JPH0459643B2 - - Google Patents

Info

Publication number
JPH0459643B2
JPH0459643B2 JP60077441A JP7744185A JPH0459643B2 JP H0459643 B2 JPH0459643 B2 JP H0459643B2 JP 60077441 A JP60077441 A JP 60077441A JP 7744185 A JP7744185 A JP 7744185A JP H0459643 B2 JPH0459643 B2 JP H0459643B2
Authority
JP
Japan
Prior art keywords
unmanned vehicle
drive
drive wheels
detected
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60077441A
Other languages
Japanese (ja)
Other versions
JPS61259307A (en
Inventor
Shoji Nakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP60077441A priority Critical patent/JPS61259307A/en
Publication of JPS61259307A publication Critical patent/JPS61259307A/en
Publication of JPH0459643B2 publication Critical patent/JPH0459643B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は工場内等において、物品の搬送を目
的として導入される自走式の無人搬送車に関す
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a self-propelled automatic guided vehicle that is introduced in a factory or the like for the purpose of transporting articles.

〈従来の技術〉 従来、例えば特開昭51−61970号の公報で開示
されているように、無人搬送車(以下、単に無人
車という)において、2個の駆動輪の旋回軸を車
輌縦中心線に平行な仮想面に配設するという構造
で、無人車の横走行を可能にする技術がある。
<Prior art> Conventionally, as disclosed in, for example, Japanese Patent Application Laid-Open No. 51-61970, in an automatic guided vehicle (hereinafter simply referred to as an unmanned vehicle), the rotation axes of two drive wheels are aligned with the longitudinal center of the vehicle. There is a technology that allows unmanned vehicles to travel sideways by arranging them on a virtual plane parallel to a line.

上述の無人車は、積載物の搬入あるいは搬出ス
テーシヨンへの横ずけが簡単に、しかも最短距離
の走行で行なわれるという利点がある。
The above-mentioned unmanned vehicle has the advantage that the load can be carried in or transferred to the unloading station easily and over the shortest distance.

〈発明が解決しようとする問題点〉 第4図は、上述の無人車における問題点を説明
するための概略平面図であり、従来、荷搬入(あ
るいは搬出)ステーシヨンSに傾いた状態で接近
してきた無人車Gは、その傾きが何ら補正される
ことなしに、上記ステーシヨンSに横づけされて
いた。したがつて、ステーシヨンSと無人車G間
での荷の移載が円滑に行なわれなかつたり、積載
された荷が無人車G上で不安定になつていた。
<Problems to be Solved by the Invention> Fig. 4 is a schematic plan view for explaining the problems with the above-mentioned unmanned vehicle. The unmanned vehicle G was placed beside the station S without any correction of its inclination. Therefore, the load could not be transferred smoothly between the station S and the unmanned vehicle G, and the loaded load was unstable on the unmanned vehicle G.

〈問題点を解決するための手段〉 この発明は、少なくとも2つの駆動輪と、該駆
動輪をそれぞれ回転駆動させる手段と、該駆動輪
をそれぞれ旋回軸を中心に旋回させる手段と、少
なくとも1つの駆動輪の旋回角度を検出する手段
とを設け、検出した駆動輪の旋回角度により上記
駆動輪を回転駆動させる手段を制御するととも
に、停止位置に設けられた被検出具を検出する停
止用検出器を各駆動輪に対応して設け、該停止用
検出器が被検出具を検出することにより該停止用
検出器に対応する駆動輪の回転を独立して停止す
るようにしたものである。
<Means for Solving the Problems> The present invention includes at least two drive wheels, a means for rotationally driving each of the drive wheels, a means for rotating each of the drive wheels about a rotation axis, and at least one a means for detecting a turning angle of the driving wheel; and a stop detector for controlling the means for rotationally driving the driving wheel according to the detected turning angle of the driving wheel, and detecting a detection target provided at a stopping position. is provided corresponding to each drive wheel, and when the stop detector detects the detected tool, the rotation of the drive wheel corresponding to the stop detector is independently stopped.

〈作用〉 少なくとも1つの駆動輪の旋回角度を検出する
ことにより、無人車の傾きを検出し、該検出結果
に基づいて駆動輪を回転駆動させる手段を制御
し、傾きを補正する。また、傾きが完全に補正さ
れず、無人車が停止位置(例えば荷搬入出ステー
シヨン)に対して傾いた状態で接近した場合であ
つても、まず停止位置に接近している側の検出器
が被検出具を検出して対応する駆動輪の回転が停
止し、他の駆動輪は対応する検出器が被検出具を
検出するまで回転し続け、傾きが完全に補正され
た状態で停止位置に停止する。
<Operation> By detecting the turning angle of at least one drive wheel, the inclination of the unmanned vehicle is detected, and the means for rotationally driving the drive wheel is controlled based on the detection result to correct the inclination. In addition, even if the tilt is not completely corrected and the unmanned vehicle approaches the stop position (for example, a loading/unloading station) in an inclined state, the detector on the side approaching the stop position will first When the detected device is detected, the corresponding drive wheel stops rotating, and the other drive wheels continue to rotate until the corresponding detector detects the detected device, and then reach the stop position with the tilt completely corrected. Stop.

〈実施例〉 第1図は無人車1が横づけする荷搬入(あるい
は搬出)用のステーシヨン2付近、及び無人車1
を示す図である。
<Example> Figure 1 shows the vicinity of a loading (or unloading) station 2 where an unmanned vehicle 1 is placed next to it, and the unmanned vehicle 1
FIG.

この無人車1は縦方向3に長く形成され、該縦
方向3に平行な仮想面に2個の駆動輪4,5の旋
回輪6,7が配設されている。駆動輪4,5は、
後述するステアリング制御装置8,9によりそれ
ぞれ旋回軸6,7を中心に旋回可能となつてい
る。10,11はそれぞれ一対のキヤスター状の
従動輪を示し、旋回自在になつている。
This unmanned vehicle 1 is formed to be long in the vertical direction 3, and swing wheels 6, 7 of two drive wheels 4, 5 are arranged on a virtual plane parallel to the vertical direction 3. The driving wheels 4 and 5 are
Steering control devices 8 and 9, which will be described later, enable the vehicle to turn around pivot axes 6 and 7, respectively. Reference numerals 10 and 11 each indicate a pair of caster-shaped driven wheels, which are rotatable.

上記ステアリング制御装置8,9を説明する。
上記駆動輪4,5は駆動モータ12,13と直結
し、該モータによりそれぞれ回転駆動される。駆
動輪4,5及び駆動モータ12,13はプーリー
14,15に設けられている。16,17は旋回
モータ、18,19は該モータにより回転する小
プーリーを示し、該小プーリーと上記プーリー1
4,15とにはそれぞれベルト20,21が巻き
掛けられている。上記駆動輪4,5上には誘導ア
ンテナ22,23が設けられ、該各アンテナは対
応する駆動輪4,5の進行方向前方に位置してい
る。上記誘導アンテナ22,23はそれぞれ2つ
の誘導コイル22a,22a及び23a,23a
より構成されていて、任意の所望の制御角にわた
つて対応する駆動輪と共に揺動しうるように駆動
輪に結合されている。24は床面に埋設された誘
導線を示し、該誘導線24に通電することによ
り、該誘導線の位置をアンテナで検出している。
上記小プーリー18には、該プーリー18の回転
数を検出するパルス検出器25が設けられてい
る。無人車1の縦方向3に平行に駆動輪4が位置
している状態、すなわち、第1図aの2点鎖線で
示す位置4aに駆動輪が位置し、縦方向3と駆動
輪4の中心線lが一致する状態を基準にして、上
記パルス検出器25で小プーリー18の回転数あ
るいは旋回モーター16の回転数を検出すること
により、駆動輪4が旋回している角度θを検出し
ている。
The above-mentioned steering control devices 8 and 9 will be explained.
The drive wheels 4 and 5 are directly connected to drive motors 12 and 13, and are rotationally driven by the motors, respectively. Drive wheels 4, 5 and drive motors 12, 13 are provided on pulleys 14, 15. Reference numerals 16 and 17 indicate swing motors, and 18 and 19 indicate small pulleys rotated by the motors.
Belts 20 and 21 are wound around 4 and 15, respectively. Induction antennas 22 and 23 are provided on the driving wheels 4 and 5, and each antenna is located in front of the corresponding driving wheel 4 and 5 in the traveling direction. The induction antennas 22, 23 each include two induction coils 22a, 22a and 23a, 23a.
and is coupled to a corresponding drive wheel so as to be able to swing together with the corresponding drive wheel over any desired control angle. Reference numeral 24 indicates a guide wire buried in the floor surface, and by energizing the guide wire 24, the position of the guide wire is detected by an antenna.
The small pulley 18 is provided with a pulse detector 25 that detects the number of rotations of the pulley 18. The driving wheel 4 is located parallel to the longitudinal direction 3 of the unmanned vehicle 1, that is, the driving wheel is located at a position 4a shown by the two-dot chain line in FIG. Based on the state in which the lines 1 coincide with each other, the pulse detector 25 detects the rotation speed of the small pulley 18 or the rotation speed of the swing motor 16, thereby detecting the angle θ at which the drive wheel 4 is turning. There is.

26,27は無人車1の底面に設けられた停止
用検出器を示し、該検出器26,27には本実施
例では金属体を検出する公知の近接スイツチ(磁
気スイツチ)を適用する。ステーシヨン2に近傍
の無人車1が停止する床面には、上記検出器2
6,27にそれぞれ対応した位置に金属体(例え
ば、メタルシート等)の被検出具28,29が敷
設されている。一方の検出器26が被検出具28
を検出すると、駆動輪4の回転駆動は停止し、惰
性走行後、検出器26が被検出具28を通過する
と、強制的に機械ブレーキが駆動輪に加えられ
る。同様に検出器27、被検出具28及び駆動輪
5は作動する。
Reference numerals 26 and 27 indicate stop detectors provided on the bottom surface of the unmanned vehicle 1, and in this embodiment, known proximity switches (magnetic switches) for detecting metal bodies are applied to the detectors 26 and 27. The detector 2 is installed on the floor where the unmanned vehicle 1 near the station 2 stops.
Detection targets 28 and 29 made of metal bodies (for example, metal sheets, etc.) are placed at positions corresponding to 6 and 27, respectively. One of the detectors 26 is the device to be detected 28
When detected, the rotational drive of the drive wheel 4 is stopped, and when the detector 26 passes the detected tool 28 after coasting, a mechanical brake is forcibly applied to the drive wheel. Similarly, the detector 27, the detected device 28, and the drive wheel 5 operate.

次に、第2図に基づいて、無人車の走行制御部
を説明する。このブロツク図において、30は制
御部を示し、内部にCPU及び各種記憶装置を備
えている。31,32はそれぞれ旋回モータ1
6,17の駆動部を示し、33,34はそれぞれ
走行モータ12,13の駆動部を示し、各駆動部
は各々のモータの回転数を直接制御している。
Next, the travel control section of the unmanned vehicle will be explained based on FIG. In this block diagram, numeral 30 indicates a control section, which is internally equipped with a CPU and various storage devices. 31 and 32 are respectively the swing motors 1
6 and 17 are shown, and 33 and 34 are drive parts of travel motors 12 and 13, respectively, and each drive part directly controls the rotation speed of each motor.

通常の直線走行時では、誘導アンテナ22,2
3による誘導線の検出結果に応じて、旋回モータ
6,7の駆動部31,32が制御され、無人車の
位置を修正しながら走行している。また、停止時
では、検出器26,27の出力により、制御部3
0を介して走行モータ12,13の駆動部33,
34に走行停止指令が送られる。
When driving in a normal straight line, the induction antennas 22, 2
According to the detection result of the guide line by No. 3, the drive units 31 and 32 of the swing motors 6 and 7 are controlled, and the unmanned vehicle moves while correcting its position. Also, when stopped, the control unit 3
0 to the drive unit 33 of the travel motors 12, 13,
A running stop command is sent to 34.

無人車1が第1図に示しているような、ステー
シヨン2に対して直交方向35から接近する(以
下、この走行を横行するという)場合を、次に説
明する。第3図には、無人車1の走行状態をフロ
ーチヤートで示しており、無人車1の走行開始
(ステツプ)と同時に、パルス検出器25によ
り常に駆動輪4の旋回角度を検出している(ステ
ツプ)。該角度がある一定値を越すと、例えが
マイナス値を含めて絶対値が70度を越えると(ス
テツプ)、無人車1は自らが横行していると認
識し(ステツプ)、以下の手順に従う。また、
上記角度の絶対値が70度より小であれば、横行だ
と認識せず、単なる走行軌道の修正のためのステ
アリングだと判断し、走行を続行する。横行走行
だと判断されれば、上記角度θが90度であるかど
うか判別され(ステツプ)、90度であればYES
に進み、無人車に傾きがないので、走行に何ら補
正を加えられることなく走行を続行する(ステツ
プ)。上記角度θが90度でなければ、NOに進
み、無人車1の傾きが以下のようにして補正され
る。すなわち、角度θが90度より小さいのかどう
か判断され(ステツプ)、小さければ、パルス
検出器25の付いている方の駆動輪(以下第1駆
動輪という)4の方が他の駆動輪(以下第2駆動
輪という)5より、よりステーシヨン2に接近し
ているので(第4図示)、第2駆動輪5の走行速
度V2を第1駆動輪4の走行速度V1より大とし
(ステツプ)、無人車1の上記傾きを修正する。
逆に、上記角度θが90度より大きければ、第2駆
動輪5の方が第1駆動輪4より、よりステーシヨ
ン2に接近しているので、第1駆動輪4の走行速
度V1を第2駆動輪5の走行速度V2より大とし
(ステツプ)、無人車の上記傾きを修正する。
A case in which the unmanned vehicle 1 approaches the station 2 from a direction 35 perpendicular to the station 2 (hereinafter referred to as "traversing") as shown in FIG. 1 will be described next. FIG. 3 shows a flowchart of the running state of the unmanned vehicle 1. At the same time as the unmanned vehicle 1 starts running (step), the turning angle of the drive wheels 4 is always detected by the pulse detector 25 ( step). If the angle exceeds a certain value, for example, if the absolute value exceeds 70 degrees, including a negative value (step), the unmanned vehicle 1 recognizes that it is moving in a rampant manner (step), and follows the steps below. . Also,
If the absolute value of the above angle is less than 70 degrees, the vehicle will not recognize that the vehicle is moving sideways, but will continue to drive, determining that the steering is simply to correct the travel trajectory. If it is determined that the vehicle is traveling sideways, it is determined whether the above angle θ is 90 degrees (step), and if it is 90 degrees, YES is selected.
Since the unmanned vehicle has no inclination, the vehicle continues traveling without any correction being made to the vehicle (step). If the angle θ is not 90 degrees, the process proceeds to NO and the tilt of the unmanned vehicle 1 is corrected as follows. That is, it is determined whether the angle θ is smaller than 90 degrees (step), and if it is smaller, the drive wheel 4 to which the pulse detector 25 is attached (hereinafter referred to as the first drive wheel) 4 is the other drive wheel (hereinafter referred to as the first drive wheel). Since the second driving wheel 5 is closer to the station 2 than the second driving wheel 5 (as shown in FIG. 4), the traveling speed V2 of the second driving wheel 5 is set higher than the traveling speed V1 of the first driving wheel 4 (step). The above-mentioned inclination of the unmanned vehicle 1 is corrected.
Conversely, if the angle θ is larger than 90 degrees, the second driving wheel 5 is closer to the station 2 than the first driving wheel 4, so the traveling speed V1 of the first driving wheel 4 is The running speed of the driving wheels 5 is made higher than V2 (step), and the above-mentioned inclination of the unmanned vehicle is corrected.

以上のように、修正した(ステツプ,)後
あるいは走行続行した(ステツプ)後、無人車
1上の検出器26,27が床上の被検出具28,
29を検出した時点で、それぞれの駆動輪4,5
の駆動を停止させる。駆動輪4,5の回転速度は
極端に低下するけれども、完全に停止してしまう
ことはなく、惰性回転して、徐々にステーシヨン
2へと接近している。次に、検出器26,27が
被検出具28,29を検出しなくなつた時点で駆
動輪4,5は強制的に停止させられる。上記検出
器26,27で被検出具28,29を検出してい
る間に、前記した2つの駆動輪の速度差でも、な
お修正されなかつた無人車1の傾きを修正してい
る。すなわち、先に被検出具を検出した方の駆動
輪が惰性回転している間に、他の駆動輪は定常速
度で走行しているので、無人車1全体は徐々にス
テーシヨン2と平行になろうとする方向に傾きが
修正されつつ、ステーシヨン2に接近して、積極
的に停止した時点で無人車は完全にステーシヨン
2と平行になる。
As described above, after making the correction (step) or continuing to drive (step), the detectors 26 and 27 on the unmanned vehicle 1 detect the detection object 28 on the floor,
29 is detected, each drive wheel 4, 5
Stops driving. Although the rotational speed of the drive wheels 4 and 5 decreases extremely, they do not come to a complete stop, but rotate due to inertia and gradually approach the station 2. Next, when the detectors 26 and 27 no longer detect the detected tools 28 and 29, the drive wheels 4 and 5 are forcibly stopped. While the detectors 26 and 27 are detecting the detected tools 28 and 29, the inclination of the unmanned vehicle 1 that has not been corrected due to the speed difference between the two drive wheels is corrected. That is, while the drive wheel that detected the detection target first is rotating by inertia, the other drive wheels are running at a steady speed, so the entire unmanned vehicle 1 gradually becomes parallel to the station 2. While the inclination is being corrected in the desired direction, the unmanned vehicle approaches station 2 and becomes completely parallel to station 2 when it actively stops.

〈発明の効果〉 以上説明したように、本発明によれば、無人車
を停止位置(例えば荷搬入出ステーシヨン)に傾
きのない状態で停止させることができ、荷搬入出
ステーシヨンとの間での荷の移載等を円滑に行う
ことができる。また、この結果荷の積載状態が安
定するため、無人車走行中の荷くずれ等を防止す
ることができる。
<Effects of the Invention> As explained above, according to the present invention, an unmanned vehicle can be stopped at a stop position (for example, a loading/unloading station) without tilting, and the unmanned vehicle can be stopped at a stop position (for example, at a loading/unloading station) without tilting. It is possible to smoothly transfer cargo, etc. Furthermore, as a result, the loaded state of the load is stabilized, so that it is possible to prevent the load from collapsing while the unmanned vehicle is running.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すもので、無人車
が横づけする荷移載用のステーシヨン近傍及び無
人車を示す概略平面図、第1図aは第1図示の駆
動輪の拡大平面図、第2図は第1図示の無人車の
走行制御部を示すブロツク図、第3図は無人車の
走行状態を示すフローチヤート、第4図は従来装
置の問題点を説明するための概略平面図である。 4,5……駆動輪、6,7……旋回軸、12,
13……駆動モータ、16,17……旋回モー
タ、25……パルス検出器。
FIG. 1 shows an embodiment of the present invention, and is a schematic plan view showing the vicinity of a load transfer station next to which an unmanned vehicle is placed and the unmanned vehicle. FIG. 1 a is an enlarged plan view of the drive wheels shown in the first diagram. 2 is a block diagram showing the running control section of the unmanned vehicle shown in FIG. 1, FIG. 3 is a flowchart showing the running state of the unmanned vehicle, and FIG. 4 is a schematic diagram for explaining the problems of the conventional device. FIG. 4, 5... Drive wheel, 6, 7... Swivel axis, 12,
13... Drive motor, 16, 17... Swivel motor, 25... Pulse detector.

Claims (1)

【特許請求の範囲】 1 少なくとも2つの駆動輪と、該駆動輪をそれ
ぞれ回転駆動させる手段と、該駆動輪をそれぞれ
旋回輪を中心に旋回させる手段と、少なくとも1
つの駆動輪の旋回角度を検出する手段とを設け、
検出した駆動輪の旋回角度により上記駆動輪を回
転駆動させる手段を制御するとともに、 停止位置に設けられた被検出具を検出する停止
用検出器を各駆動輪に対応して設け、該停止用検
出器が被検出具を検出することにより該停止用検
出器に対応する駆動輪の回転を独立して停止する
ようにしたことを特徴とする無人搬送車。
[Scope of Claims] 1. At least two drive wheels, means for rotating each of the drive wheels, and means for rotating each of the drive wheels around a turning wheel, at least one
means for detecting the turning angle of the two drive wheels;
A means for rotationally driving the drive wheels is controlled based on the detected turning angle of the drive wheels, and a stop detector is provided corresponding to each drive wheel to detect a detected tool provided at a stop position. 1. An automatic guided vehicle characterized in that rotation of a drive wheel corresponding to a stop detector is independently stopped when a detector detects a detected tool.
JP60077441A 1985-04-10 1985-04-10 Unmanned carrier Granted JPS61259307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60077441A JPS61259307A (en) 1985-04-10 1985-04-10 Unmanned carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60077441A JPS61259307A (en) 1985-04-10 1985-04-10 Unmanned carrier

Publications (2)

Publication Number Publication Date
JPS61259307A JPS61259307A (en) 1986-11-17
JPH0459643B2 true JPH0459643B2 (en) 1992-09-22

Family

ID=13634110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60077441A Granted JPS61259307A (en) 1985-04-10 1985-04-10 Unmanned carrier

Country Status (1)

Country Link
JP (1) JPS61259307A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108042B2 (en) * 1986-11-28 1995-11-15 株式会社豊田自動織機製作所 Omnidirectional unmanned vehicle
JPS644813A (en) * 1987-06-27 1989-01-10 Toyoda Automatic Loom Works Running controller for unmanned carrying vehicle
DE4306493A1 (en) * 1993-03-03 1994-09-08 Genkinger Hebe Foerdertech Method and device for straightening a transport carriage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271027A (en) * 1975-12-09 1977-06-14 Digitron Ag Steering control system for remoteecontrolled transport system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271027A (en) * 1975-12-09 1977-06-14 Digitron Ag Steering control system for remoteecontrolled transport system

Also Published As

Publication number Publication date
JPS61259307A (en) 1986-11-17

Similar Documents

Publication Publication Date Title
JP3524695B2 (en) Positioning device for loading cargo
JPH0459643B2 (en)
JP5134402B2 (en) Route change method and route change device for automated guided vehicle
JPH10171535A (en) Automated guided vehicle
JPH07334236A (en) Automated guided vehicle
JP2000330635A (en) Automatic guided vehicle
JPH0381163B2 (en)
JP5346736B2 (en) Route change device and route change method for automated guided vehicle
JP6076292B2 (en) Automatic guided vehicle, control device and control method thereof
JP2814823B2 (en) Attitude control device of unmanned forklift
JP5134403B2 (en) Automated guided vehicle, control method thereof, and driving line of automated guided vehicle
JP2005071128A (en) Automatic guided transport vehicle and method for controlling travel thereof
JP3261942B2 (en) Automated guided vehicle program steering method
JPH11245839A (en) Multiaxle automatic guided vehicle
JPH08272443A (en) Attitude control method for unmanned carrier using front and back wheels
JP2001022442A (en) Control method for automatic guided vehicle
JPH1011138A (en) Unmanned carrier
JPH05313739A (en) Controller for unmanned carrying truck
JPS5952310A (en) Control method of unmanned guide truck
JP3804235B2 (en) Automated guided vehicle
JP2903762B2 (en) Automatic guided vehicle
JPH0840686A (en) Travel control method of non-track type carrying truck
JP3226086B2 (en) Mobile vehicle steering control device
JP2577309Y2 (en) Automatic guided vehicle transfer control device
JP2003330541A (en) Turn control method for unmanned carrier vehicle

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term