-03 宝鸡市新福泉机械科技发展有限责任公司 A kind of herringbone bear processing unit (plant) and its turning and method for milling
WO2021149435A1 (en) * 2020-01-22 2021-07-29 株式会社明電舎 Automatic driving robot control device and control method
JP2021117001A (en) * 2020-01-22 2021-08-10 株式会社明電舎 Control device and control method for automatic driving robot
US11718295B2 (en) 2020-01-22 2023-08-08 Meidensha Corporation Automatic driving robot control device and control method
WO2022227720A1 (en) * 2021-04-27 2022-11-03 湖北文理学院 Vehicle speed tracking control method and apparatus, and device and storage medium

Similar Documents

Publication Publication Date Title
JP2762504B2 (en) Vehicle speed change control device
Schnelle et al. A feedforward and feedback integrated lateral and longitudinal driver model for personalized advanced driver assistance systems
Lin et al. Artificial neural network modelling of driver handling behaviour in a driver-vehicle-environment system
CN102741780B (en) The method of the driver of vehicle and prompting vehicle
JP3197307B2 (en) Travel control device for mobile vehicles
US20050080565A1 (en) Driver adaptive collision warning system
JPH0471933A (en) Travel control device for vehicle
US20070198162A1 (en) Preceding-vehicle following control system
JPH06504132A (en) Automotive route guidance system
Mohtavipour et al. An analytically derived reference signal to guarantee safety and comfort in adaptive cruise control systems
Ambarak et al. A neural network for predicting unintentional lane departures
Ohno Analysis and modeling of human driving behaviors using adaptive cruise control
Zhang et al. Target vehicle lane-change intention detection: An approach based on online transfer learning
Budisusila et al. Artificial neural network algorithm for autonomous vehicle ultrasonic multi-sensor system
Zhao et al. Supervised adaptive dynamic programming based adaptive cruise control
JP3236131B2 (en) Car driving control device
Pasquier et al. Learning to drive the human way: A step towards intelligent vehicles
Batavia Driver adaptive warning systems
Narayanan Machine Ethics and Cognitive Robotics
Holzmann et al. From aviation down to vehicles-integration of a motions-envelope as safety technology
JP2503681B2 (en) Vehicle drive controller
Stengel et al. Intelligent guidance for headway and lane control
Gajula et al. Autonomous Driving: Enhancing Mileage, Road Safety with AI
Shinde et al. Automatic Car Driving System Using Fuzzy Logic
Armağan An Intelligent Overtaking Assistant For Autonomous Racing Cars