JPH0468913B2 - - Google Patents

Info

Publication number
JPH0468913B2
JPH0468913B2 JP60273509A JP27350985A JPH0468913B2 JP H0468913 B2 JPH0468913 B2 JP H0468913B2 JP 60273509 A JP60273509 A JP 60273509A JP 27350985 A JP27350985 A JP 27350985A JP H0468913 B2 JPH0468913 B2 JP H0468913B2
Authority
JP
Japan
Prior art keywords
honeycomb structure
ceramic honeycomb
microorganisms
holes
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60273509A
Other languages
Japanese (ja)
Other versions
JPS62134089A (en
Inventor
Katsuya Asai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP27350985A priority Critical patent/JPS62134089A/en
Publication of JPS62134089A publication Critical patent/JPS62134089A/en
Publication of JPH0468913B2 publication Critical patent/JPH0468913B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の技術分野) 本発明は、生化学反応に使用される酵素を含む
微生物をセラミツクハニカム構造体に固定したバ
イオリアクタエレメント及びその製造法に関する
ものである。 (従来技術の説明) 近年、酵素を含む微生物を用いた生化学反応は
急速に発達し、有機合成、食品工業、分析化学等
の分野に広く利用されるようになつた。この場
合、微生物を反応後、生成物等から分離し再利用
することが要求され、これに答えるものとして微
生物の固定化法の技術が発展してきた。 従来、微生物固定化方法としては、微生物を物
理的に担体に吸着させる物理的吸着法、水に不溶
性のビーズ状、ペレツト状の各種担体に酵素を含
む微生物を共通結合させる共有結合法、2個また
はそれ以上の官能基をもつたグルタルアルデヒ
ド、ビスジアゾベンジジン等の架橋試薬を用いて
担体に微生物を架橋する架橋法、イオン結合によ
り微生物を担体に結合させるイオン結合法、ある
いは寒天、カラギーナン等の高分子のゲル格子の
中に微生物を包み込むか半透膜性の高分子皮膜で
微生物を被覆する包括法等が知られている。 (従来技術の問題点) しかし、共有結合法や架橋法、イオン結合法は
固定化によつて微生物の性質が変化し、活性低下
が大きい等の欠点があり、また包括法は包括調整
時での微生物の活性低下に問題点があつた。更に
またかかる包括法においては、微生物活性を示す
のはゲル表面だけである為、単位菌体量当りの活
性が低くなるという欠点や、圧力損失の増大、固
形物による流路の閉塞等の問題があつた。 かかる包括法の問題点を解消する技術として担
体にセラミツクハニカム構造体を用いる固定化法
も本件出願人より行われているが(特開昭60−
43382号)、この方法においては微生物を含むゲル
を付着させる為セラミツクハニカム構造体の貫通
孔の開口長さを大きくしなければならず、貫通孔
の表面積に限界があつた。 また、物理的吸着法においては、従来の担体で
はその形状から菌体と液との摩擦力に比べ、担体
との相互作用が弱い為、醗酵時に微生物が遊離し
やすいという問題があつた。 そこで、本発明の目的は、微生物固定化時に、
微生物活性の低下が低い物理的吸着法において、
従来の固定化に比べ固定化微生物量が多くかつ、
基質と微生物との接触面積が大きく、担体から微
生物が遊離しにくいバイオリアクタエレメントお
よびその製造法を提供することにある。 また本発明の他の目的は、圧力損失や流路の閉
塞の問題を解消すると共に、ガス発生を伴う場合
は、ガスの散出を容易にするバイオリアクタエレ
メントおよびその製造法を提供することにある。 (問題点を解決するための手段) 本発明者は、上記問題点を解消すべく鋭意研究
を行つた結果、物理的吸着法においては未だ使用
されたことのなかつたセラミツクハニカム構造体
を担体として使用することにより上記目的を達成
し得るバイオリアクタエレメントおよびその製造
法が得られることを見い出し、本発明を完成する
に至つた。 本発明は、無数の細孔を有し、隔壁によつて囲
まれた複数の平行な貫通孔を有するセラミツクハ
ニカム構造体の細孔の内部に、酵素を含む微生物
が物理的吸着により固定されているバイオリアク
タエレメントであつて、 前記セラミツクハニカム構造体の貫通孔の隔壁
の平均気孔径が30μm〜120μmであり、前記セラ
ミツクハニカム構造体の気孔率が30%〜70%であ
り、このセラミツクハニカム構造体の貫通孔の開
口長さが1mm〜5mmである、バイオリアクタエレ
メントに関するものである。 また、本発明は、無数の細孔を有しかつ隔壁に
よつて囲まれた複数の平行な貫通孔を有するセラ
ミツクハニカム構造体であつて、貫通孔の隔壁の
平均気孔径が30μm〜120μmであり、気孔率が30
%〜70%でありかつ貫通孔の開口長さが1mm〜5
mmであるセラミツクハニカム構造体を準備し、酵
素を含む微生物を栄養素を含む水溶液に懸濁さ
せ、この水溶液に前記セラミツクハニカム構造体
を浸漬してこのセラミツクハニカム構造体の細孔
の内部に前記水溶液を浸透させ、次いでこの細孔
の内部で微生物を培養してこの微生物を物理的吸
着により細孔の内部に固定させる、バイオリアク
タエレメントの製造法に係るものである。 本発明に使用するセラミツクハニカム構造体
は、アルミナ、ムライト、コージエライト等のセ
ラミツク質から成る。これらはセラミツクハニカ
ム構造体が酵素を含む微生物の固定化に最適の気
孔径、気孔率を有すると共に、接触面積が大きく
確保でき、かつ圧力損失が小さいという利点を有
するからである。 このセラミツクハニカム構造体の貫通孔の隔壁
の平均気孔径は、好ましくは30μm〜100μm、更
に好ましくは30μm〜70μmである。平均気孔径が
30μm未満であると微生物が細孔に入りにくく、
100μmを超えると、微生物が細孔から流出しやす
くなるからである。 また、セラミツクハニカム構造体の貫通孔の開
口長さは1mm〜5mm、好ましくは2mm〜3mmであ
る。貫通孔の開口長さが1mmに満たないと、微生
物の固定化が容易でかつ均一にならず、また気泡
等により流路が閉塞されて圧力損失が急激に増大
することがあり、逆に貫通孔の開口長さが5mmよ
り大きくなると、反応に必要なセラミツクハニカ
ム構造体の占める容積が大きくなり過ぎる欠点が
生ずるからである。 更に、セラミツクハニカム構造体の隔壁中の空
隙の割合を示す気孔率は、30〜70%、好ましくは
40%〜60%である。気孔率が30%に満たないと反
応に必要な微生物量が足りなく、一方70%を超え
るとセラミツクハニカム構造体の強度が低くなる
問題が生じてくるからである。 本発明におけるバイオリアクタエレメントの製
造法においては、微生物懸濁液の温度を25〜30
℃、液粘度を0.5〜30c.p.とする。またセラミツク
ハニカム構造体の細孔内部に液を浸透させる際、
アスピレータ等による真空脱気法を利用すればセ
ラミツクハニカム構造体の細孔内部の気泡を容易
に除去でき、これに伴い微生物の送入が速やかに
行われる。この場合、セラミツクハニカム構造体
は脱気される気泡が抜け易いようにセラミツクハ
ニカム構造体の貫通孔が上下方向となるように配
置する。 次いで、微生物の培養においては、振盪培養し
て微生物を増殖させ、細孔内部に微生物を充満さ
せるのが好ましい。 尚、本発明において使用可能な微生物には酵母
菌類、細菌類、放射菌類、カビ類等があり、酵素
には微生物が固有に含んでいる酵素である。 (実施例) 以下、本発明を実施例により説明する。 実施例 1 アルコール発酵酵母サツカロミセス セルビシ
エを培養液(酵母エキス0.15%、NH4Cl0.25%、
K2HPO40.55%、MgSO47H200.025%、NaCl0.1
%、CaCl20.001%、クエン酸0.3%)にpH5.4で
105個/ml懸濁させた。この液中にコージエライ
トハニカム構造体を浸漬し、しかる後に15分間ア
スピレータにより真空脱気しながらセラミツクハ
ニカム構造体の細孔内部に液を浸透させた。次い
で30℃恒温槽中で3日間浸盪培養し、酵母を増
殖、固定化させた。尚、使用した21種類のセラミ
ツクハニカム構造体は第1表に記載する貫通孔の
開口長さ、気孔率および平均気孔径を有する。 次いで比較のため従来法の包括法で3種類のバ
イオリアクタエレメントを製造した。 先ず、この内の2種類は、酵母30%懸濁液と3
重量%アルギン酸ソーダ水溶液とを温度40℃にて
混合し、ゲル状液とした後にこの液中にセラミツ
クハニカム構造体を浸漬し、次いで付着ゲルの余
分を圧縮空気により吹き払うことにより製造し
た。残りの1種は、同様のゲル状混合物を用い、
これを硫酸アルミニウム3重量%溶液中に滴下し
てビーズ状固定化微生物として得た。 以上のようにして製造した各種バイオリアクタ
エレメントにつき、直径5cm、長さ30cmの反応管
を用い、この反応管の下部から20重量%のグルコ
ース水溶液を40ml/hrで流入し、15日間連続置換
した後エタノール生産量を比較した。得られた結
果を第1表に示す。
(Technical Field of the Invention) The present invention relates to a bioreactor element in which microorganisms containing enzymes used in biochemical reactions are immobilized on a ceramic honeycomb structure, and a method for producing the same. (Description of Prior Art) In recent years, biochemical reactions using microorganisms containing enzymes have developed rapidly and have come to be widely used in fields such as organic synthesis, food industry, and analytical chemistry. In this case, it is required to separate the microorganisms from the products after the reaction and reuse them, and in response to this, technology for immobilizing microorganisms has been developed. Conventionally, there have been two methods for immobilizing microorganisms: a physical adsorption method in which microorganisms are physically adsorbed onto a carrier, and a covalent bonding method in which microorganisms containing enzymes are commonly bonded to various water-insoluble beads or pellets. A cross-linking method in which microorganisms are cross-linked to a carrier using a cross-linking reagent such as glutaraldehyde or bisdiazobenzidine having a functional group of 3 or more, an ionic bonding method in which microorganisms are bound to a carrier through ionic bonding, or a Encapsulation methods are known in which microorganisms are encapsulated in a polymer gel lattice or covered with a semipermeable polymer film. (Problems with conventional technology) However, the covalent bonding method, crosslinking method, and ionic bonding method have drawbacks such as changes in the properties of microorganisms due to immobilization and a large decrease in activity. The problem was a decrease in the activity of microorganisms. Furthermore, in such comprehensive methods, only the surface of the gel exhibits microbial activity, so there are problems such as low activity per unit amount of microbial cells, increased pressure loss, and blockage of flow channels by solid matter. It was hot. As a technique to solve the problems of such a comprehensive method, the applicant has also conducted an immobilization method using a ceramic honeycomb structure as a carrier (Japanese Patent Application Laid-Open No. 1989-1999-1).
43382), in this method, the opening length of the through holes in the ceramic honeycomb structure had to be increased in order to attach the gel containing microorganisms, and there was a limit to the surface area of the through holes. Furthermore, in the physical adsorption method, due to the shape of conventional carriers, the interaction with the carrier is weak compared to the frictional force between the bacterial cells and the liquid, so there was a problem that microorganisms were easily released during fermentation. Therefore, the purpose of the present invention is to:
In the physical adsorption method, which has a low decrease in microbial activity,
The amount of immobilized microorganisms is larger than that of conventional immobilization, and
It is an object of the present invention to provide a bioreactor element in which the contact area between a substrate and microorganisms is large and the microorganisms are difficult to be released from the carrier, and a method for producing the same. Another object of the present invention is to provide a bioreactor element and a method for producing the same that eliminate problems of pressure loss and blockage of flow paths, and facilitate the release of gas when gas generation is involved. be. (Means for Solving the Problems) As a result of intensive research in order to solve the above problems, the inventors of the present invention found that a ceramic honeycomb structure, which had not yet been used in a physical adsorption method, was used as a carrier. It was discovered that a bioreactor element capable of achieving the above object and a method for producing the same can be obtained by using the present invention, and the present invention has been completed. The present invention provides a ceramic honeycomb structure having countless pores and a plurality of parallel through holes surrounded by partition walls, in which microorganisms containing enzymes are immobilized by physical adsorption. a bioreactor element in which the average pore diameter of the partition walls of the through holes of the ceramic honeycomb structure is 30 μm to 120 μm, the porosity of the ceramic honeycomb structure is 30% to 70%, and the ceramic honeycomb structure The present invention relates to a bioreactor element in which the opening length of the through-hole in the body is 1 mm to 5 mm. The present invention also provides a ceramic honeycomb structure having a plurality of parallel through holes having countless pores and surrounded by partition walls, wherein the average pore diameter of the partition walls of the through holes is 30 μm to 120 μm. Yes, porosity is 30
% to 70% and the opening length of the through hole is 1 mm to 5
Prepare a ceramic honeycomb structure having a diameter of mm, suspend microorganisms containing enzymes in an aqueous solution containing nutrients, immerse the ceramic honeycomb structure in this aqueous solution, and fill the pores of the ceramic honeycomb structure with the aqueous solution. This relates to a method for producing a bioreactor element in which microorganisms are infiltrated into the pores, and then microorganisms are cultured inside the pores and the microorganisms are immobilized inside the pores by physical adsorption. The ceramic honeycomb structure used in the present invention is made of ceramic material such as alumina, mullite, and cordierite. This is because the ceramic honeycomb structure has the advantage of having the optimum pore size and porosity for immobilizing microorganisms containing enzymes, ensuring a large contact area, and having small pressure loss. The average pore diameter of the partition walls of the through holes in this ceramic honeycomb structure is preferably 30 μm to 100 μm, more preferably 30 μm to 70 μm. The average pore size is
If the diameter is less than 30 μm, it is difficult for microorganisms to enter the pores.
This is because if the diameter exceeds 100 μm, microorganisms will easily flow out from the pores. Further, the opening length of the through holes in the ceramic honeycomb structure is 1 mm to 5 mm, preferably 2 mm to 3 mm. If the opening length of the through hole is less than 1 mm, microorganisms will not be immobilized easily or uniformly, and the flow path may be blocked by air bubbles, etc., resulting in a sudden increase in pressure loss. This is because if the opening length of the pores is greater than 5 mm, a disadvantage arises in that the volume occupied by the ceramic honeycomb structure necessary for the reaction becomes too large. Furthermore, the porosity, which indicates the proportion of voids in the partition walls of the ceramic honeycomb structure, is 30 to 70%, preferably
It is between 40% and 60%. This is because if the porosity is less than 30%, the amount of microorganisms required for the reaction is insufficient, while if it exceeds 70%, the problem arises that the strength of the ceramic honeycomb structure decreases. In the method for producing a bioreactor element according to the present invention, the temperature of the microorganism suspension is set at 25 to 30°C.
℃, and the liquid viscosity is 0.5 to 30 c.p. Also, when infiltrating the inside of the pores of the ceramic honeycomb structure,
By using a vacuum degassing method using an aspirator or the like, air bubbles inside the pores of the ceramic honeycomb structure can be easily removed, and accordingly, microorganisms can be introduced quickly. In this case, the ceramic honeycomb structure is arranged so that the through holes of the ceramic honeycomb structure are oriented in the vertical direction so that the bubbles to be deaerated can easily escape. Next, in culturing the microorganisms, it is preferable to perform shaking culture to grow the microorganisms and fill the inside of the pores with the microorganisms. Note that microorganisms that can be used in the present invention include yeast fungi, bacteria, actinobacteria, molds, and the like, and the enzyme is an enzyme that microorganisms inherently contain. (Example) Hereinafter, the present invention will be explained with reference to Examples. Example 1 Alcohol-fermented yeast Satucharomyces cerevisiae was cultured in a culture solution (yeast extract 0.15%, NH 4 Cl 0.25%,
K2HPO4 0.55 %, MgSO47H200.025 %, NaCl0.1
%, CaCl2 0.001%, citric acid 0.3%) at pH 5.4
10 5 cells/ml were suspended. The cordierite honeycomb structure was immersed in this liquid, and then the liquid was allowed to penetrate into the pores of the ceramic honeycomb structure while being vacuum degassed using an aspirator for 15 minutes. Next, the yeast was cultured in a constant temperature bath at 30° C. for 3 days to grow and immobilize the yeast. The 21 types of ceramic honeycomb structures used had the opening lengths of through holes, porosity, and average pore diameter listed in Table 1. Next, for comparison, three types of bioreactor elements were manufactured using a conventional comprehensive method. First, two of these are 30% yeast suspension and 30% yeast suspension.
It was manufactured by mixing aqueous solution of sodium alginate (wt%) at a temperature of 40°C to form a gel-like liquid, immersing a ceramic honeycomb structure in this liquid, and then blowing off the excess adhered gel with compressed air. The remaining one uses the same gel mixture,
This was dropped into a 3% by weight aluminum sulfate solution to obtain a bead-shaped immobilized microorganism. For each of the bioreactor elements produced as described above, a reaction tube with a diameter of 5 cm and a length of 30 cm was used, and a 20% by weight aqueous glucose solution was flowed into the reaction tube at a rate of 40 ml/hr from the lower part of the reaction tube, and continuously replaced for 15 days. After that, the ethanol production amount was compared. The results obtained are shown in Table 1.

【表】【table】

【表】 量を示す。
第1表において、セラミツクハニカム構造体の
貫通孔の隔壁の平均気孔径が30μm〜120μmであ
り、気孔率が30%〜70%であり、貫通孔の開口長
さが1mm〜5mmであるのは、試料番号4,5,7
〜20であり、試料番号1,2,3,6,21は、本
発明の範囲外である。第1表の結果から解るよう
に、包括法を用いた比較品よりも、物理的吸着法
をセラミツクハニカム構造体に適用した試料番号
1〜21の方が、エタノール生産量が高い。しか
も、試料番号1〜21の中でも、本発明の範囲内に
ある試料番号4,5,7〜20の方が、試料番号
1,2,3,6,21よりも、エタノール生産量が
高くなつている。 これは、本発明品が直接担体に吸着されている
為、従来品に比べ細かい貫通孔の開口長さのセラ
ミツクハニカム構造体に固定化でき、単位容積あ
たりの有効表面積が高いこと、セラミツクハニカ
ム構造体の気孔率が大きく固定化される酵母量が
多いこと、セラミツクハニカム構造体の平均気孔
径が酵母の固定化に最適であること、セラミツク
ハニカム構造体が平行な貫通孔を有する形状であ
る為、流体の摩擦による酵母の遊離が少ないこ
と、ビーズに比較して発生するガス気泡の上昇が
容易で、逆混合がおこりにくいことなどによる。 実施例 2 貫通孔の開口長さ5mm、気孔率50%および平均
気孔径50μmのセラミツクハニカム構造体を使用
し、実施例1と同様にして本発明における物理的
吸着法および従来法における包括法で夫々バイオ
リアクタエレメントを製造した。更にまた、実施
例1と同様にしてビーズ平均径3mmのビーズ状バ
イオリアクタエレメントを製造した。 これらバイオリアクタエレメントにつき、実施
例1と同様のエタノール発酵においてその経時変
化を見る為に100日間連続発酵させた場合のエタ
ノール生産量を測定した。 得られた結果を第1図に比較して示す。 第1図の結果から明らかなように、本発明によ
り製造したバイオリアクタエレメントの方が、従
来法のそれに比べて短い日数で安定生産領域に入
り、かつ長期間高濃度のアルコールを生産し続け
ていることがわかる。これはセラミツクハニカム
構造体の気孔率が大きく、特に本発明品において
は気孔径も酵母の固定化に最適であり、かつ酵母
が直接グルコース溶液と接している為、酵母の増
殖が速いと考えられる。また本発明品おいては、
酵母がセラミツクハニカム構造体の細孔内に固定
化されている為、グルコース溶液により流出しに
くく、またセラミツクハニカム構造体の機械的強
度が強い為、活性が低下しないと考えられる。 実施例 3 酢酸菌アセトバクター アセチを前培養倍地A
(1中、グルコース10g、ポリペプトン10g、酵
母エキス10g、エタノール20ml、氷酢酸10g)に
106個/ml懸濁させた。この液中に、貫通孔の開
口長さ1mm、気孔率50%、平均気孔径50μmのコ
ージエライト質セラミツクハニカム構造体を浸漬
し、30℃、pH=3.3で4日間静置培養した。その
後セラミツクハニカム構造体を前培養倍地B(1
中、グルコース10g、ポリペプトン10g、酵母
エキス10g、エタノール40ml、氷酢酸10g)に移
し、30℃、pH=3.3で36時間浸盪培養した。この
ようにして得られたバイオリアクタエレメント
を、直径5cm、長さ20cmの管型反応管に入れ、反
応管下部から、前培養倍地B組成の液を50c.c./hr
の速さで送入すると共に、空気を250c.c./minの
速さで送入した。温度30℃,pH=3.3に保ち酢酸
菌による酢酸発酵を行い、反応器出口での酢酸濃
度を測定した。また比較品として、3重量%アル
ギン酸ソーダで酢酸菌を3mmのビーズ包括固定化
し、本実施例と同じ条件で酢酸発酵を行つた。こ
れら結果を第2表に比較して示す。
[Table] Shows the amount.
In Table 1, the average pore diameter of the partition walls of the through holes of the ceramic honeycomb structure is 30 μm to 120 μm, the porosity is 30% to 70%, and the opening length of the through holes is 1 mm to 5 mm. , sample numbers 4, 5, 7
~20, and sample numbers 1, 2, 3, 6, and 21 are outside the scope of the present invention. As can be seen from the results in Table 1, sample numbers 1 to 21, in which the physical adsorption method was applied to the ceramic honeycomb structure, had higher ethanol production than the comparative products using the inclusion method. Moreover, among sample numbers 1 to 21, sample numbers 4, 5, 7 to 20, which are within the scope of the present invention, have higher ethanol production than sample numbers 1, 2, 3, 6, and 21. ing. This is because the product of the present invention is directly adsorbed onto the carrier, so it can be immobilized on a ceramic honeycomb structure with a finer opening length of through holes than conventional products, and the effective surface area per unit volume is high. The porosity of the body is large and a large amount of yeast can be immobilized, the average pore diameter of the ceramic honeycomb structure is optimal for yeast immobilization, and the ceramic honeycomb structure has a shape with parallel through holes. This is because there is less yeast release due to fluid friction, and gas bubbles that are generated are easier to rise compared to beads, so back mixing is less likely to occur. Example 2 Using a ceramic honeycomb structure with a through-hole opening length of 5 mm, a porosity of 50%, and an average pore diameter of 50 μm, the physical adsorption method of the present invention and the comprehensive method of the conventional method were used in the same manner as in Example 1. Bioreactor elements were manufactured respectively. Furthermore, bead-shaped bioreactor elements having an average bead diameter of 3 mm were produced in the same manner as in Example 1. These bioreactor elements were subjected to ethanol fermentation in the same manner as in Example 1, and in order to observe changes over time, the ethanol production amount was measured when continuous fermentation was performed for 100 days. The results obtained are shown in FIG. 1 for comparison. As is clear from the results shown in Figure 1, the bioreactor element manufactured by the present invention entered the stable production range in a shorter period of time than the conventional method, and continued to produce alcohol at a high concentration for a long period of time. I know that there is. This is because the ceramic honeycomb structure has a high porosity, and especially in the product of the present invention, the pore size is optimal for immobilizing yeast, and since the yeast is in direct contact with the glucose solution, it is thought that yeast multiplication is rapid. . In addition, in the product of the present invention,
Since the yeast is immobilized within the pores of the ceramic honeycomb structure, it is difficult for it to flow out due to the glucose solution, and since the ceramic honeycomb structure has strong mechanical strength, it is thought that the activity will not decrease. Example 3 Preculture medium A for acetic acid bacteria Acetobacter aceti
(In 1, glucose 10g, polypeptone 10g, yeast extract 10g, ethanol 20ml, glacial acetic acid 10g)
10 6 cells/ml were suspended. A cordierite ceramic honeycomb structure with a through-hole opening length of 1 mm, a porosity of 50%, and an average pore diameter of 50 μm was immersed in this solution, and was statically cultured at 30° C. and pH = 3.3 for 4 days. After that, the ceramic honeycomb structure was grown in preculture medium B (1
medium (glucose 10 g, polypeptone 10 g, yeast extract 10 g, ethanol 40 ml, glacial acetic acid 10 g) and cultured with shaking at 30°C and pH=3.3 for 36 hours. The bioreactor element obtained in this way was placed in a tubular reaction tube with a diameter of 5 cm and a length of 20 cm, and a solution containing preculture medium B was added at 50 c.c./hr from the bottom of the reaction tube.
At the same time, air was introduced at a rate of 250 c.c./min. Acetic acid fermentation was carried out using acetic acid bacteria while maintaining the temperature at 30°C and pH = 3.3, and the acetic acid concentration at the reactor outlet was measured. As a comparative product, acetic acid bacteria were immobilized entrapping in 3 mm beads with 3% by weight sodium alginate, and acetic acid fermentation was performed under the same conditions as in this example. These results are shown in Table 2 for comparison.

【表】 第2表の結果から明らかなように、本発明品は
比較品に比べ酢酸濃度が高かつた。これはビーズ
の場合、反応管に送り込まれる空気により反応液
が乱れ、逆混合が発生する為、またセラミツクハ
ニカム構造体の貫通の開口長さが短く、反応に関
与している酢酸菌の付着面積が高い為と考えられ
る。 (発明の効果) 本発明によるバイオリアクタエレメントは従来
のバイオリアクタエレメントに対し、セラミツク
ハニカム構造体の貫通孔の隔壁面上に微生物を吸
着させた結果、次の効果を有する。 (1) 貫通孔の開口長さが短いセラミツクハニカム
構造体を固定化担体として用いている為、単位
容積あたりの微生物と溶液との接触面積が大き
く、反応効率が高い。 (2) セラミツクハニカム構造体が平行な貫通孔を
有し、かつセラミツクハニカム構造体の貫通孔
の隔壁面上に微生物が固定化される為、溶液の
流れの摩擦による微生物の遊離が少ない。 (3) セラミツクハニカム構造体の貫通孔の隔壁面
上に微生物を吸着させている為、反応の立上り
が速く、また機械的強度が強く、長期間活性が
低下しない。 (4) セラミツクハニカム構造体が平行な貫通孔を
有する為、ガスが発生する発酵系において発生
したガスは、貫通孔内を通つて容易に上昇、散
出する為、反応の乱れ、逆混合の発生が少な
く、また固形物などによる流路の閉塞が少な
い。この結果圧力損失も小さい。 従つて、本発明によれば各種のバイオリアクタ
エレメントに有効に利用でき、特に反応中のガス
発生を伴うアルコール発酵や空気を必要とする酢
酸発酵および基質が高粘度である澱粉の糖化反応
等に有効である。
[Table] As is clear from the results in Table 2, the product of the present invention had a higher acetic acid concentration than the comparative product. This is because in the case of beads, the reaction liquid is disturbed by the air sent into the reaction tube, causing back mixing, and also because the opening length of the ceramic honeycomb structure is short, and the acetic acid bacteria involved in the reaction have a large adhesion area. This is thought to be due to the high (Effects of the Invention) Compared to conventional bioreactor elements, the bioreactor element according to the present invention has the following effects as a result of adsorbing microorganisms onto the partition walls of the through holes of the ceramic honeycomb structure. (1) Since a ceramic honeycomb structure with short through holes is used as the immobilization carrier, the contact area between the microorganisms and the solution per unit volume is large, resulting in high reaction efficiency. (2) Since the ceramic honeycomb structure has parallel through holes and the microorganisms are immobilized on the partition walls of the through holes of the ceramic honeycomb structure, there is little release of microorganisms due to friction of the flow of the solution. (3) Since microorganisms are adsorbed on the partition walls of the through-holes of the ceramic honeycomb structure, the reaction starts quickly, and the mechanical strength is strong, so the activity does not decrease over a long period of time. (4) Since the ceramic honeycomb structure has parallel through-holes, the gas generated in the gas-generating fermentation system easily rises and dissipates through the through-holes, resulting in reaction disturbance and back-mixing. There is little occurrence of generation, and there is less clogging of the flow path by solid matter. As a result, pressure loss is also small. Therefore, the present invention can be effectively used in various bioreactor elements, particularly in alcoholic fermentation that involves gas generation during the reaction, acetic acid fermentation that requires air, and starch saccharification reactions where the substrate is highly viscous. It is valid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、日数とエタノール生産量との関係を
示すグラフである。
FIG. 1 is a graph showing the relationship between the number of days and the amount of ethanol production.

Claims (1)

【特許請求の範囲】 1 無数の細孔を有し、隔壁によつて囲まれた複
数の平行な貫通孔を有するセラミツクハニカム構
造体の細孔の内部に、酵素を含む微生物が物理的
吸着により固定されているバイオリアクタエレメ
ントであつて、 前記セラミツクハニカム構造体の貫通孔の隔壁
の平均気孔径が30μm〜120μmであり、前記セラ
ミツクハニカム構造体の気孔率が30%〜70%であ
り、このセラミツクハニカム構造体の貫通孔の開
口長さが1mm〜5mmである、バイオリアクタエレ
メント。 2 無数の細孔を有しかつ隔壁によつて囲まれた
複数の平行な貫通孔を有するセラミツクハニカム
構造体であつて、貫通孔の隔壁の平均気孔径が
30μm〜120μmであり、気孔率が30%〜70%であ
りかつ貫通孔の開口長さが1mm〜5mmであるセラ
ミツクハニカム構造体を準備し、酵素を含む微生
物を栄養素を含む水溶液に懸濁させ、この水溶液
に前記セラミツクハニカム構造体を浸漬してこの
セラミツクハニカム構造体の細孔の内部に前記水
溶液を浸透させ、次いでこの細孔の内部で微生物
を培養してこの微生物を物理的吸着により細孔の
内部に固定させる、バイオリアクタエレメントの
製造法。
[Claims] 1. Microorganisms containing enzymes are absorbed into the pores of a ceramic honeycomb structure having countless pores and a plurality of parallel through-holes surrounded by partition walls by physical adsorption. The bioreactor element is a fixed bioreactor element, wherein the average pore diameter of the partition walls of the through holes of the ceramic honeycomb structure is 30 μm to 120 μm, and the porosity of the ceramic honeycomb structure is 30% to 70%. A bioreactor element in which the opening length of the through holes of the ceramic honeycomb structure is 1 mm to 5 mm. 2 A ceramic honeycomb structure having countless pores and a plurality of parallel through holes surrounded by partition walls, wherein the average pore diameter of the partition walls of the through holes is
A ceramic honeycomb structure having a diameter of 30 μm to 120 μm, a porosity of 30% to 70%, and an opening length of through holes of 1 mm to 5 mm is prepared, and microorganisms containing enzymes are suspended in an aqueous solution containing nutrients. The ceramic honeycomb structure is immersed in this aqueous solution to allow the aqueous solution to penetrate into the pores of the ceramic honeycomb structure, and then microorganisms are cultured inside the pores and the microorganisms are absorbed into the pores by physical adsorption. A method for producing bioreactor elements that are fixed inside pores.
JP27350985A 1985-12-06 1985-12-06 Bioreactor element and production thereof Granted JPS62134089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27350985A JPS62134089A (en) 1985-12-06 1985-12-06 Bioreactor element and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27350985A JPS62134089A (en) 1985-12-06 1985-12-06 Bioreactor element and production thereof

Publications (2)

Publication Number Publication Date
JPS62134089A JPS62134089A (en) 1987-06-17
JPH0468913B2 true JPH0468913B2 (en) 1992-11-04

Family

ID=17528866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27350985A Granted JPS62134089A (en) 1985-12-06 1985-12-06 Bioreactor element and production thereof

Country Status (1)

Country Link
JP (1) JPS62134089A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716437B2 (en) * 1987-09-18 1995-03-01 日本碍子株式会社 Method for synthesizing optically active compounds
JP5505047B2 (en) * 2010-04-02 2014-05-28 株式会社Ihi Water purification method, water purification agent, and water purification agent manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571988A (en) * 1980-06-04 1982-01-07 Hitachi Ltd Coil joint monitoring device
JPS6043382A (en) * 1983-08-19 1985-03-07 Ngk Insulators Ltd Immobilized microorganism and its preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571988A (en) * 1980-06-04 1982-01-07 Hitachi Ltd Coil joint monitoring device
JPS6043382A (en) * 1983-08-19 1985-03-07 Ngk Insulators Ltd Immobilized microorganism and its preparation

Also Published As

Publication number Publication date
JPS62134089A (en) 1987-06-17

Similar Documents

Publication Publication Date Title
US4102746A (en) Immobilized proteins
US4169014A (en) Method of immobilizing proteinaceous substances
US4048018A (en) Method of carrying out enzyme catalyzed reactions
EP0048109B1 (en) Improvements in or relating to composite materials
US5071747A (en) Porous polymeric support containing biological cells in interconnected voids
Arica et al. Covalent immobilization of α-amylase onto pHEMA microspheres: preparation and application to fixed bed reactor
US8906404B2 (en) Three dimensional porous polymeric structure having a pore-size range of 1/10 to 10 times the average pore size
CN100363482C (en) Method for immobilizing lipase using microstructure in hydrophilic/ hydrophobic composite membrane
Güleç et al. Immobilization of Aspergillus oryzae β-galactosidase on low-pressure plasma-modified cellulose acetate membrane using polyethyleneimine for production of galactooligosaccharide
CN104099316A (en) Amphiphilic structure microsphere based on hydrophobic modified sodium alginate material and preparation and application
US3849253A (en) Process of immobilizing enzymes
US3928143A (en) Method of carrying out enzyme-catalyzed reactions
US4016293A (en) Method of carrying out enzyme catalyzed reactions
Bahulekar et al. Immobilization of penicillin G acylase on functionalized macroporous polymer beads
EP0247077A1 (en) Process for cell immobilisation
WO1986002093A1 (en) Hollow porous microsphere bioreactors and biochemical processes using same
JPH0468913B2 (en)
CN109499550B (en) Semi-hydrophobic nano crystal glue medium and preparation method thereof
EP0605173A2 (en) Hollow fibre reactor
JPH0368675B2 (en)
JPS6253151B2 (en)
JPS6321475B2 (en)
JPH0889938A (en) Treatment of water-based liquid containing hydrogen peroxide
WO1989008705A1 (en) Supports for proteins and amino acids
JPS6349996B2 (en)