JPH045973Y2 - - Google Patents

Info

Publication number
JPH045973Y2
JPH045973Y2 JP1986068854U JP6885486U JPH045973Y2 JP H045973 Y2 JPH045973 Y2 JP H045973Y2 JP 1986068854 U JP1986068854 U JP 1986068854U JP 6885486 U JP6885486 U JP 6885486U JP H045973 Y2 JPH045973 Y2 JP H045973Y2
Authority
JP
Japan
Prior art keywords
valve
temperature
refrigerant
diaphragm
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986068854U
Other languages
Japanese (ja)
Other versions
JPS61184178U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986068854U priority Critical patent/JPH045973Y2/ja
Publication of JPS61184178U publication Critical patent/JPS61184178U/ja
Application granted granted Critical
Publication of JPH045973Y2 publication Critical patent/JPH045973Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)

Description

【考案の詳細な説明】 この考案は自動車に採用されているクーラサイ
クル用の膨張弁に関する。
[Detailed Description of the Invention] This invention relates to an expansion valve for a cooler cycle used in automobiles.

従来の膨張弁としては、例えば第1図〜第4図
に示すようなものがある。(特開昭54−51140号公
報参照)先ずクーラサイクル1を説明すると、ク
ーラサイクル1はコンプレツサ2の吐出圧力・吸
入圧力にて冷媒をサイクル中で循環させるもので
あり、具体的にはコンプレツサ2が低温低圧の気
体冷媒Aを高温高圧の気体冷媒Bに変えて送り出
し、コンデンサ3で外気との熱交換を行なつて高
温高圧の液体冷媒Cとし、リキツドタンク4でこ
の冷媒C中の水分やゴミを取除き、膨張弁5でリ
キツドタンク4より送られて来た高温高圧の液冷
媒Cを「絞り作用」にて霧状の低温低圧の気体冷
媒Dに変えてエバポレータ6へ送り、エバポレー
タ6ではブロア(図示せず)より送られて来る車
室空気との熱交換を行なつて低温低圧の気体冷媒
Aに変えコンプレツサ2へ送るものである。尚図
中7は均圧管、8は感温筒、9は入口配管、そし
て10は出口配管を各々示す。
Examples of conventional expansion valves include those shown in FIGS. 1 to 4, for example. (Refer to Japanese Unexamined Patent Publication No. 54-51140) First, the cooler cycle 1 will be explained. The cooler cycle 1 circulates refrigerant in the cycle at the discharge pressure and suction pressure of the compressor 2. converts the low-temperature, low-pressure gaseous refrigerant A into high-temperature, high-pressure gaseous refrigerant B and sends it out, exchanges heat with the outside air in the condenser 3 to become a high-temperature, high-pressure liquid refrigerant C, and removes moisture and dirt in this refrigerant C in the liquid tank 4. The expansion valve 5 converts the high temperature, high pressure liquid refrigerant C sent from the liquid tank 4 into a mist of low temperature, low pressure gas refrigerant D using the "throttling action" and sends it to the evaporator 6, where the blower It exchanges heat with cabin air sent from a source (not shown) and converts it into low temperature, low pressure gaseous refrigerant A and sends it to the compressor 2. In the figure, 7 is a pressure equalizing pipe, 8 is a temperature sensing cylinder, 9 is an inlet pipe, and 10 is an outlet pipe.

このようなクーラサイクル1にあつて、膨張弁
5は前述の如くリキツドタンク4からの高温高圧
の液冷媒Cを弁体11と弁座12間の通路13に
導いて絞り、断熱膨張で圧力と温度を下げ霧状の
低温低圧の気体冷媒Dに変えてエバポレータ6へ
送るものであり、ダイヤフラム14、弁体11形
成用の弁棒15及び弁ボール16、スプリング1
7等で主に構成してある。そして通路13は弁ボ
ール16と弁孔18間の距離(S0〜S1)にてその
開閉量が決められている。尚通路13の開閉は、
具体的には、エバポレータ6の出口側30の配管
31と接触している感温筒8を介して、エバポレ
ータ6の出口側30の温度を、密閉状とされ冷媒
Eの封入されている感温室32に伝達し、上記温
度変化による感温室32内部の冷媒Eの膨張・収
縮をダイヤフラム14の進退動に変換させ、該ダ
イヤフラム14の進退動により、弁棒15と弁ボ
ール16を図中上下方向(矢示F方向)に移動さ
せることにより行なわせるものである。
In such a cooler cycle 1, the expansion valve 5 guides the high-temperature, high-pressure liquid refrigerant C from the liquid tank 4 to the passage 13 between the valve body 11 and the valve seat 12 and throttles it, as described above, and reduces the pressure and temperature by adiabatic expansion. The diaphragm 14, the valve rod 15 for forming the valve body 11, the valve ball 16, the spring 1
It is mainly composed of 7th magnitude. The amount of opening and closing of the passage 13 is determined by the distance (S 0 -S 1 ) between the valve ball 16 and the valve hole 18. Furthermore, the opening and closing of the passage 13 is as follows.
Specifically, the temperature at the outlet side 30 of the evaporator 6 is controlled via the temperature sensing cylinder 8 which is in contact with the piping 31 at the outlet side 30 of the evaporator 6, and the temperature at the outlet side 30 of the evaporator 6 is controlled by a temperature sensitive chamber in which the refrigerant E is sealed. 32, the expansion and contraction of the refrigerant E inside the sensitive chamber 32 due to the temperature change is converted into the forward and backward movement of the diaphragm 14, and the forward and backward movement of the diaphragm 14 moves the valve stem 15 and the valve ball 16 in the vertical direction in the figure. This is done by moving it in the direction of arrow F.

しかしながらこのような従来の膨張弁5にあつ
ては、弁体11の移動は、前記の如くダイヤフラ
ム14の進退動により行なわれるため、該ダイヤ
フラム14の進退動量としての弁ストローク1
が一定のものに決められてありこの弁ストローク
1に応じた距離(S0〜S1)の範囲内で前記の如
くダイヤフラム14の進退動により通路13の開
閉量が決まり且つ流せる冷媒量もこれによつて定
まるため、クールダウン初期の冷えをよくするに
は冷媒循環量を多く必要とするにも拘らず多く流
せず冷媒循環量が不足気味となり、いわば冷えが
甘くなつてしまう不具合がある。そして、この不
具合を避けるため流量を大にした膨張弁5を使用
することも考えられるが、逆に安定時の流量を絞
る時弁の微小ストロークで流量が大きく変わるた
め弁のハンチング現象が生じてしまうという不具
合がある。
However, in such a conventional expansion valve 5, since the movement of the valve body 11 is performed by the forward and backward movement of the diaphragm 14 as described above, the valve stroke 1 as the amount of forward and backward movement of the diaphragm 14 is
is determined to be a constant value, and this valve stroke
As described above, the amount of opening and closing of the passage 13 is determined by the forward and backward movement of the diaphragm 14 within the range of the distance (S 0 to S 1 ) corresponding to 1, and the amount of refrigerant that can flow is also determined thereby. Although a large amount of refrigerant is required to improve the performance, the amount of refrigerant that cannot be circulated is insufficient, resulting in poor cooling. In order to avoid this problem, it may be possible to use an expansion valve 5 with a large flow rate, but conversely, when the flow rate is throttled at a stable state, the flow rate changes greatly with a minute stroke of the valve, which causes a hunting phenomenon of the valve. There is a problem with it being stored away.

この考案は、このような従来の不具合に着目し
てなしたもので、弁体を、弁座の弁孔部分に当接
自在な弁ボールと、上端が前記ダイヤフラムに接
続され且つ下端に前記弁ボールを設けた弁棒と、
から形成すると共に、該弁棒全体を、弁孔から弁
外へ突出する下端部分も含め、冷媒の温度により
形状変化を起こして弁ストロークを大きくする形
状記憶合金にて形成し、弁棒の形状変化量及びダ
イヤフラムの進退動量とにより、弁ボールと弁座
の弁孔との間に形成される通路の開閉量を制御自
在としたことを要旨としている。
This invention was made by focusing on such conventional problems, and the valve body is made of a valve ball that can freely come into contact with the valve hole of the valve seat, and an upper end connected to the diaphragm and a lower end connected to the valve ball. A valve stem with a ball,
The entire valve stem, including the lower end portion that protrudes from the valve hole to the outside of the valve, is made of a shape memory alloy that changes shape depending on the temperature of the refrigerant to increase the valve stroke. The gist is that the amount of opening and closing of the passage formed between the valve ball and the valve hole of the valve seat can be controlled freely by the amount of change and the amount of forward and backward movement of the diaphragm.

以下、この考案を図面に基づいて説明する。第
5図〜第8図は、この考案の一実施例を示す図で
ある。尚以下の説明で従来と同一乃至類似の部分
については同一符号を以つて示し重複説明を省略
するものである。
This invention will be explained below based on the drawings. FIGS. 5 to 8 are diagrams showing an embodiment of this invention. In the following description, parts that are the same or similar to those of the prior art will be denoted by the same reference numerals and redundant explanation will be omitted.

20は弁体で、弁座12の弁孔18部分に当接
自在な弁ボール22と、上端がダイヤフラム14
に接続され且つ下端に前記弁ボール22を設けた
弁棒21と、から構成してある。そして、この弁
体20のうち、弁棒21は全体が形状記憶合金で
形成されている。より具体的には、高温高圧の液
冷媒Cが所定の温度(例えば、60〜70℃以上)に
なれば弁ストロークがΔ分だけ増加するように
形状記憶処理した形状記憶合金により、弁棒21
全体が、弁外へ突出する下端部分も含めて形成さ
れている。
20 is a valve body, which includes a valve ball 22 that can freely come into contact with the valve hole 18 portion of the valve seat 12, and a diaphragm 14 at the upper end.
The valve stem 21 is connected to the valve rod 21 and has the valve ball 22 at its lower end. Of this valve body 20, the valve stem 21 is entirely formed of a shape memory alloy. More specifically, the valve stem 21 is made of a shape memory alloy that has been subjected to shape memory treatment so that the valve stroke increases by Δ when the high temperature and high pressure liquid refrigerant C reaches a predetermined temperature (for example, 60 to 70 degrees Celsius or higher).
The entire valve including the lower end portion protruding outside the valve is formed.

この結果、ダイヤフラム14の進退動量として
の弁ストローク1と、形状記憶効果による増加
分Δ〔弁棒の変化量〕を加えたものが弁ストロ
ーク2とされている。このために採用する「形
状記憶合金」としては銅系〔Cu−Zn−A〕、チ
タン・ニツケル系〔Ti−Ni〕その他を適宜使用
でき、特に合金の種類を特定するものではない。
すなわち、形状記憶合金の種類は、形状変化の前
後に於いてΔが得られ、前記の如く形状変化Δ
とダイヤフラムの移動による弁ストローク1
の和により弁ストローク2が得られることで、
弁ボール22と弁孔18間の距離(S0〜S1〜S2
が得られるものであれば何でも良い。
As a result, the valve stroke 2 is the sum of the valve stroke 1 as the amount of forward and backward movement of the diaphragm 14 and the increase amount Δ (amount of change in the valve stem) due to the shape memory effect. As the "shape memory alloy" employed for this purpose, copper-based [Cu-Zn-A], titanium-nickel-based [Ti-Ni], and others can be used as appropriate, and the type of alloy is not particularly specified.
In other words, for the type of shape memory alloy, Δ is obtained before and after the shape change, and as mentioned above, the shape change Δ
and valve stroke due to diaphragm movement 1
Valve stroke 2 is obtained by the sum of
Distance between valve ball 22 and valve hole 18 (S 0 ~ S 1 ~ S 2 )
Anything is fine as long as it can be obtained.

尚、図中(S2)は弁ストローク2の場合の弁
ボール22と弁孔18間の距離を示す。
Note that (S 2 ) in the figure indicates the distance between the valve ball 22 and the valve hole 18 in the case of valve stroke 2 .

次に作用を説明する。 Next, the effect will be explained.

クーラサイクル1に於いて、クールダウン初期
に高圧側の圧力・温度が上昇すると、それに伴つ
てエバポレータ6の出口側30の配管31内の温
度も上昇しているので、感温筒8を介して感温室
32内の冷媒Eは膨張し、ダイヤフラム14を下
げる。従つて、弁体20もその分の弁ストローク
1だけ下がる。これにより、弁棒21の下端部
分が弁孔18から弁外へ突出し、弁外において高
温高圧(60〜70℃以上)の液体冷媒Cと直接接触
する。すると、形状記憶合金はマルテンサイト相
からオーステナイト相に戻り、その形状記憶に応
じて弁棒21は変形伸長し、その弁ストロークが
Δ分増加する。このように、ダイヤフラム14
による弁ストローク1に、形状記憶合金による
弁ストロークΔが加えられて弁ストローク2
となり、弁ボール16と弁孔18間の距離S1は弁
ストローク2に応じた大きな距離S2となつて、
弁体20〔具体的には弁ボール22〕と弁座12
間の通路13の開閉量が増大する。このようにΔ
と弁ストローク1の二段階にわたつて通路1
3が「開」とされるためその分冷媒流量が増し第
8図で示すようにクールダウン初期の冷えが一層
よくなる。
In the cooler cycle 1, when the pressure and temperature on the high pressure side rise in the early stage of cool-down, the temperature inside the pipe 31 on the outlet side 30 of the evaporator 6 also rises, so The refrigerant E in the sensitive chamber 32 expands and lowers the diaphragm 14. Therefore, the valve body 20 also has a valve stroke corresponding to that amount.
It goes down by 1 . As a result, the lower end portion of the valve rod 21 protrudes from the valve hole 18 to the outside of the valve, and comes into direct contact with the high-temperature, high-pressure (60 to 70° C. or higher) liquid refrigerant C outside the valve. Then, the shape memory alloy returns from the martensite phase to the austenite phase, and the valve stem 21 is deformed and elongated according to the shape memory, and the valve stroke increases by Δ. In this way, the diaphragm 14
The valve stroke 1 due to the shape memory alloy is added to the valve stroke Δ resulting in the valve stroke 2.
Therefore, the distance S 1 between the valve ball 16 and the valve hole 18 becomes a large distance S 2 corresponding to the valve stroke 2 , and
Valve body 20 [specifically, valve ball 22] and valve seat 12
The amount of opening and closing of the passage 13 between the two increases. In this way Δ
and passage 1 over two stages of valve stroke 1
3 is set to "open", the flow rate of refrigerant increases accordingly, and as shown in FIG. 8, the cooling at the initial stage of cool-down becomes even better.

そして次第に冷えて来ると高温高圧の液冷媒C
の圧力、温度もクールダウン初期より下がり、そ
して更にエバポレータ6の出口側30の配管31
内の温度も下がることになる。これらの温度低下
により弁棒21を形成している形状記憶合金はオ
ーステナイト相よりマルテンサイト相へ変わり弁
ストローク2は前記したΔ分だけ縮小し元の
弁ストローク1に戻り、弁ボール22と弁孔1
8の距離もS2よりS1となり、弁体20と弁座12
間の通路13の開閉量も以前の状態に戻る。
Then, as it gradually cools down, the high temperature and high pressure liquid refrigerant C
The pressure and temperature of the pipe 31 on the outlet side 30 of the evaporator 6 also decrease from the initial stage of cool-down.
The temperature inside will also drop. Due to these temperature drops, the shape memory alloy forming the valve stem 21 changes from an austenitic phase to a martensitic phase, and the valve stroke 2 is reduced by the above-mentioned Δ and returns to the original valve stroke 1 , causing the valve ball 22 and the valve hole to change. 1
8 is also S 1 from S 2 , and the distance between the valve body 20 and the valve seat 12 is
The opening/closing amount of the passage 13 between the two also returns to the previous state.

そして、配管31内の温度低下が感温筒8を経
て感温室32に伝達され冷媒Eを収縮させてダイ
ヤフラム14を退動させることになり、これによ
つて、ダイヤフラム14の進退動量としての弁ス
トローク1はより減少し、この結果通路13は
より「閉」の状態に近ずき、以下、弁ストローク
1の範囲内で通路13の開閉量が調整制御され、
冷媒流量は従来と同じく調整流量とされる。
Then, the temperature drop inside the pipe 31 is transmitted to the temperature-sensitive chamber 32 via the temperature-sensitive cylinder 8, causing the refrigerant E to contract and the diaphragm 14 to retract. The stroke 1 decreases further, and as a result the passage 13 approaches the "closed" state, hereinafter referred to as the valve stroke.
The amount of opening and closing of the passage 13 is adjusted and controlled within the range of 1 ,
The refrigerant flow rate is adjusted as in the conventional case.

この考案は以上説明してきたような内容のもの
なので、クールダウン初期に冷媒流量を大幅に増
大することができ、クールダウン初期に於ける冷
却性能をより一層向上できるという効果がある。
Since this invention has the content described above, it is possible to significantly increase the refrigerant flow rate at the early stage of cool-down, and has the effect of further improving the cooling performance at the early stage of cool-down.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はクーラサイクルの全体説明図、第2図
は一部を破断して示す従来の膨張弁の側面図、第
3図イ,ロは弁閉と弁開状態を各々示す説明図、
第4図は従来の膨張弁によるクールダウン時の弁
開度と室温の関係を示すグラフ、第5図はこの考
案の一実施例を示す第2図相当の側面図、第6図
は弁ストロークの変化を示す弁体の側面図、第7
図イ,ロは第3図イ,ロ相当の弁閉・弁開状態を
各々示す説明図、そして第8図は第4図相当のク
ールダウン時の弁開度と室温の関係を示すグラフ
である。 1……クーラサイクル、4……リキツドタン
ク、5……膨張弁、6……エバポレータ、C……
リキツドタンクからの高圧液冷媒、11,20…
…弁体、12……弁座、13……弁体と弁座間の
通路、14……ダイヤフラム、15,21……弁
棒、16,22……弁ボール、18……弁孔、
……弁ストローク(ダイヤフラムによる進退動
量)、2……弁ストローク、Δ……弁ストロー
クの増大量(弁棒の変化量)、30……エバポレ
ータ出口側、32……感温室、E……感温室内部
の冷媒。
Fig. 1 is an overall explanatory diagram of the cooler cycle, Fig. 2 is a partially cutaway side view of a conventional expansion valve, and Figs. 3 A and B are explanatory diagrams showing the valve closed and valve open states, respectively.
Fig. 4 is a graph showing the relationship between the valve opening degree and room temperature during cool-down using a conventional expansion valve, Fig. 5 is a side view equivalent to Fig. 2 showing an embodiment of this invention, and Fig. 6 is the valve stroke. 7th side view of the valve body showing changes in
Figures A and B are explanatory diagrams showing the valve closed and valve open states corresponding to Figures 3 A and B, respectively, and Figure 8 is a graph showing the relationship between the valve opening degree and room temperature during cool-down equivalent to Figure 4. be. 1... Cooler cycle, 4... Liquid tank, 5... Expansion valve, 6... Evaporator, C...
High pressure liquid refrigerant from liquid tank, 11, 20...
...Valve body, 12... Valve seat, 13... Passage between the valve body and valve seat, 14... Diaphragm, 15, 21... Valve stem, 16, 22... Valve ball, 18... Valve hole,
1 ... Valve stroke (amount of forward and backward movement by the diaphragm), 2 ... Valve stroke, Δ... Amount of increase in valve stroke (amount of change in valve stem), 30... Evaporator outlet side, 32... Sensitive chamber, E... Refrigerant inside the sensitive greenhouse.

Claims (1)

【実用新案登録請求の範囲】 エバポレータ出口側の温度を、密封状とされ冷
媒の封入されている感温室に伝達し、上記温度の
変化による感温室内部の冷媒の膨張・収縮をダイ
ヤフラムの進退動に変換せしめ、該ダイヤフラム
の進退動により弁体と弁座の弁孔との間に形成さ
れる通路を開閉し、該通路に導かれるリキツドタ
ンクからの高温高圧の液冷媒を低温低圧の気体冷
媒としてエバポレータに送るクーラサイクル用の
膨張弁に於いて、 上記弁体を、弁座の弁孔部分に当接自在な弁ボ
ールと、上端が前記ダイヤフラムに接続され且つ
下端に前記弁ボールを設けた弁棒と、から形成す
ると共に、 該弁棒を、少なくとも前記ダイヤフラムの進動
時に弁孔から弁外へ突出する下端部分を含め、冷
媒の温度により形状変化を起こして弁ストローク
を大きくする形状記憶合金にて形成し、 上記弁棒の形状変化量及び前記ダイヤフラムの
進退動量とにより、弁ボールと弁座の弁孔との間
に形成される通路の開閉量を制御自在としたこと
を特徴とするクーラサイクル用の膨張弁。
[Claims for Utility Model Registration] The temperature on the evaporator outlet side is transmitted to a sealed temperature-sensitive chamber in which refrigerant is sealed, and the expansion and contraction of the refrigerant inside the temperature-sensitive chamber due to temperature changes is controlled by the movement of the diaphragm. The passage formed between the valve body and the valve hole of the valve seat is opened and closed by the forward and backward movement of the diaphragm, and the high-temperature, high-pressure liquid refrigerant from the liquid tank guided into the passage is converted into a low-temperature, low-pressure gas refrigerant. In an expansion valve for a cooler cycle to be sent to an evaporator, the valve body is connected to a valve ball that can freely come into contact with a valve hole portion of a valve seat, and a valve whose upper end is connected to the diaphragm and whose lower end is provided with the valve ball. and a shape memory alloy that causes the shape of the valve stem, including at least the lower end portion that protrudes from the valve hole to the outside of the valve when the diaphragm moves, to change shape depending on the temperature of the refrigerant to increase the valve stroke. The opening/closing amount of the passage formed between the valve ball and the valve hole of the valve seat can be freely controlled by the amount of shape change of the valve stem and the amount of movement of the diaphragm. Expansion valve for cooler cycle.
JP1986068854U 1986-05-09 1986-05-09 Expired JPH045973Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986068854U JPH045973Y2 (en) 1986-05-09 1986-05-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986068854U JPH045973Y2 (en) 1986-05-09 1986-05-09

Publications (2)

Publication Number Publication Date
JPS61184178U JPS61184178U (en) 1986-11-17
JPH045973Y2 true JPH045973Y2 (en) 1992-02-19

Family

ID=30603984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986068854U Expired JPH045973Y2 (en) 1986-05-09 1986-05-09

Country Status (1)

Country Link
JP (1) JPH045973Y2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106258A (en) * 1975-03-14 1976-09-21 Hitachi Ltd
JPS55165461A (en) * 1979-06-11 1980-12-23 Hitachi Ltd Automatic expansion valve
JPS58184373A (en) * 1982-04-21 1983-10-27 Hitachi Ltd Temperature-type expansion valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106258A (en) * 1975-03-14 1976-09-21 Hitachi Ltd
JPS55165461A (en) * 1979-06-11 1980-12-23 Hitachi Ltd Automatic expansion valve
JPS58184373A (en) * 1982-04-21 1983-10-27 Hitachi Ltd Temperature-type expansion valve

Also Published As

Publication number Publication date
JPS61184178U (en) 1986-11-17

Similar Documents

Publication Publication Date Title
US4522219A (en) Freeze preventing valve
CN106091462B (en) A kind of self-adjustable throttling refrigerator using memory metal alloy
JPS61105066A (en) Expansion valve
JPH045973Y2 (en)
JP2004142701A (en) Refrigeration cycle
US4877046A (en) Closing and injection valve especially for hot gas defrosting in freezing and cooling installations
JP2001280721A (en) High pressure control valve for supercritical steam compression refrigerating cycle device
JPH11173705A (en) Expansion valve with bypass pipeline for refrigeration cycle
JPS596480A (en) Expansion valve for cooler cycle
JPH1163739A (en) Pressure control valve
JPH0470968U (en)
JP2001116399A (en) Refrigeration cycle
JPS5977177A (en) Expansion valve for cooler cycle
JPS596479A (en) Expansion valve for cooler cycle
JPS5954788A (en) Electrically-driven compressor
JPS6240289Y2 (en)
JPS6353463B2 (en)
JP2001116400A (en) Refrigeration cycle
JPH0442682Y2 (en)
JPH0221509B2 (en)
JPS6132311Y2 (en)
JPS6016269A (en) Cooling device
JPS5919256Y2 (en) refrigeration cycle
JPS6039729Y2 (en) control valve
JPS585161Y2 (en) expansion valve