JPH0458758B2 - - Google Patents

Info

Publication number
JPH0458758B2
JPH0458758B2 JP18378583A JP18378583A JPH0458758B2 JP H0458758 B2 JPH0458758 B2 JP H0458758B2 JP 18378583 A JP18378583 A JP 18378583A JP 18378583 A JP18378583 A JP 18378583A JP H0458758 B2 JPH0458758 B2 JP H0458758B2
Authority
JP
Japan
Prior art keywords
signal
wave
electroacoustic transducer
ultrasonic
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18378583A
Other languages
Japanese (ja)
Other versions
JPS6075199A (en
Inventor
Masahide Yoneyama
Tomoo Kamakura
Kazuo Iketani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP18378583A priority Critical patent/JPS6075199A/en
Publication of JPS6075199A publication Critical patent/JPS6075199A/en
Publication of JPH0458758B2 publication Critical patent/JPH0458758B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、可聴周波数帯の電気信号を音響信号
として空気中に放射するための電気音響変換装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an electroacoustic transducer for radiating an electrical signal in an audible frequency band into the air as an acoustic signal.

従来技術 現在、電気音響変換器としては、動電形直接放
射スピーカとホーンロードスピーカが主流である
が、いづれの方式においても空気中において振動
板を振動させることにより空気の疎密波を作り機
械振動エネルギーを音響エネルギーに変換するも
のである。
Prior Art Currently, electrodynamic direct radiation speakers and horn-loaded speakers are the mainstream electroacoustic transducers, but both methods produce air compression waves by vibrating a diaphragm in the air, which generates mechanical vibrations. It converts energy into acoustic energy.

而して、可聴周波数帯域の信号によつて振幅変
調を施された超音波を有限振幅レベルで空気また
は水等の媒質中に放射し、媒質の非線形効果に基
づく自己復調作用によつて媒質中に生じる復調音
波を通信手段として用いる方式については、パラ
メトリツクスピーカとして既に種々報告されてい
る。
Ultrasonic waves modulated in amplitude by a signal in the audio frequency band are radiated into a medium such as air or water at a finite amplitude level, and the self-demodulation effect based on the nonlinear effect of the medium causes Various methods have already been reported for parametric speakers that use demodulated sound waves generated in the field as a communication means.

しかしながら、上記方式は、第2高調波ひずみ
成分が多いという欠点を有しており、特に、第2
高調波ひずみ率は振幅変調時に変調度に直接関連
しており、変調が深くなる程悪くなる。
However, the above method has the disadvantage that there are many second harmonic distortion components, especially the second harmonic distortion component.
The harmonic distortion rate is directly related to the modulation depth during amplitude modulation, and becomes worse as the modulation becomes deeper.

目 的 本発明は、上述のごとき欠点、すなわち、可聴
周波数帯域の信号によつて振幅変調された超音波
を有限振幅レベルで空気中に放射し、空気の非線
形効果により自己復調された可聴信号を得る方式
のスピーカ(パラメトリツクスピーカと称する)
において欠点とされている第2高調波ひずみ特性
の劣化を防ぐことを目的としてなされたものであ
る。
Purpose The present invention solves the above-mentioned drawbacks by emitting ultrasonic waves amplitude-modulated by a signal in the audio frequency band into the air at a finite amplitude level and generating an audible signal that is self-demodulated by the nonlinear effect of the air. (referred to as parametric speakers)
This was done for the purpose of preventing the deterioration of the second harmonic distortion characteristics, which is considered a drawback.

構 成 本発明の構成については、以下、実施例に基づ
いて説明する。
Configuration The configuration of the present invention will be described below based on Examples.

音波の非線形現象を利用したパラメトリツクス
ピーカは、その指向性の鋭さに一つの特徴をもつ
が、これは高い周波数の搬送波を可聴音である信
号波で振幅変調し有限振幅波として送波するもの
で、音波の非線形相互作用によつて信号に関係し
た2次波が空間内に縦型アレー状に分布する結果
として指向性が鋭く、サイドローブも小さくなる
ものである。
Parametric speakers that utilize the nonlinear phenomenon of sound waves are characterized by their sharp directivity, which is because they amplitude-modulate a high-frequency carrier wave with an audible signal wave and transmit it as a finite-amplitude wave. Due to the nonlinear interaction of sound waves, secondary waves related to the signal are distributed in a vertical array in space, resulting in sharp directivity and small side lobes.

いま、半径aの円形送波器より包絡f(t)をもつ
た有限振幅音波 P1=P0f(t)sinω0t ……(1) を放射したとする。ここで、P0は音源音圧、ω0
は搬送波の角周波数である。もし、この1次波が
平面波で十分コリメイトしていると仮定すると2
次波P2は音軸上にて P2=βP0 2a2/16ρ0C0 4αr ∂2/∂t2f2(t−Z/C0
)……(2) となる。なお、βは媒質の非線形パラメータ、ρ0
は媒質密度、C0は音速、αは1次波の線形吸収
係数である。式(2)よりP2はf2に比例している。即
ち包絡の自乗という非線形操作を受けて2次波が
生ずる。この自乗操作は音波に2次の非線形性の
直接的結果であつて、再生信号のひずみの発生原
因となる。そこで、いま、 f(t)=√1+(t) ……(3) とすると、P1は信号S(t)に比例し、ひずみは生
じなくなる。
Suppose that a circular transmitter with radius a emits a finite amplitude sound wave P 1 =P 0 f(t)sinω 0 t (1) with envelope f(t). Here, P 0 is the sound source pressure, ω 0
is the angular frequency of the carrier wave. If we assume that this primary wave is a plane wave and is sufficiently collimated, then 2
The next wave P 2 is on the sound axis P 2 = βP 0 2 a 2 /16ρ 0 C 0 4 αr ∂ 2 /∂t 2 f 2 (t−Z/C 0
)...(2) becomes. Note that β is the nonlinear parameter of the medium, ρ 0
is the medium density, C 0 is the speed of sound, and α is the linear absorption coefficient of the first-order wave. According to equation (2), P 2 is proportional to f 2 . That is, a secondary wave is generated by undergoing a nonlinear operation called the square of the envelope. This squaring operation is a direct result of the second-order nonlinearity of the sound wave, and is a cause of distortion in the reproduced signal. Therefore, if we now set f(t)=√1+(t)...(3), P 1 will be proportional to the signal S(t), and no distortion will occur.

本発明は、従来のスピーカ等の音響変換器とは
全く異る手段、つまり空気の非線形による有限振
幅音波のパラメトリツク作用を利用するものであ
るが、パラメトリツク作用によつて空気中で自己
復調されて再生された音波(2次波と称する)
は、超音波領域のキヤリア音波と同等の指向性パ
ターンを有するのが特徴である。
The present invention utilizes a completely different means from conventional acoustic transducers such as speakers, that is, the parametric effect of finite amplitude sound waves due to air nonlinearity. and reproduced sound waves (referred to as secondary waves)
is characterized by having a directivity pattern equivalent to that of carrier sound waves in the ultrasonic range.

一般に、超音波の周波数が高くなると、振動子
より放射される音波はビーム状になつて直進する
ようになる。
Generally, as the frequency of ultrasonic waves increases, the sound waves emitted from the transducer become beam-shaped and travel straight.

今、半径aの振動子アレーから振幅変調を受け
た超音波がビーム状で放射されると仮定した場
合、アレーからxなる距離の点での音圧Pは次式
で表わせる。
Now, assuming that amplitude-modulated ultrasonic waves are radiated in the form of a beam from a transducer array with radius a, the sound pressure P at a distance x from the array can be expressed by the following equation.

P=P0{1+m・g(t−x/C0))e-xsin(ω
0t−k0x)……(4) ただし、C0は音速、αは各周波数ω0の音波の
減衰係数、P0は初期音圧、mは変調度、g(t)は
変調波である。(3)式で表わされる有限振幅レベル
の超音波が空気中で非線形パラメトリツク作用に
よつて復調されて生じる2次波の音圧は以下の非
斉次波動方程式によつて表わされる。
P=P 0 {1+m・g(t-x/C 0 ))e -x sin(ω
0 t−k 0 x)……(4) where C 0 is the speed of sound, α is the attenuation coefficient of the sound wave at each frequency ω 0 , P 0 is the initial sound pressure, m is the modulation degree, and g(t) is the modulation wave. It is. The sound pressure of the secondary wave generated when the ultrasonic wave with a finite amplitude level expressed by equation (3) is demodulated in air by nonlinear parametric action is expressed by the following non-homogeneous wave equation.

2Ps−1/C0 2・∂2Ps/∂t2=−ρ0∂q/∂t……(5
) 式(5)において、Ps:2次波の音圧、ρ0:空気の
密度、q:1次波ビーム中に生じる2次波の仮想
音源密度、ただしqは次式で表わせる。
2 Ps−1/C 0 2・∂ 2 Ps/∂t 2 =−ρ 0 ∂q/∂t……(5
) In equation (5), Ps: sound pressure of secondary wave, ρ 0 : density of air, q: virtual sound source density of secondary wave generated in the primary wave beam, where q can be expressed by the following equation.

q=β/ρ0 2C0 4・∂/∂tρ2 ……(6) 従つて(4),(6)式よりアレーからの距離x(軸上)
の点での仮想音源密度を計算すると次式を得る。
q=β/ρ 0 2 C 0 4・∂/∂tρ 2 ...(6) Therefore, from equations (4) and (6), the distance x from the array (on the axis)
The following equation is obtained by calculating the virtual sound source density at the point.

q=βP0 2/ρ0 2C0 4e-2x∂/∂t〔m・g(t−
x/C0)+1/2m2g2(t−x/C0)〕……(7) 上記(7)式の右辺第1項は信号成分に基づく仮想
音源密度を表わしており、第2項はひずみ成分の
仮想音源密度を表わしている。
q=βP 0 20 2 C 0 4 e -2x ∂/∂t [m・g(t−
x/C 0 )+1/2m 2 g 2 (t-x/C 0 )]...(7) The first term on the right side of equation (7) above represents the virtual sound source density based on the signal component, and the second term represents the virtual sound source density based on the signal component. The term represents the virtual sound source density of the distortion component.

本発明は以上に説明した如く、非線形パラメト
リツク作用を利用した音響変換器において生じる
ひずみ成分を除去するための変調方式に関するも
のである。すなわち、変調信号にある直流成分を
加えて√変換した後にキヤリア信号との積をとる
様な変調方式である。
As explained above, the present invention relates to a modulation method for removing distortion components generated in an acoustic transducer using nonlinear parametric effects. That is, this is a modulation method in which a certain DC component is added to the modulation signal, the signal is converted into √, and then the product with the carrier signal is calculated.

この場合、被変調信号は次式で表わせる。 In this case, the modulated signal can be expressed by the following equation.

V=√1+.(t)sinω0t ……(8) となる。従つて、振動子アレーからxなる距離の
点での1次波(被変調超音波)の音圧は となる。この場合の2次波の仮想音源密度は(6)式
を用いて q=βP0 2/2ρ0 2C0 4e-2dx・m・∂/∂tg(t−x
/C0) ……(10) となる。したがつて本変調方式を用いると(7)式右
辺第2項に示されるごとき、ひずみ成分が消減
し、再生音の品質が著しく向上することが期待で
きる。
V=√1+.(t)sinω 0 t...(8) Therefore, the sound pressure of the primary wave (modulated ultrasound) at a distance x from the transducer array is becomes. In this case, the virtual sound source density of the secondary wave is calculated using equation (6) as q=βP 0 2 /2ρ 0 2 C 0 4 e -2dx・m・∂/∂tg(t−x
/C 0 ) ...(10). Therefore, when this modulation method is used, it is expected that the distortion component will be reduced, as shown in the second term on the right side of equation (7), and the quality of reproduced sound will be significantly improved.

実施例 1 本発明を実施するための基本的構成例を第1図
に示す。第1図において、1は変調信号源(可聴
周波数帯)、2は係数器、3は直流源、4は加算
器、5は√変換器、6は超音波帯域発振器、7は
掛算器、8はパワーアンプ、9は超音波振動子ア
レーである。
Embodiment 1 An example of a basic configuration for carrying out the present invention is shown in FIG. In Figure 1, 1 is a modulation signal source (audio frequency band), 2 is a coefficient multiplier, 3 is a DC source, 4 is an adder, 5 is a √ converter, 6 is an ultrasonic band oscillator, 7 is a multiplier, 8 is a power amplifier, and 9 is an ultrasonic transducer array.

実施例 2 本発明の変形実施例を第2図に示す。同図にお
いて、10は二重積分器、その他は第1図と同じ
である。本変調方式に基づく非線形パラメトリツ
クスピーカにおいて得られる再生音圧はアレーの
軸上xの点で最終的に次式で与えられている。
Embodiment 2 A modified embodiment of the present invention is shown in FIG. In the figure, 10 is a double integrator, and the other parts are the same as in FIG. The reproduced sound pressure obtained in the nonlinear parametric speaker based on this modulation method is finally given by the following equation at the point x on the axis of the array.

Ps=βP0 2a2m/16ρ0C0 4αx ∂2/∂t2g(t−x/C
0)……(11) つまり、再生音圧は原変調信号の2階微分に比
例する。従つて、第2図示すごとく変調以前に予
め変調信号を二重積分器に通してその後変調を施
すことにより、元の変調信号に比例した再生音
圧、つまり Ps=βP0 2a2m/16ρ0C0 4αxg(t−x/C0)……(12
) を得ることができる。
Ps=βP 0 2 a 2 m/16ρ 0 C 0 4 αx ∂ 2 /∂t 2 g(t−x/C
0 )...(11) In other words, the reproduced sound pressure is proportional to the second-order differential of the original modulation signal. Therefore, as shown in Figure 2, by passing the modulation signal through a double integrator before modulation and then applying modulation, the reproduced sound pressure proportional to the original modulation signal, that is, Ps = βP 0 2 a 2 m / 16ρ 0 C 0 4 αxg(t-x/C 0 )……(12
) can be obtained.

効 果 以上の説明から明らかなように、本発明による
と、再生音の高調ひずみが改善され、高品質な再
生音が得られる。従来方式では変調度(m≦1)
が深くなるとひずみ率が著しく劣化したが、本発
明では基本的にmとは無関係にひずみを低減でき
るので、mが大きい場合(但しm≦1)において
効果が著しい。ここで再生音圧はmに比例するの
で、大きなmを用いることが出来ることは音響変
換器の能率改善にとつても非常に望ましい方向で
ある。
Effects As is clear from the above description, according to the present invention, harmonic distortion of reproduced sound is improved, and high-quality reproduced sound can be obtained. In the conventional method, the modulation depth (m≦1)
Although the strain rate deteriorated significantly as the depth of m increased, the present invention can basically reduce strain regardless of m, so the effect is significant when m is large (however, m≦1). Here, since the reproduced sound pressure is proportional to m, being able to use a large m is a very desirable direction for improving the efficiency of the acoustic transducer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、それぞれ本発明の実施例
を説明するための電気回路図である。 1……変調信号源、2……係数器、3……直流
源、4……加算器、5……√変換器、6……超音
波帯域発振器、7……掛算器、8……パワーアン
プ、9……超音波振動子アレー、10……二重積
分器。
1 and 2 are electrical circuit diagrams for explaining embodiments of the present invention, respectively. 1... Modulation signal source, 2... Coefficient unit, 3... DC source, 4... Adder, 5... √ converter, 6... Ultrasonic band oscillator, 7... Multiplier, 8... Power Amplifier, 9... Ultrasonic transducer array, 10... Double integrator.

Claims (1)

【特許請求の範囲】 1 可聴周波数帯の信号源からの電気信号を音響
信号に変換する超音波振動素子を備え、有限振幅
超音波を空気中に放射し、非線形特性によるパラ
メトリツク作用により可聴信号を得る電気音響変
換装置において、入力信号に直流成分を所定の割
合で加算し、1/2乗変換を行う第1の変換手段と、
前記第1の変換手段の出力信号を当該出力信号よ
りも十分に高い周波数のキヤリアと乗算し、電力
増幅を行う第2の変換手段を設け、前記電気信号
を、前記第1、第2の変換手段で変換した後に、
前記超音波振動素子に供給するようにしたことを
特徴とする電気音響変換装置。 2 前記電気信号は、2重積分器を通して時間的
に2回積分されたものであることを特徴とする特
許請求の範囲第1項に記載の電気音響変換装置。
[Claims] 1. An ultrasonic vibration element that converts an electrical signal from a signal source in an audible frequency band into an acoustic signal, emits finite amplitude ultrasonic waves into the air, and generates an audible signal by parametric action due to nonlinear characteristics. In an electroacoustic transducer for obtaining an input signal, a first converting means for adding a DC component to an input signal at a predetermined ratio and performing 1/2 power conversion;
A second conversion means is provided for power amplifying the output signal of the first conversion means by multiplying it by a carrier having a frequency sufficiently higher than that of the output signal, and converts the electric signal into the first and second conversion means. After converting by means,
An electroacoustic transducer characterized in that the electroacoustic transducer is configured to supply the ultrasonic vibration to the ultrasonic transducer. 2. The electroacoustic transducer according to claim 1, wherein the electrical signal is temporally integrated twice through a double integrator.
JP18378583A 1983-09-30 1983-09-30 Electroacoustic transducer Granted JPS6075199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18378583A JPS6075199A (en) 1983-09-30 1983-09-30 Electroacoustic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18378583A JPS6075199A (en) 1983-09-30 1983-09-30 Electroacoustic transducer

Publications (2)

Publication Number Publication Date
JPS6075199A JPS6075199A (en) 1985-04-27
JPH0458758B2 true JPH0458758B2 (en) 1992-09-18

Family

ID=16141889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18378583A Granted JPS6075199A (en) 1983-09-30 1983-09-30 Electroacoustic transducer

Country Status (1)

Country Link
JP (1) JPS6075199A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236198A (en) * 2007-03-19 2008-10-02 Mitsubishi Electric Engineering Co Ltd Modulator for super-directional speaker
JP2013537741A (en) * 2010-07-22 2013-10-03 コーニンクレッカ フィリップス エヌ ヴェ Driving parametric loudspeakers

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4221792B2 (en) * 1998-01-09 2009-02-12 ソニー株式会社 Speaker device and audio signal transmitting device
GB2351169B (en) * 1999-06-14 2003-11-19 Nokia Mobile Phones Ltd Audio apparatus
TWI405380B (en) * 2009-12-22 2013-08-11 Delta Electronics Inc Over voltage and over temperature detection circuit
JP5252137B1 (en) 2013-02-18 2013-07-31 パナソニック株式会社 Ultrasonic speaker system
CN106067996B (en) * 2015-04-24 2019-09-17 松下知识产权经营株式会社 Voice reproduction method, voice dialogue device
US11735155B2 (en) * 2018-08-03 2023-08-22 Uab Neurotechnology Method for generating parametric sound and means for carying out said method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236198A (en) * 2007-03-19 2008-10-02 Mitsubishi Electric Engineering Co Ltd Modulator for super-directional speaker
JP2013537741A (en) * 2010-07-22 2013-10-03 コーニンクレッカ フィリップス エヌ ヴェ Driving parametric loudspeakers

Also Published As

Publication number Publication date
JPS6075199A (en) 1985-04-27

Similar Documents

Publication Publication Date Title
JP4856835B2 (en) Parametric audio system
Kite et al. Parametric array in air: Distortion reduction by preprocessing
RU2569914C2 (en) Driving parametric loudspeakers
US7773761B2 (en) Method and apparatus to generate an audio beam with high quality
Aoki et al. Parametric loudspeaker—characteristics of acoustic field and suitable modulation of carrier ultrasound
JPH11164384A (en) Super directional speaker and speaker drive method
JPH0458758B2 (en)
US7181025B2 (en) Ultrasound based parametric loudspeaker system
Shi et al. A preprocessing method to increase high frequency response of a parametric loudspeaker
CN110784799B (en) Sound directional transmission method and system
JPS60201799A (en) Electroacoustic transducer
JP2007201624A (en) Modulator for super-directivity speaker
JPH0115198B2 (en)
US7062050B1 (en) Preprocessing method for nonlinear acoustic system
JPH08149592A (en) Parametric speaker controller
JP4535758B2 (en) Superdirective speaker modulator
CN110138458B (en) Method for realizing remote directional beam-bunching emission of sound waves
JP2003299180A (en) Method for driving ultrasonic loud speaker and loud speaker system
Geng et al. Virtual bass enhancement based on harmonics control using missing fundamental in parametric array loudspeaker
JPS5952999A (en) Synthesizing method of audible sound source
JPS60201275A (en) Electroacoustic transducer
JP3668187B2 (en) Sound reproduction method and sound reproduction apparatus
JP3947649B2 (en) Method and apparatus for generating audible sonic waves by ultrasonic synthesis
JPH0221720B2 (en)
JPH0231919B2 (en) SUPIIKANOKUDOHOHO