JPH0451110A - Position detection system for scanning rotary mirror - Google Patents

Position detection system for scanning rotary mirror

Info

Publication number
JPH0451110A
JPH0451110A JP16067790A JP16067790A JPH0451110A JP H0451110 A JPH0451110 A JP H0451110A JP 16067790 A JP16067790 A JP 16067790A JP 16067790 A JP16067790 A JP 16067790A JP H0451110 A JPH0451110 A JP H0451110A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
rotating mirror
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16067790A
Other languages
Japanese (ja)
Inventor
Kanji Hirota
廣田 寛司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16067790A priority Critical patent/JPH0451110A/en
Publication of JPH0451110A publication Critical patent/JPH0451110A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To enable accurate position detection by providing a 1st light receiving element which receives light only from one reflecting surface vertically above a light emitting element and a 2nd light receiving element which receives light from all reflecting mirrors vertically below the light emitting element. CONSTITUTION:The rotary mirror 10 which has plural slanting surfaces at plural tilt angles is used to make an optical scan and the light emitted by the light emitting element 13 is reflected by the rotary mirror 10 and detected by the light receiving elements to detect the rotational position of the rotary mirror 10. At this time, the 1st light receiving element 11 which receives the light from one reflecting surface is arranged vertically above the light emitting element 13 and the 2nd light receiving element 12 which receives the light from all the reflecting surfaces is provided vertically below the light emitting element 13. Therefore, scanning start time can be set with the light signal from the one reflecting surface. Consequently, the positions of the reflecting surfaces can accurately be detected without making any position adjustment, the respective surfaces can be detected, and the high-accuracy rotary mirror scanning using a small number of components becomes possible.

Description

【発明の詳細な説明】 〔概 要〕 光学走査を行うことにより受像を行う回転鏡における位
置検出に関し、 精度の良い位置検知を有する回転鏡方式を提供すること
を目的とし、 複数の倒れ角付き反射面からなる回転鏡を使用して光学
走査を行い、かつ発光素子から発した光を前記回転鏡に
当てて反射した光を検出し、前記回転鏡(10)の回転
位置を検知するものにおいて、上記発光素子の垂直上側
に、一つの反射面からの光のみを受光する第一の受光素
子と、更に、上記発光素子に垂直下側に、全ての反射面
からの光を受光する第二の受光素子とを設け、各反射面
の位置検出ができるように構成する。
[Detailed Description of the Invention] [Summary] Regarding position detection in a rotating mirror that receives images by performing optical scanning, an object of the present invention is to provide a rotating mirror method with highly accurate position detection, and to provide a rotating mirror system with multiple tilt angles. In the apparatus, which performs optical scanning using a rotating mirror made of a reflective surface, and detects the reflected light by applying light emitted from a light emitting element to the rotating mirror to detect the rotational position of the rotating mirror (10). , a first light receiving element vertically above the light emitting element that receives light from only one reflecting surface, and a second light receiving element vertically below the light emitting element receiving light from all the reflecting surfaces. A light receiving element is provided, and the configuration is such that the position of each reflective surface can be detected.

〔産業上の利用分野〕[Industrial application field]

本発明は、光学走査を行うことにより受像を行う回転鏡
における位置検出に関し、 回転鏡走査においては、回転位置を正しく検知する必要
があり、かつ倒れ角付き回転鏡については各反射面の上
下に対する角度を付けているため、各反射面番号を正確
に検知する構造が必要となる。
The present invention relates to position detection in a rotating mirror that receives an image by performing optical scanning.In rotating mirror scanning, it is necessary to correctly detect the rotational position, and for rotating mirrors with tilt angles, it is necessary to detect the rotational position accurately with respect to the top and bottom of each reflective surface. Because it is angled, a structure is required to accurately detect each reflective surface number.

〔従来の技術〕[Conventional technology]

第4図は従来の回転鏡の構造の一例を示す図であり、第
4図(a)は上面模式図、第4図(b)は側面模式図で
ある。図中、10は反射面である第一面10a〜第八面
10hを備えた回転鏡、14は駆動系に接続された回転
軸である。また32は円板、33は第−面検出用切れ込
み、34は各面検出用切れ込みである。
FIG. 4 is a diagram showing an example of the structure of a conventional rotating mirror, with FIG. 4(a) being a schematic top view and FIG. 4(b) being a schematic side view. In the figure, 10 is a rotating mirror having a first surface 10a to an eighth surface 10h which are reflective surfaces, and 14 is a rotating shaft connected to a drive system. Further, 32 is a disk, 33 is a notch for detecting the first surface, and 34 is a notch for detecting each surface.

又、35は第一面検出用フオドカプラ、なお36は各面
検出用フォトカプラである。
Further, 35 is a photocoupler for detecting the first surface, and 36 is a photocoupler for detecting each surface.

従来の回転鏡10は第4図(a)と第4図(b)に示す
ように、回転鏡10の上面に位置検出のための第−面検
出用切れ込み33と各面検出用切れ込み34を具えた円
板32が取りつけてあり、この円板32は回転軸14お
よび回転軸14に結合した回転鏡lOとともに回転する
。各第一面10a〜第八面10hの検出としては第一面
10aのみが検知できれば良いので、第一面10aのみ
が検出できるように第−面検出用切れ込み33を設け、
かつ該第−面検出用切れ込み33のみを深く切り込んで
おく。また検出構造として第一面検出用フォトカブラ3
5と各面検出用フォトカプラ36を用い、第一面検出用
フォトカプラ35は第−面検出用切れ込み33以外の位
置では検出できないように深く取りつけておく。
As shown in FIGS. 4(a) and 4(b), the conventional rotating mirror 10 has a first surface detection notch 33 and each surface detection notch 34 for position detection on the top surface of the rotating mirror 10. A disc 32 is mounted, which rotates together with the axis of rotation 14 and a rotating mirror lO coupled to the axis of rotation 14. For detection of each of the first surfaces 10a to 8th surfaces 10h, it is sufficient to detect only the first surface 10a, so a notch 33 for detecting the first surface is provided so that only the first surface 10a can be detected.
In addition, only the first surface detection notch 33 is cut deeply. In addition, as a detection structure, a photocoupler 3 for first surface detection is used.
5 and each surface detection photocoupler 36, and the first surface detection photocoupler 35 is installed deeply so that it cannot be detected at a position other than the first surface detection notch 33.

回転鏡10が回転すると同時に円板32も回転し、第一
面検出用フォトカプラ35の位置に第一面10aがきた
とき、第一面検出用フォトカブラ35から第一面検知出
力が送出される。また各面検出用フォトカプラ36には
第一面10aを含めた第一面10a〜第八面10hの各
検知出力が送出される。なおこの各面検出用フォトカプ
ラ36の出力により、各反射面のスタート位置の検知が
できる。
At the same time as the rotary mirror 10 rotates, the disk 32 also rotates, and when the first surface 10a comes to the position of the first surface detection photocoupler 35, a first surface detection output is sent from the first surface detection photocoupler 35. Ru. Moreover, each detection output of the first surface 10a including the first surface 10a to the eighth surface 10h is sent to the photocoupler 36 for detecting each surface. Note that the start position of each reflective surface can be detected by the output of the photocoupler 36 for detecting each surface.

(発明が解決しようとする課題〕 従って、円板の取りつけ精度および円板に設ける検出用
切れ込み精度により位置ずれが生じること、および円板
を用いるため部品が多くなるという課題がある。 本発
明は、精度の良い位置検知を有する回転鏡方式を提供す
ることを目的とする。
(Problems to be Solved by the Invention) Therefore, there are problems in that positional deviation occurs due to the mounting accuracy of the disk and the accuracy of the detection notch provided on the disk, and that the number of parts increases due to the use of the disk. The object of the present invention is to provide a rotating mirror system with highly accurate position detection.

〔課題を解決するための手段] 本発明は、複数の倒れ角付き反射面からなる回転鏡10
を使用して光学走査を行い、かつ発光素子13から発し
た光を前記回転鏡10に当てて反射した光を検出し、前
記回転鏡10の回転位置を検知するものにおいて、上記
発光素子13の垂直上側に、一つの反射面からの光のみ
を受光する第一の受光素子11と、更に、上記発光素子
13に垂直下側に、全ての反射面からの光を受光する第
二の受光素子12とを設け、各反射面の位置検出ができ
るように構成するものである。
[Means for Solving the Problems] The present invention provides a rotating mirror 10 comprising a plurality of reflective surfaces with tilt angles.
The light emitting element 13 is used to perform optical scanning, and the light emitted from the light emitting element 13 is applied to the rotating mirror 10 and the reflected light is detected to detect the rotational position of the rotating mirror 10. A first light-receiving element 11 that receives light from only one reflective surface is located vertically above the light-emitting element 13, and a second light-receiving element that receives light from all reflective surfaces is located vertically below the light-emitting element 13. 12, and is configured so that the position of each reflective surface can be detected.

〔作 用〕[For production]

本発明では第1図に示すごとく、複数の倒れ角付き反射
面からなる回転鏡10を使用することにより光学走査を
行い、かつ発光素子13から発した光を回転鏡10に当
てて反射した光を受光素子により検出し、回転鏡10の
回転位置を検知する際において、前記発光素子13の垂
直上側に、一つの反射面からの反射光の受光する第一の
受光素子11を備え、また前記発光素子13に垂直下側
に、全ての反射面からの反射光を受光する第二の受光素
子12を備えるようにしている。
In the present invention, as shown in FIG. 1, optical scanning is performed by using a rotating mirror 10 consisting of a plurality of reflective surfaces with inclined angles, and light emitted from a light emitting element 13 is reflected by the rotating mirror 10. When detecting the rotational position of the rotating mirror 10 by using a light receiving element, a first light receiving element 11 is provided vertically above the light emitting element 13 to receive reflected light from one reflecting surface, and the first light receiving element 11 is provided vertically above the light emitting element 13. A second light receiving element 12 is provided vertically below the light emitting element 13 to receive reflected light from all the reflecting surfaces.

従って、一つの反射面からの光信号により走査開始時間
を設定ができ、精度の良い位置検出が可能になる。
Therefore, the scanning start time can be set using the optical signal from one reflecting surface, and highly accurate position detection becomes possible.

〔実 施 例〕〔Example〕

第1図は本発明の回転鏡の構造を示す図であり、fa)
は上面模式図、(blは側面模式図である。また第2図
は本発明の回転鏡の動作を示す図であり、(a)と(b
lは受光方法の上面図、(C1と(dlは受光方法の側
面図である。また第3図は本発明の一実施例の構成回路
を示す図であり、回転鏡を赤外線映像装置にもちいた一
例である。
FIG. 1 is a diagram showing the structure of the rotating mirror of the present invention, fa)
is a schematic top view, (bl is a schematic side view), and FIG. 2 is a diagram showing the operation of the rotating mirror of the present invention, (a) and (b)
l is a top view of the light receiving method, (C1 and (dl) are side views of the light receiving method. FIG. This is one example.

図中、10は回転鏡、10a〜10hは第一面〜第八面
、11は第一フオドトランジスタ、12は第二フォトト
ランジスタ、13は発光ダイオード、14は回転軸、1
5は回転鏡駆動回路である。また21は反射鏡、22は
赤外レンズ、23は多素子検知器、24は第−増軸回路
、25はアナログ/ディジタル変換回路(以下において
A/D変換回路と称す)、26はメモリである。なお2
7は発光ダイオード駆動回路、28は第二増幅回路、2
9は第三増幅回路、30はマイクロプロセッサユニット
であり、更に31はテレビ信号発生回路である。以下、
第1図〜第3図を用いて本発明の詳細な説明する。
In the figure, 10 is a rotating mirror, 10a to 10h are first to eighth surfaces, 11 is a first phototransistor, 12 is a second phototransistor, 13 is a light emitting diode, 14 is a rotating shaft, 1
5 is a rotating mirror drive circuit. Further, 21 is a reflecting mirror, 22 is an infrared lens, 23 is a multi-element detector, 24 is a first axis multiplication circuit, 25 is an analog/digital conversion circuit (hereinafter referred to as an A/D conversion circuit), and 26 is a memory. be. Note 2
7 is a light emitting diode drive circuit, 28 is a second amplifier circuit, 2
9 is a third amplifier circuit, 30 is a microprocessor unit, and 31 is a television signal generation circuit. below,
The present invention will be explained in detail using FIGS. 1 to 3.

第1図において、発光ダイオード13は第一面10a〜
第八面10hに向けて発光を行い、この第一面10a〜
第八面10hからの反射光は第一フォトトランジスタ1
1および第二フォトトランジスタ12で電気信号に変換
される。
In FIG. 1, the light emitting diode 13 has a first surface 10a to
Light is emitted toward the eighth surface 10h, and this first surface 10a~
The reflected light from the eighth surface 10h is the first phototransistor 1
The first and second phototransistors 12 convert the signal into an electrical signal.

第一フォトトランジスタ11と第二フォトトランジスタ
12および発光ダイオード13は、回転鏡10の鏡面対
向位置に取りつけられる。第一フォトトランジスタ11
は第一面10aに応じた角度の光を受信するように発光
ダイオード13の上側に取りつけられる。また第一面1
0a以外の第二面10b〜第八面10hに応じた受光に
ついては、発光ダイオード13の下側に第二フォトトラ
ンジスタ12を取りつける。
The first phototransistor 11, the second phototransistor 12, and the light emitting diode 13 are mounted at positions facing the mirror surface of the rotating mirror 10. First phototransistor 11
is attached above the light emitting diode 13 so as to receive light at an angle corresponding to the first surface 10a. Also, front page 1
Regarding light reception according to the second surface 10b to the eighth surface 10h other than 0a, a second phototransistor 12 is attached below the light emitting diode 13.

なお第二フォトトランジスタ12は各第二面IOb〜第
八面10hに応じた光を受光しなくてはならないので、
垂直方向に長い受光面をもつ構造にしておく。また発光
ダイオード13および第一フォトトランジスタ11と第
二フォトトランジスタ12は、回転鏡10の回転を妨げ
ない位置に接近して設けるが、実際には映像受信に使用
する反射面の反対側反射面が好ましい。
Note that the second phototransistor 12 must receive light corresponding to each of the second surface IOb to the eighth surface 10h.
The structure should have a long light-receiving surface in the vertical direction. In addition, the light emitting diode 13, the first phototransistor 11, and the second phototransistor 12 are provided close to each other in a position that does not interfere with the rotation of the rotating mirror 10, but in reality, the reflective surface opposite to the reflective surface used for image reception is preferable.

第2図(alと(b)に示すように回転鏡10は回転を
行うが、発光ダイオード13から発した光は(a)のと
きは受光されず、また各第一面10a〜第八面10hが
正面方向に対向する第2図(b)の場合のみ第一フォト
トランジスタ11または第二フォトトランジスタ12に
対し反射されるので、第一フォトトランジスタ11また
は第二フォトトランジスタ12から出力される電気信号
は、常に反射面の正面の位置を示す。
As shown in FIGS. 2(al) and (b), the rotating mirror 10 rotates, but the light emitted from the light emitting diode 13 is not received at the time of (a), and each of the first surface 10a to the eighth surface 10h is reflected toward the first phototransistor 11 or the second phototransistor 12 only in the case of FIG. The signal always indicates the position in front of the reflective surface.

また第2図(C1と(d)は倒れ角による検出を示し、
(C)は第一面10aが正面にきた時を示し第一面10
aの倒れ角により第一フォトトランジスタ11に光が入
る。(d)には第一面10a以外の第二面10b〜第八
面10hが正面にきた時を示し、第二フォトトランジス
タエ2に光が入る。なお各第一面10a〜第八面10h
の倒れ角がそれぞれ異なるので受光点は上下するが、第
二フォトトランジスタ12を上下方向に長い゛構造のた
め受光ができる。
In addition, Fig. 2 (C1 and (d) shows detection based on the inclination angle,
(C) shows when the first surface 10a is in front of the first surface 10
Light enters the first phototransistor 11 due to the tilt angle of a. (d) shows a state where the second surface 10b to the eighth surface 10h other than the first surface 10a are in front, and light enters the second phototransistor 2. In addition, each of the first side 10a to the eighth side 10h
Since the inclination angles of the two phototransistors are different, the light receiving point moves up and down, but since the second phototransistor 12 has a vertically long structure, light can be received.

第3図において、第1図および第2図に示したように回
転鏡10は倒れ角付きであり、回転鏡駆動回路15によ
り駆動されて1回転するごとに赤外線映像が各1面づつ
得られる構造のものである。入射光(赤外線)は、回転
鏡10の第一面10a〜第八面10hの中の1面にて反
射され、該反射光は反射鏡21を介して赤外レンズ22
に入る。赤外レンズ22の出力光は一次元の多素子検知
器23に像を結び映像信号に変換され、第一増幅回路2
4を介しA/D変換回路25にてディジタル信号に変換
されてメモリ26に記憶される。
In FIG. 3, as shown in FIGS. 1 and 2, the rotating mirror 10 has an inclination angle, and is driven by a rotating mirror drive circuit 15 to obtain an infrared image on each side each time it rotates. It is of structure. The incident light (infrared rays) is reflected by one of the first to eighth surfaces 10a to 10h of the rotating mirror 10, and the reflected light passes through the reflecting mirror 21 to the infrared lens 22.
to go into. The output light from the infrared lens 22 forms an image on a one-dimensional multi-element detector 23 and is converted into a video signal, which is then sent to the first amplifier circuit 2.
4, the signal is converted into a digital signal by the A/D conversion circuit 25, and is stored in the memory 26.

一方、本発明の発光ダイオード13が発光し、その反射
光は第一フォトトランジスタ11と第二フォトトランジ
スタ12により検知されるが、回転駆動鏡回路15に駆
動されて第一面10aの反射光検出用の第一フオドトラ
ンジスタ■1からの反射信号は第二増幅回路28を介し
てマイクロプロセッサユニット30に入力し、または第
二面10b〜第八面10hの反射光検出用の第二フォト
トランジスタ12からの反射信号は第三増幅回路29を
介してマイクロプロセッサユニット30に入力する。こ
のマイクロプロセッサユニット30は、第一面10aか
らの反射面検知信号により第一面10aの位置を算出し
、メモリ26の記憶開始時間を決定して映像データ書き
込み制御信号を出力し、また各第一面10a〜第八面1
0hの反射面検知信号により各メモリ開始時間を決定し
て映像データを書き込む。メモリ26から読みだされた
信号は、テレビ信号発生回路31によりテレビ信号に変
換されテレビモニタに表示される。
On the other hand, the light emitting diode 13 of the present invention emits light, and the reflected light is detected by the first phototransistor 11 and the second phototransistor 12, and is driven by the rotation drive mirror circuit 15 to detect the reflected light from the first surface 10a. The reflected signal from the first phototransistor 1 is input to the microprocessor unit 30 via the second amplifier circuit 28, or the second phototransistor for detecting reflected light on the second surface 10b to the eighth surface 10h The reflected signal from 12 is input to the microprocessor unit 30 via the third amplifier circuit 29. This microprocessor unit 30 calculates the position of the first surface 10a based on the reflective surface detection signal from the first surface 10a, determines the storage start time of the memory 26, outputs a video data writing control signal, and also outputs a video data writing control signal. 1st side 10a to 8th side 1
The start time of each memory is determined by the reflective surface detection signal of 0h, and the video data is written. The signal read from the memory 26 is converted into a television signal by the television signal generation circuit 31 and displayed on the television monitor.

上記したように、各反射面の映像開始時間は回転鏡10
が一定速度で回転している為、第一面10a〜第八面1
0hの各面の正面検知信号から一定時間で実際に使用す
る映像開始位置になることが算出できる。
As mentioned above, the image start time of each reflecting surface is determined by the rotating mirror 10.
is rotating at a constant speed, so the first surface 10a to the eighth surface 1
It can be calculated from the front detection signal of each surface of 0h that the image starting position to be actually used will be reached in a certain period of time.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、位W調
整を必要とすることなしに精度よく反射面の位置検出が
でき、各面の検知もできかつ部品数の少ない高精度の回
転鏡走査ができる。
As is clear from the above description, according to the present invention, the position of the reflecting surface can be detected with high precision without the need for position W adjustment, and each surface can be detected, and a high-precision rotating mirror with a small number of parts can be used. Can be scanned.

従って、回転鏡走査映像装置の性能向上に寄与するとこ
ろが大きい。
Therefore, it greatly contributes to improving the performance of the rotating mirror scanning imaging device.

14は回転軸、 を示す。14 is the rotation axis; shows.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の回転鏡の構造を示す図、第2図は本発
明の回転鏡の動作を示す図、第3図は本発明の一実施例
の構成回路を示す図、第4図は従来の回転鏡の構造の一
例を示す図、である。 図において、 10は回転鏡、 10a〜10hは第一面〜第八面、 11は第一受光素子(フォトトランジスタ)、12は第
二受光素子(フォトトランジスタ)、13は発光素子(
発光ダイオード)、 +b】 21711月のaロ章=tteオ11召1を#ffi第
1図 ℃算1差土用τ14み (Q) 32円猜 / (b) 従来f、回た娃の1道!−σバ栢潤 第4m
Fig. 1 is a diagram showing the structure of the rotating mirror of the present invention, Fig. 2 is a diagram showing the operation of the rotating mirror of the invention, Fig. 3 is a diagram showing the configuration circuit of an embodiment of the invention, and Fig. 4 is a diagram showing the structure of the rotating mirror of the present invention. 1 is a diagram showing an example of the structure of a conventional rotating mirror. In the figure, 10 is a rotating mirror, 10a to 10h are first to eighth surfaces, 11 is a first light receiving element (phototransistor), 12 is a second light receiving element (phototransistor), and 13 is a light emitting element (
Light emitting diode), +b] 217 November's aro chapter = tteo 11 call 1 #ffi Figure 1 ℃ calculation 1 difference τ14 (Q) 32 yen / (b) Conventional f, turned 1 road! -σ Ba Jun Jun 4th m

Claims (1)

【特許請求の範囲】 複数の倒れ角付き反射面からなる回転鏡(10)を使用
して光学走査を行い、かつ発光素子(13)から発した
光を前記回転鏡(10)に当てて反射した光を検出し、
前記回転鏡(10)の回転位置を検知するものにおいて
、 上記発光素子(13)の垂直上側に、一つの反射面から
の光のみを受光する第一の受光素子(11)と、更に、
上記発光素子(13)に垂直下側に、全ての反射面から
の光を受光する第二の受光素子(12)とを設け、 各反射面の位置を検出するようにしたことを特徴とする
走査回転鏡位置検出方式。
[Claims] Optical scanning is performed using a rotating mirror (10) consisting of a plurality of tilted reflecting surfaces, and light emitted from a light emitting element (13) is reflected by hitting the rotating mirror (10). detects the light
In the device for detecting the rotational position of the rotating mirror (10), a first light receiving element (11) that receives only light from one reflective surface is provided vertically above the light emitting element (13);
A second light-receiving element (12) is provided vertically below the light-emitting element (13) to receive light from all reflective surfaces, and the position of each reflective surface is detected. Scanning rotating mirror position detection method.
JP16067790A 1990-06-18 1990-06-18 Position detection system for scanning rotary mirror Pending JPH0451110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16067790A JPH0451110A (en) 1990-06-18 1990-06-18 Position detection system for scanning rotary mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16067790A JPH0451110A (en) 1990-06-18 1990-06-18 Position detection system for scanning rotary mirror

Publications (1)

Publication Number Publication Date
JPH0451110A true JPH0451110A (en) 1992-02-19

Family

ID=15720085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16067790A Pending JPH0451110A (en) 1990-06-18 1990-06-18 Position detection system for scanning rotary mirror

Country Status (1)

Country Link
JP (1) JPH0451110A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605963B2 (en) 2007-09-11 2009-10-20 Kabushiki Kaisha Toshiba Optical beam scanning apparatus, optical beam scanning method and image forming apparatus
JP2016070974A (en) * 2014-09-26 2016-05-09 株式会社デンソー Laser irradiation control device
EP3483628A4 (en) * 2016-07-07 2019-07-03 Konica Minolta, Inc. Laser radar device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605963B2 (en) 2007-09-11 2009-10-20 Kabushiki Kaisha Toshiba Optical beam scanning apparatus, optical beam scanning method and image forming apparatus
US7903311B2 (en) 2007-09-11 2011-03-08 Kabushiki Kaisha Toshiba Optical beam scanning apparatus and image forming apparatus
JP2016070974A (en) * 2014-09-26 2016-05-09 株式会社デンソー Laser irradiation control device
EP3483628A4 (en) * 2016-07-07 2019-07-03 Konica Minolta, Inc. Laser radar device

Similar Documents

Publication Publication Date Title
CN101153795B (en) Laser scanner
EP1411371B1 (en) Surveying and position measuring instrument with a fan-shapped light beam
JP2004037127A (en) Position detecting device
US4234241A (en) Stereo line scanner
JP3665514B2 (en) Converter for optical scanner
JPH0451110A (en) Position detection system for scanning rotary mirror
JP2002022425A (en) Three-dimensional image input device
US4516159A (en) Elevation step scanner
JPH02188713A (en) Image forming device
EP3795946A1 (en) Three-dimensional survey apparatus, three-dimensional survey method, and three-dimensional survey program
JP3504293B2 (en) Position and orientation measurement device for moving objects
JPH07190773A (en) Optical three-dimensional position detecting device
JPH11103371A (en) Image scanner having center position detection function and method for detecting center position of the image scanner
JP3127185B2 (en) Optical device
US20220091264A1 (en) Survey apparatus and survey program
JP3504698B2 (en) Distance measuring device
JPS61292122A (en) Scanning system for infrared image device
JP2649733B2 (en) Image input device
CA1303217C (en) Apparatus including multielement detectors for recording heat images
JPS6246808B2 (en)
CN117804747A (en) Measuring system and measuring method of optical element
SU1078449A1 (en) Device for transforming coordinates of graphic image points
JPH07151510A (en) Scanning type laser displacement gauge
JPH09224197A (en) Wide area scanning image pickup device
JPS63298213A (en) Scanning type image pickup device