JPH0465598B2 - - Google Patents

Info

Publication number
JPH0465598B2
JPH0465598B2 JP7574683A JP7574683A JPH0465598B2 JP H0465598 B2 JPH0465598 B2 JP H0465598B2 JP 7574683 A JP7574683 A JP 7574683A JP 7574683 A JP7574683 A JP 7574683A JP H0465598 B2 JPH0465598 B2 JP H0465598B2
Authority
JP
Japan
Prior art keywords
frequency
phase
degrees
circuit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7574683A
Other languages
Japanese (ja)
Other versions
JPS59201596A (en
Inventor
Shiro Kato
Norio Meki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7574683A priority Critical patent/JPS59201596A/en
Publication of JPS59201596A publication Critical patent/JPS59201596A/en
Publication of JPH0465598B2 publication Critical patent/JPH0465598B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/82Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
    • H04N9/83Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only the recorded chrominance signal occupying a frequency band under the frequency band of the recorded brightness signal
    • H04N9/84Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only the recorded chrominance signal occupying a frequency band under the frequency band of the recorded brightness signal the recorded signal showing a feature, which is different in adjacent track parts, e.g. different phase or frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は位相切換信号で位相を0度,180度と
切換える位相切換方法およびその回路、特に色信
号を周波数変調された輝度信号の低域に周波数変
換して記録する簡易型の磁気録画再生装置
(VTR)の色信号処理回路に応用可能な位相切換
方法およびその回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a phase switching method for switching the phase between 0 degrees and 180 degrees using a phase switching signal, and a circuit thereof, in particular, a phase switching method for switching the phase between 0 degrees and 180 degrees using a phase switching signal, and a circuit thereof. The present invention relates to a phase switching method and its circuit that can be applied to a color signal processing circuit of a simple magnetic recording/reproducing device (VTR) that converts and records data.

従来例の構成とその問題点 回転2ヘツドの前記簡易型VTRにおいて色信
号のクロストークによる画質の劣化を改善する方
法として、片フイールドの期間のみライン毎に色
信号低域搬送波の位相を0度,180度と切換えて
記録する方法が考案され、実用化されている。こ
のための回路として位相切換回路が色信号処理回
路に用いられている。
Conventional configuration and its problems As a method to improve image quality deterioration due to chrominance signal crosstalk in the above-mentioned simple VTR with two rotating heads, the phase of the chrominance signal low frequency carrier wave is set to 0 degrees for each line only during one field. , 180 degrees and a recording method has been devised and put into practical use. As a circuit for this purpose, a phase switching circuit is used in the color signal processing circuit.

前記方法においては、記録時には色信号搬送波
(周波数c,NTSC方式では約3.58MHz)を色信
号低域搬送波(周波数s,例えば約700KHz)へ、
再生時には色信号低域搬送波を色信号搬送波へ周
波数変換するために周波数が(c+s)でかつ位
相切換入力信号(ライン周波数Hの半分すなわ周
波数1/2Hの信号)により位相が0度,180度と切
換わつた信号が必要となる。しかしながら(c+
+s)なる周波数(約4.3MHz)で位相が正確に
0度,180度である2つの信号を作成し切換える
のは容易ではない。なぜなら4.3MHzにおける位
相1度は時間では約0.6nsに相当し、電子回路の
信号伝搬経路の違いによる時間遅れが無視できな
いからである。そこで従来は周波数(c+s)の
搬送波を、出力側に中間端子を有するトランスに
入力することにより、正確に位相がそれぞれ0
度,180度である2つの信号を得、位相切換入力
信号にて切換える位相切換回路により位相が0
度,180度と切換わつた周波数(c+s)の前記
信号得る方法がある。しかしながらトランスを用
いているため半導体回路化ができない、小型化が
困難であるといつた問題点を有する。
In the above method, during recording, the color signal carrier wave (frequency c, approximately 3.58MHz in the NTSC system) is converted to the color signal low frequency carrier wave (frequency s, approximately 700KHz, for example);
During reproduction, the frequency is (c+s) and the phase is 0 degrees due to the phase switching input signal (signal with half the line frequency H , or frequency 1/2 H ) to convert the frequency of the color signal low frequency carrier wave to the color signal carrier wave. A signal that switches 180 degrees is required. However, (c+
It is not easy to create and switch two signals whose phases are exactly 0 degrees and 180 degrees at a frequency of +s) (approximately 4.3 MHz). This is because one degree of phase at 4.3 MHz corresponds to approximately 0.6 ns in time, and time delays due to differences in signal propagation paths in electronic circuits cannot be ignored. Therefore, in the past, by inputting the carrier wave of frequency (c + s) to a transformer with an intermediate terminal on the output side, the phase was accurately set to 0.
The phase switching circuit obtains two signals that are 180 degrees and 180 degrees, and the phase is 0 by the phase switching circuit that switches using the phase switching input signal.
There is a method of obtaining the signal of the frequency (c+s) switched between 180 degrees and 180 degrees. However, since it uses a transformer, it has problems such as not being able to be made into a semiconductor circuit and making it difficult to miniaturize.

充分低い周波数であれば、トランスを用いない
電子回路でも正確に0度,180度なる位相をもつ
信信号を作成できる。そこでまず低い周波数o
において位相切換信信号で位相切換えを行なつた
後周波数変換することにより、位相切換信信号で
位相を0度,180度と切換えた周波数(c+s)
の前記信信号を得る方法がある。しかしながらこ
の方法にトランスを用いない従来の位相切換回路
を用いた場合は問題点を生じる。この問題点を説
明するため、まず従来の位相切換回路について説
明する。
If the frequency is low enough, even an electronic circuit that does not use a transformer can create a signal with a phase of exactly 0 degrees and 180 degrees. So first of all, low frequency o
By performing phase switching with the phase switching signal at , and then converting the frequency, the frequency (c + s) at which the phase is switched between 0 degrees and 180 degrees with the phase switching signal.
There is a method to obtain the signal. However, if a conventional phase switching circuit without a transformer is used in this method, a problem arises. In order to explain this problem, a conventional phase switching circuit will first be explained.

第1図は従来の位相切換回路の構成図を示すも
のであり、1は基準クロツクの入力端子で、搬送
波の2倍または4倍の周波数のクロツクが入力さ
れる。2は位相切換入力信号端子、3は位相が0
度,180度の2相クロツクを発生する2相クロツ
ク発生回路、4は2相クロツクの1つを選択する
スイツチ回路、5はスイツチ回路4の伝搬遅延な
どによる位相誤差を除くための同期化回路、6は
出力端子である。
FIG. 1 shows a configuration diagram of a conventional phase switching circuit. Reference numeral 1 denotes a reference clock input terminal, into which a clock having a frequency twice or four times that of a carrier wave is input. 2 is a phase switching input signal terminal, 3 is a phase 0
4 is a switch circuit that selects one of the 2-phase clocks, and 5 is a synchronization circuit that eliminates phase errors due to propagation delays in switch circuit 4. , 6 are output terminals.

第2図は第1図の構成における各部の動作波形
を示している。第2図においてA,Bは2相クロ
ツク発生回路3の出力である2相クロツク出力で
あり、C,D,E,Fは同期化回路5の出力波形
である。基準クロツクが搬送波の2倍の周波数の
場合、位相切換時の波形はCまたはDのようにな
り、基準クロツクが搬送波の4倍の周波数の場
合、位相切換時の波形はCもしくはDまたはEも
しくはFのようになる。第2図中のTa,Tb,
Tc,Tdは位相切換わり期間を示している。
FIG. 2 shows operating waveforms of each part in the configuration of FIG. 1. In FIG. 2, A and B are two-phase clock outputs that are the outputs of the two-phase clock generation circuit 3, and C, D, E, and F are output waveforms of the synchronization circuit 5. If the reference clock has a frequency twice that of the carrier wave, the waveform when switching the phase will be C or D. If the reference clock has a frequency four times the frequency of the carrier wave, the waveform when switching the phase will be C or D or E or It becomes like F. Ta, Tb in Figure 2,
Tc and Td indicate phase switching periods.

第1図に示した従来の位相切換回路の具体回路
例を第3図に、その動作波形図を第4図に示し、
以下その動作を説明する。位相切換えの行なわれ
る搬送波の周波数をoとすると端子37には周
波数2oの基準クロツクが入力され、フリツプフ
ロツプ31で2分周されて出力Q,よりそれぞ
れ0度,180度位相の搬送波が得られる。基準ク
ロツク、2相クロツクをそれぞれ第4図のA,
B,Cに示す。2分周するのは搬送波のデユーテ
イーサイクルを50%とし、フイルターで除去が困
難な不要成分である搬送波の2次成分すなわち周
波数2o成分を除くためである。
A specific circuit example of the conventional phase switching circuit shown in FIG. 1 is shown in FIG. 3, and its operating waveform diagram is shown in FIG.
The operation will be explained below. Assuming that the frequency of the carrier wave whose phase is switched is o, a reference clock with a frequency of 2o is inputted to the terminal 37, and the frequency is divided by 2 by the flip-flop 31, and carrier waves with phases of 0 degrees and 180 degrees are obtained from the output Q, respectively. The reference clock and two-phase clock are respectively A and A in Figure 4.
Shown in B and C. The reason for frequency division by 2 is to set the duty cycle of the carrier wave to 50% and to remove the second-order component of the carrier wave, that is, the frequency 2o component, which is an unnecessary component that is difficult to remove with a filter.

端子38には位相切換信号が加えられ、入力が
“Hi”レベルの時、ANDゲート33が開いて0
度位相の搬送波がORゲート35に入力され、入
力が“Lo”レベルの時、インバータ32を介し
てANDゲート34が開いて180度位相の搬送波が
ORゲート35に入力される。端子38から加え
られる位相切換入力信号により位相切換え動作の
行なわれた搬送波がORゲート35より出力さ
れ、D型フリツプフロツプ36に入力される。フ
リツプフロツプ36のクロツク入力端子には、入
力端子37より入力された周波数2oの基準クロ
ツクが入力され、このクロツクによりORゲート
35の出力が同期化されて出力される。位相切換
入力信号,ORゲート35の出力,フリツプフロ
ツ36の出力すなわち位相切換回路の出力の波形
を各々第4図のD,E,Fに示す。第4図のFに
おいて、Ta,Tbで示した期間は、第2図中の位
相切換わり期間Ta,Tbに一致している。
A phase switching signal is applied to the terminal 38, and when the input is at the "Hi" level, the AND gate 33 opens and the signal becomes 0.
The carrier wave with a phase of 180 degrees is input to the OR gate 35, and when the input is at "Lo" level, the AND gate 34 is opened via the inverter 32, and the carrier wave with a phase of 180 degrees is input to the OR gate 35.
It is input to the OR gate 35. The carrier wave whose phase has been switched by the phase switching input signal applied from the terminal 38 is outputted from the OR gate 35 and inputted to the D-type flip-flop 36. A reference clock with a frequency of 2o input from an input terminal 37 is input to the clock input terminal of the flip-flop 36, and the output of the OR gate 35 is synchronized with this clock and output. The waveforms of the phase switching input signal, the output of the OR gate 35, the output of the flip-flop 36, that is, the output of the phase switching circuit are shown in D, E, and F of FIG. 4, respectively. In F of FIG. 4, the periods indicated by Ta and Tb coincide with the phase switching periods Ta and Tb in FIG.

周波数oで位相切換えを行なつた後に周波数
変換することにより、位相切換入力信号で位相を
0度,180度と切換えた周波数(c+s)の前記
信号を得る前述した方法の構成図を第5図に示
し、この構成に従来の位相切換回路を用いた場合
における問題点を以下に説明する。周波数oはs
に等しく選んでも何ら不都合を生じないので
o=sとして説明する。
Figure 5 shows a block diagram of the above-described method of obtaining the signal of frequency (c+s) whose phase is switched between 0 degrees and 180 degrees using the phase switching input signal by performing phase switching at frequency o and then converting the frequency. The problems encountered when a conventional phase switching circuit is used in this configuration will be described below. frequency o is s
Since there will be no inconvenience if you choose equal to
Let's explain by assuming o=s.

第5図において、9は位相切換回路であり、
7,8は位相切換回路の入力端子で、それぞれ基
準クロツク,位相切換入力信号が加えられる。位
相切換回路9の出力は、周波数変換用の発振回路
(発振周波数c)10の出力とともに平衡変調器
11に加えられる。位相切換回路9の搬送波の周
波数はsであるから、平衡変調器11は(c±
s)の周波数成分を出力する。必要な周波数成分
である(c+s)を取り出すためのBPF12が
平衡変調器11の出力に接続されている。周波数
(c+s)と(c−s)との周波数差が約1.4MHz
と比較的小さいためこのBPF12は狭帯域で急
峻な特性を有するものが用いられる。第6図に一
例として(c+s)成分を取り出すBPF12の
周波数特性(斜線部)を示す。
In FIG. 5, 9 is a phase switching circuit,
Reference numerals 7 and 8 are input terminals of the phase switching circuit, to which a reference clock and a phase switching input signal are applied, respectively. The output of the phase switching circuit 9 is applied to a balanced modulator 11 together with the output of an oscillation circuit (oscillation frequency c) 10 for frequency conversion. Since the frequency of the carrier wave of the phase switching circuit 9 is s, the balanced modulator 11 has a frequency of (c±
output the frequency component of s). A BPF 12 for extracting the necessary frequency component (c+s) is connected to the output of the balanced modulator 11. The frequency difference between frequencies (c+s) and (c−s) is approximately 1.4MHz
Since this BPF 12 is relatively small, a filter having a narrow band and steep characteristics is used. FIG. 6 shows, as an example, the frequency characteristics (shaded area) of the BPF 12 that extracts the (c+s) component.

BPF12における入力信号の周波数とBPF1
2の通過帯域の中心周波数(c+s)との差が大
きい程、出力の減衰量は大きい。今、位相切換わ
り期間におけるBPF12の出力振幅を考える。
第2図に示した位相切換わり期間Ta,Tbにおい
ては、位相切換回路9の出力は波形から明らかな
ように周波数s成分が減少し、周波数1/2sが主
な周波数成分となり、平衡変調器11の出力には
周波数(c±s)成分が減少し、周波数(c±1/
2s)成分が主となる。周波数(c+1/2s)は
BPF12の通過帯域の中心周波数(c+s)に
対し1/2sだけ離れているので、第6図に示した
利得GAだけ周波数(c+1/2s)成分の振幅が減
衰する。このため位相切換わり期間、BPF12
の出力のエンベロープは大きな減衰を生じる。こ
の様子を第7図に示す。
Frequency of input signal at BPF12 and BPF1
The greater the difference from the center frequency (c+s) of the second passband, the greater the amount of output attenuation. Now, consider the output amplitude of the BPF 12 during the phase switching period.
During the phase switching periods Ta and Tb shown in FIG. 2, the frequency s component of the output of the phase switching circuit 9 decreases as is clear from the waveform, and the frequency 1/2s becomes the main frequency component, and the balanced modulator The frequency (c±s) component decreases in the output of 11, and the frequency (c±1/
2s) component is the main component. The frequency (c+1/2s) is
Since it is separated by 1/2s from the center frequency (c+s) of the passband of the BPF 12, the amplitude of the frequency (c+1/2s) component is attenuated by the gain G A shown in FIG. Therefore, the phase switching period, BPF12
The output envelope of causes large attenuation. This situation is shown in FIG.

同様に第2図に示した位相切換わり期間Tc,
Tdにおいては位相切換回路9の出力は波形から
明らかなように周波数s成分が減少し、周波数
2sが主な周波成分となり、平衡変調器11の出
力には周波数(c±s)成分が減少し、周波数
(c±2s)成分が主となる。周波数(c+2s)
はBPF12の通過帯域の中心周波数(c+s)
に対しsだけ離れているので第6図に示した利得
GBだけ(c+2s)成分が減衰する。このため位
相切換わり期間、BPF12の出力振幅は大きく
減衰する。この時のBPF12の出力波形は第7
図に示す波形より、BPF12の通過帯域の中心
周波数に対するずれが大きいので出力信号のエン
ベロープの減衰がより大きくなる。
Similarly, the phase switching period Tc shown in FIG.
At Td, the frequency s component of the output of the phase switching circuit 9 decreases as is clear from the waveform, and the frequency
2s becomes the main frequency component, and the frequency (c±s) component decreases in the output of the balanced modulator 11, and the frequency (c±2s) component becomes the main frequency component. Frequency (c+2s)
is the center frequency of the passband of BPF12 (c+s)
Since the gain shown in Figure 6 is s apart from
The (c+2s) component is attenuated by G B. Therefore, the output amplitude of the BPF 12 is greatly attenuated during the phase switching period. The output waveform of BPF12 at this time is the 7th
As shown in the waveform shown in the figure, since the deviation of the passband of the BPF 12 from the center frequency is large, the attenuation of the envelope of the output signal becomes larger.

この位相切換わり期間におけるBPF12の出
力振幅の大きな変動,特に減衰は搬送波のS/N
を比劣化させ、次段の回路の動作を不安定にす
る、例えば次段の回路が平衡変調器であれば、搬
送波(キヤリア信号)のレベルが減衰した期間
に、その出力にキヤリアリークが発生する、とい
つた問題を生じる。
During this phase switching period, the large fluctuation in the output amplitude of BPF12, especially the attenuation, is caused by the S/N of the carrier wave.
For example, if the next stage circuit is a balanced modulator, a carrier leak will occur in its output during the period when the level of the carrier wave (carrier signal) is attenuated. The problem arises as follows.

以上位相切換回路出力を周波数変換した後、必
要な周波数成分をBPFで得るVTRの色信号処理
回路における構成例で説明したが、一般に位相切
換回路出力を直接BPFに通して必要な周波数成
分を得る構成においてもトランスを用いない従来
の位相切換回路は同じ問題を生じることはc=0
と考えることにより明らかである。
The above explanation was based on a configuration example of a VTR color signal processing circuit in which the necessary frequency components are obtained using the BPF after converting the frequency of the output of the phase switching circuit, but in general, the output of the phase switching circuit is directly passed through the BPF to obtain the necessary frequency components. Conventional phase switching circuits that do not use transformers also have the same problem when c = 0.
This becomes clear when you think about it.

発明の目的 本発明は上記従来の問題点を解消するもので、
位相切換わり期間における出力のエンベロープの
変動を小さくし、次段の回路動作の安定性をそこ
なわないような位相反転信号を発生する位相切換
方法およびその回路を提供することを目的とす
る。
Purpose of the invention The present invention solves the above-mentioned conventional problems.
It is an object of the present invention to provide a phase switching method and circuit for generating a phase inversion signal that reduces fluctuations in the output envelope during a phase switching period and does not impair the stability of the circuit operation of the next stage.

発明の構成 本発明は搬送波の位相を入力信号で0度,180
度と切換える際、位相切換わり点における波形を
前記搬送波の2/3倍の周波数のほぼ1サイクルの
波形とする位相切換方法およびその実施に適した
位相切換回路であり、位相切換わり点における波
形を搬送波の2/3倍の周波数のほぼ1サイクルと
することにより位相切換回路の出力を、搬送波周
波数を中心周波数とする狭帯域BPFに入力した
とき、BPF出力の位相切換わり期間における出
力のエンベロープの変動、特に減衰を小さく抑え
ることのできるものである。
Structure of the Invention The present invention sets the phase of the carrier wave to 0 degrees and 180 degrees in the input signal.
A phase switching method and a phase switching circuit suitable for implementing the method, in which the waveform at the phase switching point is a waveform of approximately one cycle having a frequency 2/3 times that of the carrier wave when switching between the carrier waves, and the waveform at the phase switching point is When the output of the phase switching circuit is input to a narrow band BPF with the carrier wave frequency as the center frequency by making it approximately one cycle with a frequency 2/3 times that of the carrier wave, the envelope of the output during the phase switching period of the BPF output It is possible to suppress fluctuations in the output voltage, especially attenuation, to a small level.

実施例の説明 以下、本発明をその一実施例について、図面を
参照しながら説明する。第8図は本発明の一実施
例の構成図、第9図はその具体回路図であり、第
10図はその動作波形図である。第8図におい
て、14は基準クロツクの入力端子、15は位相
切換入力信号の入力端子、16は4相クロツク発
生回路、17はゲートパルス発生回路、18はス
イツチ回路、19は同期化回路、20は出力端子
である。詳細な動作説明は第9図で行なうのでこ
こでは簡単に動作説明を行なう。4相クロツク発
生回路16は入力端子14に入力される基準クロ
ツクを4分周して周波数sの90度ずつ位相のずれ
た4相のクロツク信号φ1,φ2,φ3,φ4を
発生する。ゲートパルス発生回路17は位相切換
入力信号をφ2またはφ4で同期化して、φ1,
φ2,φ3,φ4を各々選択するゲートパルスを
発生する。スイツチ回路18はゲートパルス発生
回路17からのゲートパルスで入力の4相クロツ
ク信号のうちの一つを選択する。位相切換信号に
よりお互い反転位相関係にあるφ1とφ3とを切
換えるが、φ1からφ3に位相を切換える際、必
ずφ2を1サイクル期間選択し、さらにφ3から
φ1に位相を切換える際、必ずφ4を1サイクル
期間選択するようにゲートパルス発生回路17は
ゲートパルスを発生する。これによりスイツチ回
路18の出力は、φ1からφ3への位相切換わり
期間及びφ3からφ1への位相切換わり期間にお
ける波形が、クロツク信号の1.5倍の周期すなわ
ち周波数2/3sの信号の1サイクル波形となる。
DESCRIPTION OF EMBODIMENTS Hereinafter, one embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a block diagram of an embodiment of the present invention, FIG. 9 is a specific circuit diagram thereof, and FIG. 10 is an operating waveform diagram thereof. In FIG. 8, 14 is an input terminal for a reference clock, 15 is an input terminal for a phase switching input signal, 16 is a 4-phase clock generation circuit, 17 is a gate pulse generation circuit, 18 is a switch circuit, 19 is a synchronization circuit, and 20 is the output terminal. A detailed explanation of the operation will be given in FIG. 9, so a brief explanation will be given here. The four-phase clock generation circuit 16 divides the reference clock input to the input terminal 14 by four to generate four-phase clock signals φ1, φ2, φ3, and φ4 whose phases are shifted by 90 degrees of the frequency s. The gate pulse generation circuit 17 synchronizes the phase switching input signal with φ2 or φ4 and outputs the phase switching input signal with φ1, φ4.
Gate pulses are generated to select each of φ2, φ3, and φ4. The switch circuit 18 selects one of the input four-phase clock signals using the gate pulse from the gate pulse generating circuit 17. The phase switching signal switches between φ1 and φ3, which have an inverted phase relationship with each other. When switching the phase from φ1 to φ3, φ2 must be selected for one cycle, and when switching the phase from φ3 to φ1, φ4 must be selected for one cycle. The gate pulse generating circuit 17 generates a gate pulse to select a cycle period. As a result, the waveform of the output of the switch circuit 18 during the phase switching period from φ1 to φ3 and from φ3 to φ1 is a 1-cycle waveform of a signal with a period of 1.5 times that of the clock signal, that is, a frequency of 2/3 s. becomes.

第9図において50,51,57,58,59
はD型フリツプフロツプで、52,53,54,
55,60,61,62,63はANDゲートで、
56はORゲートである。14は基準クロツクを
入力する入力端子、15は位相切換入力信信号の
入力端子、20は出力端子である。4相クロツク
発生回路16はD型フリツプフロツプ50,51
で構成される4分周回路である。第10図のAに
基準クロツクの波形を、B,C,D,Eに4相ク
ロツク信号φ1,φ2,φ3,φ4の波形を示
す。ゲートパルス発生回路17はD型フリツプフ
ロツプ58,59及びANDゲート60,61,
62,63で構成される。端子15に入力された
位相切換入力信号はクロツク信信号φ2でD型フ
リツプフロツプ58に入力され、さらにD型フリ
ツプフロツプ58のQ出力はクロツク信号φ2で
D型フリツプフロツプ59に入力される。この2
つのフリツプフロツプ58,59のQ出力及び
出力をもとにゲート60,61,62,63でゲ
ートパルスを作成している。タイミング図である
第10図のFに位相切換入力信号を、G,Hにそ
れぞれフリツプフロツプ58,59のQ出力を、
I,J,K,Lにそれぞれゲート60,61,6
2,63の出力を示す。ゲート60,61,5
2,63の出力はそれぞれクロツク信号φ1,φ
2,φ3,φ4を選択するゲートパルスで、φ1
ゲートパルス、φ2ゲートパルス、φ3ゲートパ
ルス、φ4ゲートパルスと呼ぶことにする。同図
からわかるようにφ1ゲートパルスが出力された
後、次にφ3ゲートパルスが出力されるまでにク
ロツク信号φ2の1サイクル期間だけφ2ゲート
パルスが出力され、またφ3ゲートパルスが出力
された後、次にφ1ゲートパルスが出力されるま
でにクロツク信号φ2の1サイクル期間だけφ4
ゲートパルスが出力されるように構成されてい
る。スイツチ回路18はゲート52,53,5
4,55,56で構成され、ゲートパルスにより
4相クロツク信号φ1,φ2,φ3,φ4の1つ
が選択されゲート56から出力される。ゲート5
6の出力波形を第10図のMに示す。波形図に示
したクロツク信号φ1からφ3への切換わりの期
間Te及びクロツク信号φ3からφ1への切換わ
りの期間Tの波形が4相クロツク信号の周波数
sの2/3倍の周波数すなわち2/3sの信号の丁度1
サイクルの波形となつていることがわかる。スイ
ツチ回路出力は内部ゲートの伝搬遅延差による位
相誤差をもつ。そこでスイツチ回路出力を同期化
回路19相当するフリツプフロツプ57のD入力
端子に接続し、基準クロツクで読み込むことによ
り位相誤差を除去している。
50, 51, 57, 58, 59 in Figure 9
is a D-type flip-flop, 52, 53, 54,
55, 60, 61, 62, 63 are AND gates,
56 is an OR gate. 14 is an input terminal for inputting a reference clock, 15 is an input terminal for a phase switching input signal, and 20 is an output terminal. The four-phase clock generation circuit 16 includes D-type flip-flops 50 and 51.
This is a 4-frequency divider circuit consisting of: In FIG. 10, A shows the waveform of the reference clock, and B, C, D, and E show the waveforms of the four-phase clock signals φ1, φ2, φ3, and φ4. The gate pulse generation circuit 17 includes D-type flip-flops 58, 59 and AND gates 60, 61,
It consists of 62 and 63. The phase switching input signal input to the terminal 15 is input to a D-type flip-flop 58 as a clock signal φ2, and the Q output of the D-type flip-flop 58 is input to a D-type flip-flop 59 as a clock signal φ2. This 2
Gate pulses are created by gates 60, 61, 62, and 63 based on the Q outputs and outputs of the flip-flops 58 and 59. In FIG. 10, which is a timing diagram, F is the phase switching input signal, G and H are the Q outputs of flip-flops 58 and 59, respectively.
Gates 60, 61, 6 for I, J, K, and L, respectively.
The output of 2,63 is shown. Gate 60, 61, 5
The outputs of 2 and 63 are clock signals φ1 and φ, respectively.
2, φ3, φ4 with the gate pulse to select φ1
These will be referred to as gate pulses, φ2 gate pulses, φ3 gate pulses, and φ4 gate pulses. As can be seen from the figure, after the φ1 gate pulse is output, the φ2 gate pulse is output for one cycle of the clock signal φ2 before the next φ3 gate pulse is output, and after the φ3 gate pulse is output, , φ4 for one cycle period of clock signal φ2 until the next φ1 gate pulse is output.
It is configured to output a gate pulse. The switch circuit 18 has gates 52, 53, 5
One of the four-phase clock signals φ1, φ2, φ3, and φ4 is selected by the gate pulse and outputted from the gate 56. gate 5
The output waveform of No. 6 is shown in M in FIG. The waveforms of the period Te of switching from clock signal φ1 to φ3 and the period T of switching from clock signal φ3 to φ1 shown in the waveform diagram correspond to the frequency of the four-phase clock signal.
2/3 times the frequency of s, or exactly 1 of the 2/3s signal
It can be seen that the waveform is a cycle. The switch circuit output has a phase error due to the propagation delay difference between the internal gates. Therefore, the output of the switch circuit is connected to the D input terminal of the flip-flop 57 corresponding to the synchronization circuit 19, and the phase error is removed by reading it with the reference clock.

フリツプフロツプ57の出力が位相切換回路出
力である。第10図のNにこの出力波形を示す。
この出力波形の位相切換わり期間における周波数
成分はs成分が減少し、周波数2/3s成分が主と
なる。
The output of flip-flop 57 is the phase switching circuit output. This output waveform is shown at N in FIG.
In the frequency components of this output waveform during the phase switching period, the s component decreases and the frequency 2/3s component becomes the main component.

今、本実施例の位相切換回路を第5図に示した
構成に用いた場合、第5図の平衡変調器11の出
力の周波数成分は位相切換わり期間中(c±s)
成分が減少し、(c±2/3s)成分が主となる。周
波数(c±2/3s)はBPF12の通過帯域の中心
周波数(c+s)に対し1/3sだけ離れているの
で第6図に示した利得Gcだけ周波数(c+2/3
s)成分の振幅が減衰する。しかしながら従来例
に示した場合よりも減衰を小さくできるため
BPF12の出力のエンベロープの変動、特に減
衰を小さくできることがわかる。
Now, when the phase switching circuit of this embodiment is used in the configuration shown in FIG. 5, the frequency component of the output of the balanced modulator 11 in FIG.
The component decreases, and the (c±2/3s) component becomes the main component. Since the frequency (c±2/3s) is 1/3s apart from the center frequency (c+s) of the passband of BPF12, the frequency (c+2/3s) is separated by the gain Gc shown in Figure 6.
s) The amplitude of the component is attenuated. However, since the attenuation can be made smaller than in the case shown in the conventional example,
It can be seen that fluctuations in the envelope of the output of the BPF 12, especially attenuation, can be reduced.

以上のように本実施例によれば、搬送波の位相
を反転位相に切換える際に切換わり点における波
形を搬送波の周波数の2/3倍の周波数の1サイク
ルの波形とすることにより、位相切換回路出力を
BPFに入力した時のBPF出力のエンベロープ変
動、特に減衰を小さくすることができ、搬送波の
位相切換わり点におけるS/N比の劣化、次段の
回路動作の不安定さを改善できる。また、トラン
スを使用しないため集積回路化でき、回路を小型
化できる。
As described above, according to this embodiment, when the phase of the carrier wave is switched to the inverted phase, the waveform at the switching point is a one-cycle waveform with a frequency 2/3 times the frequency of the carrier wave, so that the phase switching circuit output
Envelope fluctuations, especially attenuation, of the BPF output when input to the BPF can be reduced, and deterioration of the S/N ratio at the phase switching point of the carrier wave and instability of the circuit operation of the next stage can be improved. In addition, since no transformer is used, it can be integrated into an integrated circuit and the circuit can be made smaller.

BPF12の利得一周波数特性のバラツキすな
わち中心周波数のずれに対する許容差を大きくと
れるといつた利点をも有する。
It also has the advantage of being able to have a large tolerance for variations in the gain-frequency characteristics of the BPF 12, that is, deviations in the center frequency.

発明の効果 本発明は、位相切換わり点における波形を搬送
波の周波数の2/3倍の周波数のほぼ1サイクルの
波形とすることにより搬送波のみを通過させる
BPFに位相切換回路出力を入力して得られる
BPFの位相切換わり点におけるエンベロープの
変動、特に減衰を小さくすることができ、位相切
換時の搬送波のS/N比、次段の回路動作の安定
度を改善でき、その効果は大きい。また、集積回
路化が容易で回路の小型化が容易であり、BPF
の中心周波数のバラツキに対する許容差を大きく
とることができる。
Effects of the Invention The present invention allows only the carrier wave to pass by making the waveform at the phase switching point a waveform of approximately one cycle with a frequency 2/3 times the frequency of the carrier wave.
Obtained by inputting the phase switching circuit output to BPF
Envelope fluctuations, especially attenuation, at the phase switching point of the BPF can be reduced, and the S/N ratio of the carrier wave at the time of phase switching and the stability of the next stage circuit operation can be improved, which is highly effective. In addition, it is easy to integrate the circuit, it is easy to miniaturize the circuit, and the BPF
It is possible to have a large tolerance for variations in the center frequency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の位相切換回路の構成図、第2図
A〜Fは従来の位相切換回路の動作波形図、第3
図は従来の位相切換回路の一例の回路図、第4図
A〜Fはその動作波形図、第5図は位相切換回路
の使用例の構成図、第6図はBPFの周波数特性
図、第7図はBPFの出力波形図、第8図は本発
明の一実施例における位相切換回路の構成図、第
9図は同詳細回路図、第10図はその動作波形図
である。 9…位相比較回路、16…4相クロツク発生回
路、17…ゲートパルス発生回路、18…スイツ
チ回路、19…同期化回路。
Figure 1 is a configuration diagram of a conventional phase switching circuit, Figures 2 A to F are operating waveform diagrams of a conventional phase switching circuit, and Figure 3
The figure is a circuit diagram of an example of a conventional phase switching circuit, Figures 4A to 4F are its operating waveform diagrams, Figure 5 is a configuration diagram of an example of the use of the phase switching circuit, Figure 6 is a frequency characteristic diagram of BPF, 7 is an output waveform diagram of the BPF, FIG. 8 is a configuration diagram of a phase switching circuit according to an embodiment of the present invention, FIG. 9 is a detailed circuit diagram thereof, and FIG. 10 is an operational waveform diagram thereof. 9... Phase comparison circuit, 16... 4-phase clock generation circuit, 17... Gate pulse generation circuit, 18... Switch circuit, 19... Synchronization circuit.

Claims (1)

【特許請求の範囲】 1 色信号を、周波数変調された輝度信号の低域
に周波数変換して記録するに際して、低域搬送波
の位相を一水平期間毎に0度と180度の間で切換
えて、その得られた出力を周波数変換した後、必
要な周波数成分を帯域通過フイルターにより選択
して得た波形を用いて、前記色信号を低域に周波
数変換する磁気録画再生方法において、前記搬送
波の位相を位相切換入力信号で0度と180度の間
で切換えるときの位相切換わり点における波形
を、前記搬送波の2/3倍の周波数の1サイクルの
波形とすることを特徴とする磁気録画再生方法。 2 色信号を、周波数変調された輝度信号の低域
に周波数変換して記録するに際して、低域搬送波
の位相を一水平期間毎に0度と180度の間で切換
えて、その得られた出力を周波数変換した後、必
要な周波数成分を帯域通過フイルターにより選択
して得た波形を用いて、前記色信号を低域に周波
数変換する磁気録画再生装置において、前記低域
搬送波の位相を一水平期間毎に0度と180度の間
で切換えるための位相切換回路が、前記搬送波の
4倍の周波数の基準クロツクを入力とし4分周し
て位相が90度ずつ遅れたクロツク信号φ1,φ
2,φ3,φ4を発生するクロツク発生回路と、
位相切換入力信号により反転位相関係にあるクロ
ツク信号φ1,φ3を選択するゲートパルスを発
生するとともに、クロツク信号φ1からクロツク
信号φ3に切換える際にクロツク信号φ2を1サ
イクル期間だけ選択し、クロツク信号φ3からク
ロツク信号φ1に切換える際にクロツク信号φ4
を1サイクル期間だけ選択するゲートパルスを発
生するゲートパルス発生回路と、前記クロツク信
号φ1,φ2,φ3,φ4の1つを前記ゲートパ
ルス発生回路からのゲートパルスで切換えて出力
するスイツチ回路と、前記スイツチ回路出力を入
力とし前記基準クロツクで同期化して出力する同
期化回路とを備えたことを特徴とする磁気録画再
生装置。
[Claims] 1. When converting the frequency of a color signal to the low frequency range of a frequency-modulated luminance signal and recording it, the phase of the low frequency carrier wave is switched between 0 degrees and 180 degrees every horizontal period. , in a magnetic recording and reproducing method in which the obtained output is frequency-converted, and then the necessary frequency components are selected by a band-pass filter, and the obtained waveform is used to frequency-convert the color signal to a lower frequency band. A magnetic recording and reproducing device characterized in that when the phase is switched between 0 degrees and 180 degrees using a phase switching input signal, a waveform at a phase switching point is a waveform of one cycle having a frequency 2/3 times that of the carrier wave. Method. 2. When converting the frequency of the color signal to the low frequency range of the frequency-modulated luminance signal and recording it, the phase of the low frequency carrier wave is switched between 0 degrees and 180 degrees every horizontal period, and the resulting output is In a magnetic recording and reproducing device that frequency-converts the color signal to a low frequency range using a waveform obtained by selecting necessary frequency components using a band-pass filter, the phase of the low-frequency carrier wave is adjusted horizontally. A phase switching circuit for switching between 0 degrees and 180 degrees for each period inputs a reference clock with a frequency four times that of the carrier wave, and divides the frequency by four to produce clock signals φ1 and φ whose phases are delayed by 90 degrees.
2, a clock generation circuit that generates φ3, and φ4;
The phase switching input signal generates a gate pulse that selects clock signals φ1 and φ3 that have an inverted phase relationship, and when switching from clock signal φ1 to clock signal φ3, clock signal φ2 is selected for one cycle period, and clock signal φ3 is selected. When switching from clock signal φ1 to clock signal φ4,
a gate pulse generation circuit that generates a gate pulse that selects the clock signal for only one cycle period, and a switch circuit that switches and outputs one of the clock signals φ1, φ2, φ3, and φ4 using the gate pulse from the gate pulse generation circuit; 1. A magnetic recording and reproducing apparatus comprising: a synchronization circuit that receives the output of the switch circuit as an input, synchronizes with the reference clock, and outputs the synchronized circuit.
JP7574683A 1983-04-28 1983-04-28 Phase switching method and its circuit Granted JPS59201596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7574683A JPS59201596A (en) 1983-04-28 1983-04-28 Phase switching method and its circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7574683A JPS59201596A (en) 1983-04-28 1983-04-28 Phase switching method and its circuit

Publications (2)

Publication Number Publication Date
JPS59201596A JPS59201596A (en) 1984-11-15
JPH0465598B2 true JPH0465598B2 (en) 1992-10-20

Family

ID=13585140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7574683A Granted JPS59201596A (en) 1983-04-28 1983-04-28 Phase switching method and its circuit

Country Status (1)

Country Link
JP (1) JPS59201596A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2834009B2 (en) * 1994-10-25 1998-12-09 福島日本電気株式会社 Multi-mode phase modulator

Also Published As

Publication number Publication date
JPS59201596A (en) 1984-11-15

Similar Documents

Publication Publication Date Title
US4682250A (en) Apparatus for recording a video signal sampled at frequency fs and reproducing the video signal as a signal essentially sampled at frequency 2fs
SU1105132A3 (en) System of colour television signal processing unpublished author's certificates
US5083213A (en) Chrominance signal processing circuit and video tape recorder having function of processing chrominance signal
JPH0465598B2 (en)
US4646165A (en) Chrominance signal recording apparatus utilizing digital sampling and quantizing techniques
JP3528868B2 (en) Conversion circuit for digital data sampling phase
KR950001703A (en) VTR signal processing circuit
JPS6266793A (en) Automatic phase control circuit
JPS63226192A (en) Color signal processor
JPH0421399B2 (en)
US5097347A (en) Method and apparatus for generating a playback clock from a 2.5 MHz chroma PLL
JPS6012870A (en) Vertical synchronizing and separating device
JPS60111590A (en) Digital processor of chrominance signal
EP0476922A2 (en) Circuit for processing the frequency of a signal for a video cassette recorder
JPH0421398B2 (en)
JPH01200789A (en) Video signal recording and reproducing device
JPH02179192A (en) Chrominance signal processor
JPS59117888A (en) Color signal processing circuit
JPH0422077B2 (en)
JPH04356890A (en) Chrominance signal processor
JPH03295368A (en) Dc level control circuit
JPH046318B2 (en)
JPH04302597A (en) Carrier generator
JPS60149293A (en) Apc circuit
JPH0261193B2 (en)