JPH0458808B2 - - Google Patents

Info

Publication number
JPH0458808B2
JPH0458808B2 JP12515486A JP12515486A JPH0458808B2 JP H0458808 B2 JPH0458808 B2 JP H0458808B2 JP 12515486 A JP12515486 A JP 12515486A JP 12515486 A JP12515486 A JP 12515486A JP H0458808 B2 JPH0458808 B2 JP H0458808B2
Authority
JP
Japan
Prior art keywords
formula
group
aromatic
represented
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12515486A
Other languages
Japanese (ja)
Other versions
JPS62283127A (en
Inventor
Yoshio Imai
Masaaki Kakimoto
Yoshuki Ooishi
Yutaka Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP12515486A priority Critical patent/JPS62283127A/en
Priority to GB08712400A priority patent/GB2191496A/en
Priority to US07/054,965 priority patent/US4820793A/en
Priority to FR878707596A priority patent/FR2599370B1/en
Priority to DE19873718212 priority patent/DE3718212A1/en
Priority to IT20732/87A priority patent/IT1205115B/en
Publication of JPS62283127A publication Critical patent/JPS62283127A/en
Publication of JPH0458808B2 publication Critical patent/JPH0458808B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、芳香族ポリベンズオキサゾール樹脂
の新規な製造方法に関する。一般に芳香族ポリベ
ンズオキサゾール樹脂は、優れた耐熱性、機械的
強度、電気的特性を持つことが知られている。 一般に高分子樹脂の性質を決定する上で、分子
量の与える影響は重要である。重合度が低く、分
子量が小さい場合は、粘性や柔軟性が不充分とな
り、膜、繊維、成形品に加工することが困難であ
る。また、加工しても、強度や耐熱性等に充分な
性質が得られない。一方、分子量が多きすぎる場
合は、樹脂の流動性が悪くなり、加工時の障害と
なる。 〔従来の技術〕 ポリベンズオキサゾール樹脂は一般にジアミン
化合物とジカルボン酸ジハライドの反応により得
らえるポリアミド樹脂を脱水環化反応させて得ら
れ、その重合度はポリアミド樹脂の重合度に支配
される。この重合度は原料のジアミン化合物と、
ジカルボン酸ジハライドの仕込量によつて制御さ
れる。これらの反応成分を等モル量使用すると、
高分子量の芳香族ポリベンズオキサゾール樹脂を
制御することができる。しかしながら、このよう
な分子量の制御は、原料である反応成分の反応性
が充分高い場合にのみ可能であり、反応性が悪い
場合には、分子量の低い反応生成物しか得られな
い。 従来、本発明の目的物である芳香族のポリベン
ズオキゾール樹脂はその反応成分であるジアミン
化合物の反応性が悪いために、高分子量の重合体
を得ることが困難であつた。本発明者らは、充分
に高分子量で、優れた性質を発揮する芳香族ポリ
ベンズオキサゾール樹脂を得るべく鋭意努力した
結果、本発明をなすに至つた。 〔問題点を解決するための具体的な手段〕 すなわち本発明は、 一般式 (式中、Rは2価の芳香族基、Xは2価の有機
基、nは1〜200の整数を示す。) で表される芳香族ポリベンズオキサゾール樹脂を
製造するに当り、 一般式 (式中、R1は1価の有機珪素基、R2は水素、ま
たは1価の有機珪素基、Xは2価の有機基を示
す。) で表わされる芳香族ジアミンと、 一般式 (式中、Rは2価の芳香族基、Yはハロゲンを示
す。) で表される芳香族ジカルボン酸ジハライドを有機
溶媒中で反応させて、 一般式 (式中、Rは2価の芳香族基、Xは2価の有機
基、nは1〜200の整数を示す。) で表わされ芳香族ポリアミド樹脂を製造し、しか
る後に、当該ポリアミド樹脂を脱水環化反応させ
ることを特徴とする芳香族ポリベンズオキサゾー
ル樹脂の製造方法である。 上記一般式()で表わされる芳香族ポリアミ
ド樹脂は、上記一般式()で表わされる芳香族
ジアミンと、上記一般式()で表わされるジカ
ルボン酸ジハライドとの反応によつて製造され
る。一般式()で表される芳香族ジアミンとし
ては、式中Xで表される2価の有機基として、単
結晶、アルキレン基、ハロゲン化アルキレン基、
スルホン基、スルフイド基、アミノ基、カルボニ
ル基、エーテル基等があげられるが、より具体的
に例示すると、ビス(3−トリメチルシリルアミ
ノ−4−トリメチルシロキシフエニル)メタン、
1−フエニル−1.1−ビス(3−トリメチルアミ
ノ−4−トリメチルシロキシフエニル)エタン、
2.2−ビス(3−トリメチルアミノ−4−トリメ
チルシロキシフエニル)プロパン、2.2−ビス
(3−トリメチルシリルアミノ−4−トリメチル
シロキシフエニル)ヘキサフルオロプロパン、1
−フエニル−1.1−ビス(3−トリメチルシリル
アミノ−4−トリメチルシロキシフエニル)トリ
フルオロエタン、1−トリフルオロメチル−1.1
−ビス(3−トリメチルシリルアミノ−4−トリ
メチルシロキシ)エタン、〔4.4′−ビス(トリメ
チルシリルアミノ)−3.3′−ビス(トリメチルシ
ロキシ)〕ビフエニル、〔3.3′−ビス(トリメチル
シリルアミノ)−4.4′−ビス(トリメチルシロキ
シ)〕ビフエニル、ビス(3−トリメチルシリル
アミノ−4−トリメチルシロキシフエニル)スル
ホン、ビス(3−トリメチルシリルアミノ−4−
トリメチルシロキシフエニル)スルフイド、ビス
(3−トリメチルシリルアミノ−4−トリメチル
シロキシフエニル)エーテル、ビス(3−トリメ
チルシリルアミノ−4−トリメチルシロキシフエ
ニル)ケトン、ビス(3−トリメチルシリルアミ
ノ−4−トリメチルシロキシフエニル)アミン等
が有効である。 一般式()で表される芳香族ジカルボン酸ジ
ハライドとしては、例えばイソフタル酸ジクロリ
ド、テレフタル酸ジクロリド、4,4′−ビフエニ
ルジカルボン酸ジクロリド、ビフエニルエーテル
4,4′−ジカルボン酸ジクロリド、ベンゾフエノ
ン−4.4′−ジカルボン酸ジクロリド、ベンゾスル
ホン−4,4′−ジカルボン酸ジクロリド、イソプ
ロピリデンビフエニル−4.4′−ジカルボン酸ジク
ロリド、ヘキサフルオロイソプロピリデンビフエ
ニル−4,4′−ジカルボン酸ジクロリド等を例示
できる。これらは単独でも、2種類以上を混合し
て用いてもよい。 この方法において、一般式()で表されるポ
リベンズオキサゾール樹脂の分子量は、一般式
()で表されるジアミン化合物と、一般式()
で表されるジカルボン酸ジハライドの仕込量によ
つて制限され、これらの反応成分を等モル量使用
すると高分子量の芳香族ポリベンズオキサゾール
樹脂を製造することができる。 本発明における一般式()で表される芳香族
ジアミン化合物と一般式()で表されるジカル
ボン酸ジハライドとの反応は、有機溶媒中、実質
上無水の条件下で、−10℃から溶媒の還流温度で
数分から数時間反応させて行われる。 この方法に使用できる有機溶媒は、一般に公知
の非水系有機溶媒を広範囲に用いることができ
る。具体的には、N,N−ジメチルホルムアミ
ド、N,N−ジメチルアセトアミド、N−メチル
−2−ピロリドン、ピリジン等のアミド系溶媒、
ジメチルスルホキシド、テトラメチルスルホン等
のイオウ系溶媒、ベンゼン、トルエン、アニソー
ル、ジフエニルエーテル、ニトロベンゼン、ベン
ゾニトリル、クレゾール、フエノール等のベンゼ
ン系溶媒、クロロホルム、トリクロルエタン、四
塩化炭素等のハロゲン化炭化水素水素等を例示で
きるが、これに限定されるものではない。 一般式()で表わされるポリアミド樹脂から
一般式()で表わされるポリベンズオキサゾー
ル樹脂の製造は、脱水剤の存在下、もしくは、非
存在下で数秒から数十時間、100〜500℃で加熱す
ることによつて行なわれる。ポリリン酸などの脱
水剤の存在下では、より低温で反応を行なうこと
ができる。また、減圧下で加熱する方法によつて
反応温度を下げることもできる。この反応は、一
般式()で表わされるポリアミド樹脂を膜や、
繊維状に成形した後に反応させることも可能であ
る。 以下、本発明を実施例によつて更に詳細に説明
する。 実施例 1 容量50mlの三つ口フラスコに2、2−ビス(3
−トリメチルシリルアミノ−4−トリメチルシロ
キシフエニル)ヘキサフルオロプロパン1.638g
(2.5mmol)、ジメチルアセトアミド5mlを採り、
窒素ガス雰囲気下で撹拌溶解した。この溶液をド
ライアイス−アセトン浴で凍結した後、イソフタ
ル酸ジクロリド0.508g(2.5ml)を添加した。氷
冷浴に替えて、5時間ゆつくり撹拌した後、溶液
を水中に投入し、ポリドアミド樹脂の沈澱を得
た。生成樹脂の固有粘土は0.64{0.5g/dLジメチ
ルセトアミド、30℃)であつた。 赤外線吸収スペクトルおよび元素分析の結果式 の構造であることを確認した。 赤外線吸収スペクトル 1600cm-1(N−H) 1650cm-1(C=O) 元素分析 C H N 計算値(%) 55.66 2.84 5.64 実測値(%) 55.44 2.68 5.88 次いで、このポリアミド樹脂をN−メチル−2
−ピロリドンに溶解し、ガラス板上に展開してフ
イルムを成形した。このフイルムを窒素ガス雰囲
気下、280〜300℃で10時間加熱処理し、透明で強
じんなフイルムを得た。赤外線吸収スペクトル、
および元素分析の結果、次式で表れるポリベンズ
オキサゾール樹脂であることを確認した。 赤外線吸収スエクトル 1620cm-1(C=N) 元素分析 C H N 計算値(%) 60.01 2.19 6.08 実測値(%) 59.94 2.03 6.17 実施例 2 (実施例−1)と同じ方法で、2.2−ビス(3
−トリメチルシリルアミノ−4−トリメチルシロ
キシフエニル)ヘキサフルオロプロパン1.38g
(2.5mmol)と、テレフタル酸クロリド0.508g
(2.5mmol)を反応させ、ポリアミド樹脂を得
た。 生成樹脂の固有粘土は、0.65(0.5g/dLジメチ
ルアセトアミド、30℃)であつた。 元素分析、赤外線吸収スペクトル分析の結果を
第1表に示した。 (以下、実式例、比較例の分析結果を合わせて第
1表に示した。) この結果より、下記の構造であることを確認し
た。 このポリアミド樹脂を(実施例1)と同じ方法
で処理し、透明で強じんなフイルムを得た。この
ものは次式で表されるポリベンズオキサゾール樹
脂であつた。 実施例 3 (実施例−1)と同じ方法で、2,2−ビス
(3−トリメチルシリルアミノ−4−トリメチル
シロキシフエニル)ヘキサフルオロプロパン
1.638g(2.2mmol)と、イソフタル酸クロリド
0.254g(1.25mmol)とテレフタル酸クロリド
0.254g(1.25mmol)を反応させ、ポリアミド樹
脂を得た。 生成樹脂の固有粘度は0.86(0.5g/dLジメチル
アセトアミド、30℃)であつた。分析の結果、次
式の構造であつた。 このポリアミド樹脂(実施例−1)と同じ方法
で処理し、透明で強じんなフイルムを得た。この
ものは、次式で表されるポリベンズオキサゾール
樹脂であつた。 実施例 4 (実施例−1)と同じ方法で、2.2−ビス(3
−トリメチルシリルアミノ−4−メチルシロキシ
フエニル)ヘキサフルオロプロパン1.638g(2.5
mmol)と、ビフエニルエーテル−4.4′−ジカル
ボン酸ジクロリド0.737g(2.5mmol)を反応さ
せ、ポリアミド樹脂を得た。 生成樹脂の固有粘度は0.47(0.5g/dLジメチル
アトアミド、30℃)であつた。分析の結果、次式
の構造であることを確認した。 このポリアミド樹脂(実施例−1)と同じ方法
で処理し、透明で強じんなフイルムを得た。この
ものは次式で表されるポリベンズオキサゾール樹
脂であつた。 実施例 5 (実施例−1)と同じ方法で、2.2−ビス(3
−トリメチルシリルアミノ−4−トリメチルシロ
キシフエニル)ヘキサフルオロペロパン1.638g
(2.5mmol)と2.6−サフタレンジカルボン酸ジク
ロリド0.633g(2.5mmol)を反応させ、ポリア
ミド樹脂を得た。生成樹脂の固有粘度は0.60(0.5
g/dLジメチルアセトアミド、30℃)であつた。
分析の結果、次式の構造であることを確認した。 このポリアミド樹脂を(実施例−1)と同じ方
法で処理し、透明で強じんなフイルムを得た。こ
のものは次式で表されるポリベンズオキサゾール
樹脂であつた。 実施例 6 (実施例−1)と同じ方法で、2.2−ビス(3
−トリメチルシリルアミノ−4−トリメチルシロ
キシフエニル)ヘキサフルオロプロパン1.638g
(2.2mmol)と、ヘキサフルオロイソプロピリデ
ンビフエニル−4.4′−ジカルボン酸ジクロリド
1.073g(2.5mmol)を反応させ、ポリアミド樹
脂を得た。生成樹脂の固有粘度は0.40(0.5g/dL
ジメチルアセトアミド、30℃)であつた。分析の
結果、次式の構造であることを確認した。 このポリアミド樹脂を(実施例−1)と同じ方
法で処理し、透明で強じんなフイルムを得た。こ
のものは次式で表されるポリベンズオキサゾール
樹脂であつた。 実施例 7 (実施例−1)と同じ方法で、2.2−ビス(3
−トリメチルシリルアミノ−4−トリメチルシロ
キシフエニル)プロパン1.368g(2.2mmol)と、
イソフタル酸クロリド0.508g(2.5mmol)を反
応させ、ポリアミド樹脂を得た。生成樹脂の固有
粘度は0.55(0.5g/dLジメチルアセトアミド、30
℃)であつた。分析の結果、次式の構造であるこ
とを確認した。 このポリアミド樹脂を(実施例−1)と同じ方
法で処理し、透明な強じんなフイルムを得た。こ
のものは次式で表わせるポリベンズオキサゾール
樹脂であつた。 実施例 8 (実施例−1)と同じ方法で、4.4′−ビス(ト
リメチルシリルアミノ)−3.3′−ビス(トリメチ
ルシロキシ)ビフエニル1.262g(2.5mmol)と
イソフタル酸クロリド0.508g(2.5mmol)を反
応させ、ポリアミド樹脂を得た。生成樹脂の固有
粘度は0.50(0.5g/dLジメチルアセトアミド、30
℃)であつた。分析の結果、次式の構造であるこ
とを確認した。 このポリアミダ樹脂を(実施例−1)と同じ方
法で処理し、透明で強じんなフイルムを得た。こ
のものは次式で表されるポリベンズオキサゾール
樹脂であつた。 比較例 1 (実施例−1)と同じ条件で、2.2−ビス(3
−アミノ−4−ヒドロキシフエニル)ヘキサフル
オロプロパン0.915g(2.5mmol)とイソフタル
酸クロリド0.508g(2.5mmol)を反応させ、ポ
リアミド樹脂を得た。生成物は、(実施例−1)
で製造したポリアミド樹脂と同じ構造であつた。
生成ポリアミド樹脂の固有粘度は、0.08(0.5g/
dLジメチルアセトアミド、30℃)であつた。こ
のポリアミド樹脂を(実施例−1)と同じ方法で
処理したがフイルムは得られず、粉末状のポリベ
ンズオキサゾールしか得られなかつた。
[Industrial Application Field] The present invention relates to a novel method for producing aromatic polybenzoxazole resin. Generally, aromatic polybenzoxazole resins are known to have excellent heat resistance, mechanical strength, and electrical properties. In general, the influence of molecular weight is important in determining the properties of polymer resins. If the degree of polymerization is low and the molecular weight is small, the viscosity and flexibility will be insufficient, making it difficult to process into membranes, fibers, and molded products. Moreover, even if processed, sufficient properties such as strength and heat resistance cannot be obtained. On the other hand, if the molecular weight is too high, the fluidity of the resin will be poor, which will cause problems during processing. [Prior Art] Polybenzoxazole resins are generally obtained by subjecting a polyamide resin obtained by the reaction of a diamine compound and a dicarboxylic acid dihalide to a cyclodehydration reaction, and the degree of polymerization thereof is controlled by the degree of polymerization of the polyamide resin. This degree of polymerization is based on the raw material diamine compound,
It is controlled by the amount of dicarboxylic acid dihalide charged. Using equimolar amounts of these reaction components,
High molecular weight aromatic polybenzoxazole resins can be controlled. However, such control of the molecular weight is possible only when the reactivity of the reaction component as a raw material is sufficiently high; if the reactivity is poor, only a reaction product with a low molecular weight can be obtained. Conventionally, it has been difficult to obtain a high molecular weight polymer of the aromatic polybenzoxole resin, which is the object of the present invention, due to the poor reactivity of the diamine compound, which is a reactive component thereof. The present inventors have made earnest efforts to obtain an aromatic polybenzoxazole resin that has a sufficiently high molecular weight and exhibits excellent properties, and as a result, the present invention has been accomplished. [Specific means for solving the problem] That is, the present invention provides the following: (In the formula, R is a divalent aromatic group, X is a divalent organic group, and n is an integer of 1 to 200.) In producing the aromatic polybenzoxazole resin represented by the general formula (In the formula, R 1 is a monovalent organosilicon group, R 2 is hydrogen or a monovalent organosilicon group, and X is a divalent organic group.) An aromatic diamine represented by the general formula (In the formula, R is a divalent aromatic group and Y is a halogen.) By reacting the aromatic dicarboxylic acid dihalide represented by the formula in an organic solvent, the general formula (In the formula, R is a divalent aromatic group, X is a divalent organic group, and n is an integer of 1 to 200.) This is a method for producing an aromatic polybenzoxazole resin, which is characterized by carrying out a dehydration cyclization reaction. The aromatic polyamide resin represented by the above general formula () is produced by a reaction between an aromatic diamine represented by the above general formula () and a dicarboxylic acid dihalide represented by the above general formula (). As the aromatic diamine represented by the general formula (), the divalent organic group represented by X in the formula includes a single crystal, an alkylene group, a halogenated alkylene group,
Examples include sulfone group, sulfide group, amino group, carbonyl group, ether group, etc., but more specific examples include bis(3-trimethylsilylamino-4-trimethylsiloxyphenyl)methane,
1-phenyl-1,1-bis(3-trimethylamino-4-trimethylsiloxyphenyl)ethane,
2.2-bis(3-trimethylamino-4-trimethylsiloxyphenyl)propane, 2.2-bis(3-trimethylsilylamino-4-trimethylsiloxyphenyl)hexafluoropropane, 1
-Phenyl-1.1-bis(3-trimethylsilylamino-4-trimethylsiloxyphenyl)trifluoroethane, 1-trifluoromethyl-1.1
-bis(3-trimethylsilylamino-4-trimethylsiloxy)ethane, [4.4'-bis(trimethylsilylamino)-3.3'-bis(trimethylsiloxy)]biphenyl, [3.3'-bis(trimethylsilylamino)-4.4'-bis (trimethylsiloxy)] biphenyl, bis(3-trimethylsilylamino-4-trimethylsiloxyphenyl)sulfone, bis(3-trimethylsilylamino-4-
trimethylsiloxyphenyl) sulfide, bis(3-trimethylsilylamino-4-trimethylsiloxyphenyl) ether, bis(3-trimethylsilylamino-4-trimethylsiloxyphenyl)ketone, bis(3-trimethylsilylamino-4-trimethylsiloxy) (phenyl)amine etc. are effective. Examples of the aromatic dicarboxylic acid dihalide represented by the general formula () include isophthalic acid dichloride, terephthalic acid dichloride, 4,4'-biphenyl dicarboxylic acid dichloride, biphenyl ether 4,4'-dicarboxylic acid dichloride, and benzophenone dichloride. Examples include 4,4'-dicarboxylic acid dichloride, benzosulfone-4,4'-dicarboxylic acid dichloride, isopropylidene biphenyl-4,4'-dicarboxylic acid dichloride, hexafluoroisopropylidene biphenyl-4,4'-dicarboxylic acid dichloride, etc. . These may be used alone or in combination of two or more. In this method, the molecular weight of the polybenzoxazole resin represented by the general formula () is the same as that of the diamine compound represented by the general formula ().
It is limited by the amount of the dicarboxylic acid dihalide represented by: If equimolar amounts of these reaction components are used, a high molecular weight aromatic polybenzoxazole resin can be produced. In the present invention, the reaction between the aromatic diamine compound represented by the general formula () and the dicarboxylic acid dihalide represented by the general formula () is carried out in an organic solvent under substantially anhydrous conditions from -10°C to 50°C. The reaction is carried out at reflux temperature for several minutes to several hours. As the organic solvent that can be used in this method, a wide variety of generally known non-aqueous organic solvents can be used. Specifically, amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, and pyridine;
Sulfur-based solvents such as dimethyl sulfoxide and tetramethylsulfone, benzene-based solvents such as benzene, toluene, anisole, diphenyl ether, nitrobenzene, benzonitrile, cresol, and phenol, and halogenated hydrocarbons such as chloroform, trichloroethane, carbon tetrachloride, etc. Examples include hydrogen, but are not limited thereto. The polybenzoxazole resin represented by the general formula () is produced from the polyamide resin represented by the general formula () by heating at 100 to 500°C for several seconds to several tens of hours in the presence or absence of a dehydrating agent. It is done by In the presence of a dehydrating agent such as polyphosphoric acid, the reaction can be carried out at lower temperatures. The reaction temperature can also be lowered by heating under reduced pressure. This reaction is carried out by forming a polyamide resin represented by the general formula () into a membrane,
It is also possible to react after forming into a fiber. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 2,2-bis (3
-trimethylsilylamino-4-trimethylsiloxyphenyl)hexafluoropropane 1.638g
(2.5 mmol) and 5 ml of dimethylacetamide,
The mixture was stirred and dissolved under a nitrogen gas atmosphere. After freezing this solution in a dry ice-acetone bath, 0.508 g (2.5 ml) of isophthaloyl dichloride was added. After changing to an ice bath and stirring slowly for 5 hours, the solution was poured into water to obtain a polyamide resin precipitate. The inherent clay of the resulting resin was 0.64 {0.5 g/dL dimethylcetamide, 30°C). Infrared absorption spectrum and elemental analysis result formula It was confirmed that the structure was Infrared absorption spectrum 1600cm -1 (NH) 1650cm -1 (C=O) Elemental analysis C H N Calculated value (%) 55.66 2.84 5.64 Actual value (%) 55.44 2.68 5.88 Next, this polyamide resin was treated with N-methyl- 2
- It was dissolved in pyrrolidone and spread on a glass plate to form a film. This film was heat-treated at 280 to 300°C for 10 hours in a nitrogen gas atmosphere to obtain a transparent and strong film. infrared absorption spectrum,
As a result of elemental analysis, it was confirmed that it was a polybenzoxazole resin represented by the following formula. Infrared absorption spectre 1620 cm -1 (C=N) Elemental analysis C H N Calculated value (%) 60.01 2.19 6.08 Actual value (%) 59.94 2.03 6.17 Example 2 In the same manner as (Example-1), 2.2-bis( 3
-trimethylsilylamino-4-trimethylsiloxyphenyl)hexafluoropropane 1.38g
(2.5 mmol) and 0.508 g of terephthalic acid chloride
(2.5 mmol) was reacted to obtain a polyamide resin. The inherent clay of the resulting resin was 0.65 (0.5 g/dL dimethylacetamide, 30°C). The results of elemental analysis and infrared absorption spectrum analysis are shown in Table 1. (Hereinafter, the analysis results of the practical examples and comparative examples are shown in Table 1.) From these results, it was confirmed that the structure was as shown below. This polyamide resin was treated in the same manner as in Example 1 to obtain a transparent and strong film. This material was a polybenzoxazole resin represented by the following formula. Example 3 In the same manner as in (Example-1), 2,2-bis(3-trimethylsilylamino-4-trimethylsiloxyphenyl)hexafluoropropane
1.638g (2.2mmol) and isophthalic acid chloride
0.254g (1.25mmol) and terephthalic acid chloride
0.254g (1.25mmol) was reacted to obtain a polyamide resin. The intrinsic viscosity of the resulting resin was 0.86 (0.5 g/dL dimethylacetamide, 30°C). As a result of the analysis, the structure was as shown in the following formula. A transparent and strong film was obtained by processing in the same manner as this polyamide resin (Example 1). This material was a polybenzoxazole resin represented by the following formula. Example 4 In the same manner as in (Example-1), 2.2-bis(3
-trimethylsilylamino-4-methylsiloxyphenyl)hexafluoropropane 1.638 g (2.5
mmol) and 0.737 g (2.5 mmol) of biphenyl ether-4.4'-dicarboxylic acid dichloride to obtain a polyamide resin. The intrinsic viscosity of the resulting resin was 0.47 (0.5 g/dL dimethylatomamide, 30°C). As a result of the analysis, it was confirmed that the structure was as shown in the following formula. A transparent and strong film was obtained by processing in the same manner as this polyamide resin (Example 1). This material was a polybenzoxazole resin represented by the following formula. Example 5 2.2-bis(3
-trimethylsilylamino-4-trimethylsiloxyphenyl)hexafluoroperopane 1.638g
(2.5 mmol) and 0.633 g (2.5 mmol) of 2.6-saphthalene dicarboxylic acid dichloride were reacted to obtain a polyamide resin. The intrinsic viscosity of the resulting resin is 0.60 (0.5
g/dL dimethylacetamide, 30°C).
As a result of the analysis, it was confirmed that the structure was as shown in the following formula. This polyamide resin was treated in the same manner as in Example 1 to obtain a transparent and strong film. This material was a polybenzoxazole resin represented by the following formula. Example 6 In the same manner as (Example-1), 2.2-bis(3
-trimethylsilylamino-4-trimethylsiloxyphenyl)hexafluoropropane 1.638g
(2.2 mmol) and hexafluoroisopropylidene biphenyl-4.4'-dicarboxylic acid dichloride
1.073g (2.5mmol) was reacted to obtain a polyamide resin. The intrinsic viscosity of the produced resin is 0.40 (0.5g/dL
dimethylacetamide (30°C). As a result of the analysis, it was confirmed that the structure was as shown in the following formula. This polyamide resin was treated in the same manner as in Example 1 to obtain a transparent and strong film. This material was a polybenzoxazole resin represented by the following formula. Example 7 In the same manner as (Example-1), 2.2-bis(3
-trimethylsilylamino-4-trimethylsiloxyphenyl)propane 1.368 g (2.2 mmol),
0.508 g (2.5 mmol) of isophthalic acid chloride was reacted to obtain a polyamide resin. The intrinsic viscosity of the resulting resin is 0.55 (0.5 g/dL dimethylacetamide, 30
℃). As a result of the analysis, it was confirmed that the structure was as shown in the following formula. This polyamide resin was treated in the same manner as in Example 1 to obtain a transparent and strong film. This product was a polybenzoxazole resin represented by the following formula. Example 8 In the same manner as in Example 1, 1.262 g (2.5 mmol) of 4.4'-bis(trimethylsilylamino)-3.3'-bis(trimethylsiloxy)biphenyl and 0.508 g (2.5 mmol) of isophthalic acid chloride were reacted. A polyamide resin was obtained. The intrinsic viscosity of the resulting resin is 0.50 (0.5 g/dL dimethylacetamide, 30
℃). As a result of the analysis, it was confirmed that the structure was as shown in the following formula. This polyamide resin was treated in the same manner as in Example 1 to obtain a transparent and strong film. This material was a polybenzoxazole resin represented by the following formula. Comparative Example 1 Under the same conditions as (Example-1), 2.2-bis(3
0.915 g (2.5 mmol) of -amino-4-hydroxyphenyl)hexafluoropropane and 0.508 g (2.5 mmol) of isophthalic acid chloride were reacted to obtain a polyamide resin. The product is (Example-1)
It had the same structure as the polyamide resin manufactured by.
The intrinsic viscosity of the polyamide resin produced is 0.08 (0.5g/
dL dimethylacetamide, 30°C). This polyamide resin was treated in the same manner as in Example 1, but no film was obtained, and only powdered polybenzoxazole was obtained.

【表】【table】

【表】 [本発明の効果] 本発明は、一般式()で表される芳香族ポリ
ベンズオキサゾール樹脂の有利な製造方法を提供
するものである。この樹脂は耐熱性、耐候性、機
械強度、電気的特性等の諸性質が良好であり、優
れた工業的材料であることが知られている。従
来、高分子量の樹脂を製造することが困難であつ
た。これに対し、本発明は、充分に高分子量の当
該樹脂を製造するための有利な方法を提供するも
のであり、工業的価値が高い。
[Table] [Effects of the present invention] The present invention provides an advantageous method for producing an aromatic polybenzoxazole resin represented by the general formula (). This resin has good properties such as heat resistance, weather resistance, mechanical strength, and electrical properties, and is known to be an excellent industrial material. Conventionally, it has been difficult to produce high molecular weight resins. In contrast, the present invention provides an advantageous method for producing the resin with a sufficiently high molecular weight, and has high industrial value.

Claims (1)

【特許請求の範囲】 1 一般式 (式中、Rは2価の芳香族基、Xは2価の有機
基、nは1〜200の整数を示す。) で表される芳香族ポリベンズオキサゾール樹脂を
製造するに当り、 一般式 (式中、R1は1価の有機珪素基、R2は水素また
は1価の有機珪素基、Xは2価の有機基を示す。) で表わされる芳香族ジアミンと、 一般式 (式中、Rは2価の芳香族基、Yはハロゲンを示
す。) で表される芳香族ジカルボン酸ジハライドを有機
溶媒中で反応させて、 一般式 (式中、Rは2価の芳香族基、Xは2価の有機
基、nは1〜200の整数を示す。) で表わされる芳香族ポリアミド樹脂を製造し、し
かる後に、当該ポリアミド樹脂を脱水環化反応さ
せることを特徴とするポリベンズオキサゾール樹
脂の製造方法。
[Claims] 1. General formula (In the formula, R is a divalent aromatic group, X is a divalent organic group, and n is an integer of 1 to 200.) In producing the aromatic polybenzoxazole resin represented by the general formula (In the formula, R 1 is a monovalent organosilicon group, R 2 is hydrogen or a monovalent organosilicon group, and X is a divalent organic group.) An aromatic diamine represented by the general formula (In the formula, R is a divalent aromatic group and Y is a halogen.) By reacting the aromatic dicarboxylic acid dihalide represented by the formula in an organic solvent, the general formula (In the formula, R is a divalent aromatic group, X is a divalent organic group, and n is an integer of 1 to 200.) A method for producing a polybenzoxazole resin, which comprises carrying out a dehydration cyclization reaction.
JP12515486A 1986-05-30 1986-05-30 Production of polybenzoxazole resin Granted JPS62283127A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP12515486A JPS62283127A (en) 1986-05-30 1986-05-30 Production of polybenzoxazole resin
GB08712400A GB2191496A (en) 1986-05-30 1987-05-27 Method of preparing aromatic polyamides and polybenzoxazoles
US07/054,965 US4820793A (en) 1986-05-30 1987-05-28 Method of preparing aromatic polyamides and polybenzoxazoles
FR878707596A FR2599370B1 (en) 1986-05-30 1987-05-29 PROCESS FOR THE PREPARATION OF AROMATIC POLYAMIDES AND POLYBENZOXAZOLES
DE19873718212 DE3718212A1 (en) 1986-05-30 1987-05-29 METHOD FOR PRODUCING AROMATIC POLYAMIDES AND POLYBENZOXAZOLES
IT20732/87A IT1205115B (en) 1986-05-30 1987-05-29 METHOD FOR PREPARING AROMATIC POLYAMIDS AND POLYBENZOSSAZOLS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12515486A JPS62283127A (en) 1986-05-30 1986-05-30 Production of polybenzoxazole resin

Publications (2)

Publication Number Publication Date
JPS62283127A JPS62283127A (en) 1987-12-09
JPH0458808B2 true JPH0458808B2 (en) 1992-09-18

Family

ID=14903208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12515486A Granted JPS62283127A (en) 1986-05-30 1986-05-30 Production of polybenzoxazole resin

Country Status (1)

Country Link
JP (1) JPS62283127A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3888390D1 (en) * 1987-05-18 1994-04-21 Siemens Ag Process for the production of highly heat-resistant dielectrics.
JPH01292034A (en) * 1988-05-19 1989-11-24 Cosmo Oil Co Ltd Production of poly(amidobenzoxazole) resin
JPH02247225A (en) * 1989-03-20 1990-10-03 Honda Motor Co Ltd Production of polybenzobisoxazole precursor substance
JP2007262158A (en) * 2006-03-27 2007-10-11 Osaka Prefecture Microparticle of polyoxazole or its precursor and method for producing the microparticle

Also Published As

Publication number Publication date
JPS62283127A (en) 1987-12-09

Similar Documents

Publication Publication Date Title
Liou et al. Synthesis and characterization of novel soluble triphenylamine‐containing aromatic polyamides based on N, N′‐bis (4‐aminophenyl)‐N, N′‐diphenyl‐1, 4‐phenylenediamine
US3875116A (en) Polyetherimides
CA1219398A (en) Polyimides, polyamic acid and ester intermediates thereof, and novel aromatic diamines for their preparation
Ghaemy et al. Synthesis and characterization of new soluble polyamides from an unsymmetrical diamine bearing a bulky triaryl pyridine pendent group
US4820793A (en) Method of preparing aromatic polyamides and polybenzoxazoles
Kricheldorf et al. New polymer syntheses. 67. Kevlar-type polyaramides of monosubstituted terephthalic acids
Hsiao et al. Synthesis and properties of novel soluble polyamides having ether linkages and laterally attached p‐terphenyl units
JP2759796B2 (en) Novel bis (maleimide) siloxane and method for producing the same
Parthiban et al. Amino-functionalized poly (arylene ether ketone) s
JP2971325B2 (en) Macrocyclic polyimide oligomer and method for producing the same
Liou et al. Synthesis and properties of new soluble aromatic polyamides and polyimides on the basis of N, N′‐bis (3‐aminobenzoyl)‐N, N′‐diphenyl‐1, 4‐phenylenediamine
Liou et al. Preparation and properties of aromatic polyamides from 2, 2′‐bis (p‐carboxyphenoxy) biphenyl or 2, 2′‐bis (p‐carboxyphenoxy)‐1, 1′‐binaphthyl and aromatic diamines
US4978734A (en) Polyamide-polyamide and polybenzoxazole-polyamide polymer
JPH0458808B2 (en)
Hsiao et al. Preparation and characterization of aromatic polyamides based on ether‐sulfone‐dicarboxylic acids
Li et al. Highly organosoluble and transparent polyamides containing cyclohexane and trifluoromethyl moieties: Synthesis and characterization
Mohite et al. Synthesis and characterization of silicon‐containing phenylated soluble aramids
Yang et al. Novel perfluorononenyloxy group-containing polyimides
JPS5846244B2 (en) Manufacturing method of polyetherimide
JPH082962B2 (en) Method for producing aromatic polythioether imide
Mohamed et al. Synthesis and characterization of novel wholly para‐oriented aromatic polyamide‐hydrazides containing sulfone‐ether linkages
Hsiao et al. Synthesis and evaluation of novel polyimides derived from spirobichroman diether anhydride
Hsiao et al. Synthesis and properties of aromatic polyamides based on 4, 4′‐(1, 5‐naphthalenedioxy) dibenzoic acid
Kakimoto et al. Synthesis and properties of block copolymers based on carboxyl-terminated polydimethylsiloxane and aromatic polyamides
JP2700703B2 (en) Polybenzobisoxazole molecular composite and method for producing the same