JPH0451027B2 - - Google Patents

Info

Publication number
JPH0451027B2
JPH0451027B2 JP58240072A JP24007283A JPH0451027B2 JP H0451027 B2 JPH0451027 B2 JP H0451027B2 JP 58240072 A JP58240072 A JP 58240072A JP 24007283 A JP24007283 A JP 24007283A JP H0451027 B2 JPH0451027 B2 JP H0451027B2
Authority
JP
Japan
Prior art keywords
voltage
developing
waveform
image
toner particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58240072A
Other languages
Japanese (ja)
Other versions
JPS60131555A (en
Inventor
Satoru Haneda
Hisafumi Shoji
Seiichiro Hiratsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP24007283A priority Critical patent/JPS60131555A/en
Publication of JPS60131555A publication Critical patent/JPS60131555A/en
Publication of JPH0451027B2 publication Critical patent/JPH0451027B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/06Developing
    • G03G13/08Developing using a solid developer, e.g. powder developer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dry Development In Electrophotography (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子写真複写装置等の静電記録装置
における静電像の現像方法に関し、特に、周期波
状電圧を用いて現像域に振動電界を生ぜしめ、該
現像域で像担持体上の静電像をトナーにより現像
する現像方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for developing an electrostatic image in an electrostatic recording device such as an electrophotographic copying device. The present invention relates to a developing method in which an electrostatic image on an image carrier is developed with toner in the developing area.

〔従来技術〕[Prior art]

従来、交番電圧を用いて現像域に振動電界を生
ぜしめるようにした現像方法は知られており、ま
た、交番電圧の振幅あるいは直流成分電圧の電圧
値を変えて現像濃度を調整するようにした現像方
法は特開昭55−118048号公報により知られてお
り、さらに、交番電圧の周波数を変えて現像濃度
を調整するようにした現像方法も特開昭55−
133058号により知られている。このように振動電
界の強度や周波数を変えて現像濃度の調整を行う
方法は、光学系の絞りを変える方法よりもコスト
が安くなり、光源強度を変える方法よりも適応性
が広いと云う長所があるが、なお、振動電界の強
度を変える方法はかぶりを生ぜしめる惧れがあ
り、また周波数を変える方法は現像濃度の変化幅
が狭くて、いずれにしても十分に階調性が再現さ
れた鮮明な記録画像を得る現像濃度の調整は困難
である。また、静電像電位と背景電位の変化に応
じて振動電界の強度を変えるためには、二種類の
変化する電圧を必要とするから、電源装置が複雑
であり、また周波数を変換するのはさらに電源装
置が複雑であると云う問題もある。
Conventionally, a developing method is known in which an oscillating electric field is generated in the developing area using an alternating voltage, and the developed density is adjusted by changing the amplitude of the alternating voltage or the voltage value of the DC component voltage. A developing method is known from JP-A-55-118048, and a developing method in which the frequency of the alternating voltage is changed to adjust the developed density is also known from JP-A-55-118048.
Known from No. 133058. This method of adjusting the developing density by changing the strength and frequency of the oscillating electric field has the advantage that it is cheaper than the method of changing the aperture of the optical system, and is more adaptable than the method of changing the light source intensity. However, the method of changing the strength of the oscillating electric field has the risk of causing fogging, and the method of changing the frequency has a narrow range of change in developing density, so in any case, the gradation was sufficiently reproduced. It is difficult to adjust the development density to obtain a clear recorded image. In addition, in order to change the strength of the oscillating electric field in response to changes in the electrostatic image potential and background potential, two types of changing voltages are required, which makes the power supply complex, and it is difficult to convert the frequency. Another problem is that the power supply is complicated.

〔発明の目的〕 本発明は、現像域に与える振動電界によつて十
分に階調性が再現された鮮明な記録画像が得られ
るように現像濃度を調整することができ、しかも
電源装置が比較的簡単に構成される現像方法を提
供するものである。
[Object of the Invention] The present invention is capable of adjusting the developing density so that a clear recorded image with sufficiently reproduced gradation can be obtained by applying an oscillating electric field to the developing area, and moreover, the power supply device is The purpose of the present invention is to provide a developing method that is easily configured.

〔発明の構成〕[Structure of the invention]

本発明はトナー粒子と絶縁性磁性キヤリアより
なる現像剤に振動電界を印加すると共に、前記ト
ナー粒子が磁気ブラシから像担持体の表面に飛翔
して行われることにより現像する現像方法におい
て、現像域に発生させた周期波状電圧を増幅、昇
圧及び波形の一定部をカツト整形する位相制御に
より調整し、該周期波状電圧と直流電圧との重畳
電圧を用いて前記周期波状電圧の波形を変化させ
た振動電界を印加せしめ、前記現像域で像担持体
上の静電像を前記トナー粒子により現像すること
を特徴とする現像方法にあり、この構成によつて
上記目的を達成したものである。
The present invention provides a developing method in which development is performed by applying an oscillating electric field to a developer consisting of toner particles and an insulating magnetic carrier, and causing the toner particles to fly from a magnetic brush onto the surface of an image carrier. The periodic waveform voltage generated is adjusted by amplification, boosting, and phase control that cuts a certain part of the waveform, and the waveform of the periodic waveform voltage is changed using the superimposed voltage of the periodic waveform voltage and the DC voltage. The present invention is a developing method characterized in that an oscillating electric field is applied to develop an electrostatic image on an image carrier with the toner particles in the developing area, and with this configuration, the above object is achieved.

〔実施例〕〔Example〕

以下、本発明を図面を参照して説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

第1図は本発明の方法を実施する現像装置の例
を示す概要構成図である。
FIG. 1 is a schematic diagram showing an example of a developing device for carrying out the method of the present invention.

第1図において、1は矢印方向に回転し、表面
に、図示せざる公知の帯電及び露光装置あるいは
マルチスタイラス電極やイオン制御電極を用いる
静電潜像形成装置によつて、静電潜像を形成され
る電子写真感光体層あるいは誘電体層を有するド
ラム状の像担持体、2はアルミニウム等の非磁性
材料からなる現像スリーブ、3は現像スリーブ2
の内部に設けられて表面に複数のN,S磁極を周
方向に有する磁石体で、この現像スリーブ2と磁
石体3とで現像剤搬送担体を構成している。そし
て、現像スリーブ2と磁石体3とは相対回転可能
であり、図は現像スリーブ2が左回転し、磁石体
3が右回転するものであることを示している。ま
た、磁石体3のN,S磁極は通常500〜1500ガウ
スの磁束密度に磁化されており、その磁力によつ
て現像スリーブ2の表面にトナー粒子とキヤリア
粒子とから成る現像剤Dの層を付着させて所謂磁
気ブラシを形成する。この磁気ブラシは現像スリ
ーブ2と磁石体3の上記回転によつて現像スリー
ブ2の回転と同方向に移動し、現像域Aに搬送さ
れる。4は現像スリーブ2表面の磁気ブラシの高
さ、量を規制する磁性体や非磁性体から成る層厚
規制ブレード、5は現像域Aを通過した磁気ブラ
シを現像スリーブ2上から除去するクリーニング
ブレード、6は現像剤溜り、7は現像剤溜り6の
現像剤Dを撹拌してトナー粒子とキヤリア粒子の
混合を均一にする撹拌スクリユー、8はトナー粒
子Tを補給するためのトナーホツパー、9は現像
剤溜り6にトナー粒子Tを落すための表面に凹部
を有するトナー供給ローラ、10は第2図に示し
たような正弦波状電圧(波形T)を発生する周期
電圧発生回路、11は10より出力される周期電
圧波を位相制御し各半波(T/2)毎にその特定
部分γのみを取出して第3図Aに実線で示したよ
うに変換し、或いはそれを更に増幅するよう構成
された波形整形回路、12は前記のようにして得
られた交流電圧に直流バイアス電圧を重畳する直
流電源回路である。前記γの値は波形整形回路1
1の定数を調整することによつて変化可能であり
γの変化によりその出力波形は第3図B或いはC
のように変化する。
In FIG. 1, numeral 1 rotates in the direction of the arrow, and an electrostatic latent image is formed on the surface by a known charging and exposure device (not shown) or an electrostatic latent image forming device using a multi-stylus electrode or an ion control electrode. A drum-shaped image carrier having an electrophotographic photoreceptor layer or dielectric layer to be formed, 2 a developing sleeve made of a non-magnetic material such as aluminum, 3 a developing sleeve 2
The developing sleeve 2 and the magnet 3 constitute a developer transport carrier. The developing sleeve 2 and the magnet body 3 can rotate relative to each other, and the figure shows that the developing sleeve 2 rotates to the left and the magnet body 3 rotates to the right. Further, the N and S magnetic poles of the magnet body 3 are normally magnetized to a magnetic flux density of 500 to 1500 Gauss, and the magnetic force forms a layer of developer D consisting of toner particles and carrier particles on the surface of the developing sleeve 2. It is attached to form a so-called magnetic brush. This magnetic brush is moved in the same direction as the rotation of the developing sleeve 2 by the rotation of the developing sleeve 2 and the magnet body 3, and is conveyed to the developing area A. 4 is a layer thickness regulating blade made of magnetic or non-magnetic material that regulates the height and amount of the magnetic brush on the surface of the developing sleeve 2; 5 is a cleaning blade that removes the magnetic brush that has passed through the developing area A from above the developing sleeve 2; , 6 is a developer reservoir, 7 is a stirring screw that stirs the developer D in the developer reservoir 6 to uniformly mix the toner particles and carrier particles, 8 is a toner hopper for replenishing toner particles T, 9 is a developer A toner supply roller having a concave portion on its surface for dropping toner particles T into the agent reservoir 6; 10 a periodic voltage generating circuit that generates a sinusoidal voltage (waveform T) as shown in FIG. 2; 11 an output from 10; It is configured to phase-control the periodic voltage wave, extract only a specific portion γ of each half-wave (T/2), convert it as shown by the solid line in FIG. 3A, or further amplify it. The waveform shaping circuit 12 is a DC power supply circuit that superimposes a DC bias voltage on the AC voltage obtained as described above. The value of γ is determined by the waveform shaping circuit 1.
It can be changed by adjusting the constant of 1, and by changing γ, the output waveform will be as shown in Figure 3 B or C.
It changes like this.

第5図は周期電圧発生回路10の出力(第2
図)を昇圧後位相制御し、更に直流バイアス電圧
を重畳した波形、第4図は第2図の昇圧波形の如
く位相制御した後昇圧し、更に直流バイアス電圧
を重畳した波形である。そして位相制御された電
圧波形は、垂直な立ち上りと、下りの直線部分が
昇圧変換に際し直ちに反応しないから前者の方が
ややなまつた波形であるが実用的には同一の効果
が得られる。
FIG. 5 shows the output (second
Figure 4 is a waveform obtained by boosting the voltage, then controlling the phase, and then superimposing a DC bias voltage, and Figure 4 is a waveform obtained by controlling the phase of the boost waveform in Figure 2, then boosting it, and then superimposing a DC bias voltage. In the phase-controlled voltage waveform, the vertical rising edge and the falling straight line portion do not react immediately during step-up conversion, so the former has a slightly slower waveform, but practically the same effect can be obtained.

かくして得られた出力は保護抵抗13を介して
現像スリーブ2に印加されて、導電性基体を接地
された像担持体1と現像スリーブ2の間の現像域
Aに振動電界が生ぜしめられる。
The output thus obtained is applied to the developing sleeve 2 via the protective resistor 13, and an oscillating electric field is generated in the developing area A between the developing sleeve 2 and the image carrier 1 whose conductive base is grounded.

第6図、第7図はそれぞれ前記第4図、第5図
の出力を得るに用いられた回路のブロツク図であ
る。第8図は前記第7図の波形整形に用いられる
位相制御回路の一例であつてトリガ・ダイオード
とトライアツクを用いた比較的簡単な回路であ
る。周期電圧増幅回路の出力は図中I.Pに接続さ
れる。調整用可変抵抗R1、ダミーR2、コンデン
サC1は位相回路でC1の両端の電圧Ve1がトリガ・
ダイオードDtrのブレークオーバ電圧に達する
と、トリガ・ダイオードがスイツチしCが放電
し、ゲートGに信号電流が与えられてトライアツ
クTrが起動され、昇圧トランスの一次側に印加
される電圧が変化して変形された波形の電圧がト
ランスの二次側O.P.より出力される。R1を変化
するとC1の充電速度が変り同時にトライアツク
の導通角が変つて前記γの値を調整することがで
きる。
FIGS. 6 and 7 are block diagrams of circuits used to obtain the outputs shown in FIGS. 4 and 5, respectively. FIG. 8 is an example of a phase control circuit used for the waveform shaping shown in FIG. 7, and is a relatively simple circuit using a trigger diode and a triac. The output of the periodic voltage amplification circuit is connected to IP in the figure. Adjustment variable resistor R 1 , dummy R 2 , and capacitor C 1 are phase circuits, and the voltage V e1 across C 1 is the trigger.
When the breakover voltage of the diode Dtr is reached, the trigger diode is switched and C is discharged, a signal current is given to the gate G to start the triac Tr, and the voltage applied to the primary side of the step-up transformer changes. The voltage with the modified waveform is output from the secondary side OP of the transformer. Changing R 1 changes the charging rate of C 1 and at the same time changes the conduction angle of the triac, making it possible to adjust the value of γ.

以下本現像装置を備えた複写装置を用いての試
験結果について説明する。
Test results using a copying machine equipped with the present developing device will be described below.

試験に用いた複写装置は第1図に示したものと
同一の構成(周期波状電圧発生回路は第7図のも
のを使用)をもつ現像装置を組込んだもので、像
担持体1としては有機光導電体から成る電荷発生
層と電荷輸送層からなる負帯電感光体を用いた。
実験は像担持体の矢印X方向表面速度が120mm/
sec、像担持体1と現像スリーブ2の間〓すなわ
ち現像域Aの間〓が750μm、外径30mmの現像スリ
ーブ2の矢印方向の回転数が65r.p.m.、非磁性体
から成る層厚規制ブレード4と現像スリーブ2の
間〓が350μm、磁束密度900ガウスのN,S磁極
8極を等間〓に有する磁石体3の矢印方向の回転
数が700r.p.m.、現像剤Dに重畳平均粒径が30μm
程度で樹脂中に磁性粉末を分散含有した比抵抗が
約1×1014Ωcmの絶縁性磁性キヤリアと重畳平均
粒径が13μmの絶縁性非磁性トナーとから成る二
成分現像剤(ミノルタ社製EP310用現像剤)を用
いる条件下で実施した。
The copying device used in the test incorporated a developing device with the same configuration as that shown in FIG. 1 (the periodic wave voltage generating circuit used was the one in FIG. 7), and A negatively charged photoreceptor consisting of a charge generation layer and a charge transport layer made of an organic photoconductor was used.
In the experiment, the surface speed of the image carrier in the arrow X direction was 120 mm/
sec, the distance between the image carrier 1 and the developing sleeve 2 (that is, the developing area A) is 750 μm, the rotation speed in the direction of the arrow of the developing sleeve 2 with an outer diameter of 30 mm is 65 r.pm, and the layer thickness regulating blade is made of a non-magnetic material. 4 and the developing sleeve 2 is 350 μm, the rotation speed in the direction of the arrow of the magnet 3 having 8 equally spaced N and S magnetic poles with a magnetic flux density of 900 Gauss is 700 rpm, and the average particle diameter superimposed on the developer D. is 30μm
A two-component developer (EP310 manufactured by Minolta) consisting of an insulating magnetic carrier with a specific resistance of about 1 x 10 14 Ωcm and an insulating non-magnetic toner with a superimposed average particle size of 13 μm, containing magnetic powder dispersed in a resin. The experiment was carried out under conditions using a commercially available developer).

グレースケールを用いて像担持体上に種々の電
位を持つた静電像を形成せしめ、現像スリーブ2
に第5図のような波形を有する周期Tか500μsec
の振動電圧を印加して現像を行ない静電像電位と
記録画像濃度の関係を求めた。印加周期波状電圧
のγ/T比を変化させて実験を繰返し第9図に示
す結果を得た。
Electrostatic images with various potentials are formed on the image carrier using gray scale, and the developing sleeve 2
The period T or 500 μsec has a waveform as shown in Figure 5.
Development was carried out by applying an oscillating voltage of 1, and the relationship between the electrostatic image potential and the recorded image density was determined. The experiment was repeated by changing the γ/T ratio of the applied periodic wave voltage, and the results shown in FIG. 9 were obtained.

なお、この場合の現像は、現像スリーブ2上に
形成された磁気ブラシが像担持体1の表面を摺擦
することなく、トナー粒子が磁気ブラシから像担
持体1の表面に飛翔して行われる、所謂非接触ジ
ヤンピング現像方式によつている。記録画像濃度
は、現像したトナー像を図示していない転写装置
によつて記録紙に転写し、転写したトナー像を定
着装置によつて定着して得た記録紙の画像濃度で
ある。第6図に示したような回路によつて発振し
た周期波状電圧(第5図)を印加して現像しても
第9図と同様の記録画像濃度曲線が得られる。
Note that development in this case is performed by toner particles flying from the magnetic brush onto the surface of the image carrier 1 without the magnetic brush formed on the developing sleeve 2 rubbing the surface of the image carrier 1. This method is based on a so-called non-contact jumping development method. The recorded image density is the image density of a recording paper obtained by transferring a developed toner image onto a recording paper by a transfer device (not shown) and fixing the transferred toner image by a fixing device. Even if a periodic waveform voltage (FIG. 5) oscillated by a circuit such as that shown in FIG. 6 is applied for development, a recorded image density curve similar to that shown in FIG. 9 can be obtained.

第9図から明らかなように、周期波状電圧の振
幅やバイアスあるいは周波数を変えることなく、
γ/T比を変えるだけで、静電像電位が300V程
度変化しても記録画像濃度すなわち現像濃度が一
定するように調整することができ、このような調
整方法によれば振幅やバイアスを変化させないか
らかぶりの発生する惧れが少なく、したがつて、
階調再現性に優れた鮮明な記録画像を簡単に得る
ことができる。
As is clear from Fig. 9, without changing the amplitude, bias, or frequency of the periodic wave voltage,
By simply changing the γ/T ratio, it is possible to adjust the recorded image density, that is, the developed density, to remain constant even if the electrostatic image potential changes by about 300 V. With this adjustment method, the amplitude and bias can be changed. Since there is no risk of fogging occurring, therefore,
Clear recorded images with excellent gradation reproducibility can be easily obtained.

なお、本発明の方法においては上述の例に限ら
ず、周期波状電圧の波形が、矩形波や正弦波或い
はそれ以外の波形のに位相制御を加えたものであ
つてもよい。
Note that the method of the present invention is not limited to the above-mentioned example, and the waveform of the periodic waveform voltage may be a rectangular wave, a sine wave, or another waveform to which phase control is applied.

また上述の例ではトリガーダイオードを用いて
位相制御回路を構成し波形整形を行つたが、回路
構成はそれに限られるものではなく、ユニジヤン
クシヨントランジスタ(UJT)シリコンシンメ
トリカルスイツチ(SSS)、シリコンユニラテラ
ルスイツチ(SUS)、ネオン管等のトリガ素子と
サイリスタの組合せ等を用いてもよい。さらに、
担持体1と現像スリーブ2との間にトナーが磁気
ブラシから静電像に飛翔することを妨げないよう
なワイヤーあるいはグリツド状の制御電極を設け
て、その制御電極に振動電圧を印加することによ
り現像域に振動電界を生ぜしめるようにしたもの
でもよいし、磁気ブラシが像担持体1の表面を摺
擦するようなものにも本発明は適用し得る。また
さらに実施例をように現像剤にキヤリア(好まし
くは1013Ωm以上の高抵抗率を有し重量平均粒径
が50μm以下のもの、なお前記のこの抵抗率は、
粒子を0.50cm2の断面積を有する容器に入れてタツ
ピングした後、詰められた粒子上に1Kg/cm2の荷
重を掛け、荷重と底面電極との間に1000V/cmの
電界が生ずる電圧を印加したときの電流値を読み
取ることで得られる値である)とトナーから成る
二成分現像剤を用いて非接触ジヤンピング現像方
式によることが、階調再現性に優れた十分な調整
が行われる。
In addition, in the above example, a trigger diode was used to configure the phase control circuit to perform waveform shaping, but the circuit configuration is not limited to that, and includes a unidirectional transistor (UJT), a silicon symmetrical switch (SSS), a silicon unilateral A combination of a trigger element such as a switch (SUS) or a neon tube and a thyristor may be used. moreover,
By providing a wire or grid-shaped control electrode between the carrier 1 and the developing sleeve 2 so as not to prevent the toner from flying from the magnetic brush to the electrostatic image, and applying an oscillating voltage to the control electrode. The present invention may be applied to a device that generates an oscillating electric field in the developing area, or a device in which a magnetic brush rubs the surface of the image carrier 1. Furthermore, as in the embodiment, a carrier (preferably one having a high resistivity of 10 13 Ωm or more and a weight average particle size of 50 μm or less, and the above-mentioned resistivity is
After placing the particles in a container with a cross-sectional area of 0.50 cm 2 and tapping them, a load of 1 Kg/cm 2 is applied to the packed particles, and a voltage is applied to generate an electric field of 1000 V/cm between the load and the bottom electrode. By using a non-contact jumping development method using a two-component developer consisting of a toner and a current value obtained by reading the current value when it is applied, sufficient adjustment with excellent gradation reproducibility can be performed.

本発明においてγ/T比を変える(導通角を変
える)ための変更は、手動によつて行い得ること
は勿論のこと、静電像電位やトナー像濃度等の検
出に基きコンピユータ等を利用して自動的に行い
得るようにすることは容易にできる。むろん、先
に配した公知の従来の画像濃度調整法と組み合わ
せても用いることもできる。
In the present invention, changes to change the γ/T ratio (change the conduction angle) can of course be made manually, but also by using a computer or the like based on detection of electrostatic image potential, toner image density, etc. This can easily be done automatically. Of course, it can also be used in combination with the previously known conventional image density adjustment method.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、以上述べたように、時間選択
変換の選択時間を変更することで、かぶりを発生
させる惧れ少なく大幅に現像濃度を調整すること
ができ、階調再現性に優れた鮮明な記録画像を得
ることができて、さらに電源装置も比較的簡単に
構成し得ると云う優れた効果が得られる。
According to the present invention, as described above, by changing the selection time of the time selection conversion, it is possible to greatly adjust the developing density without causing fog, and it is possible to achieve sharpness with excellent gradation reproducibility. The excellent effects that a recorded image can be obtained and the power supply device can be constructed relatively easily can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する現像装置の例
を示す概要構成図、第2図乃至第5図は周期波状
電圧の例を示す波形グラフ、第6図、第7図は波
形可変の周期波状電圧発生装置のブロツクダイヤ
グラム、第8図は位相制御の回路例、第9図は
γ/Tを変えた場合における静電像電位と記録画
像濃度の関係を示すグラフである。 1……像担持体、2……現像スリーブ、3……
磁石体、4……層厚規制ブレード、5……クリー
ニングブレード、6……現像剤溜り、7……撹拌
スクリユー、8……トナーホツパー、9……トナ
ー供給ローラ、10……周期電圧発生回路、11
……波形整形回路、12……直流電源、13……
保護抵抗。
FIG. 1 is a schematic configuration diagram showing an example of a developing device that implements the method of the present invention, FIGS. 2 to 5 are waveform graphs showing examples of periodic waveform voltage, and FIGS. 6 and 7 are waveform graphs showing examples of periodic waveform voltage. FIG. 8 is a block diagram of a periodic wave voltage generator, FIG. 8 is an example of a phase control circuit, and FIG. 9 is a graph showing the relationship between electrostatic image potential and recorded image density when γ/T is varied. 1... Image carrier, 2... Developing sleeve, 3...
Magnet body, 4... Layer thickness regulation blade, 5... Cleaning blade, 6... Developer reservoir, 7... Stirring screw, 8... Toner hopper, 9... Toner supply roller, 10... Periodic voltage generation circuit, 11
... Waveform shaping circuit, 12 ... DC power supply, 13 ...
protection resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 トナー粒子と絶縁性磁性キヤリアよりなる現
像剤に振動電界を印加すると共に、前記トナー粒
子が磁気ブラシから像担持体の表面に飛翔して行
なわれることにより現像する現像方法において、
現像域に発生させた周期波状電圧を増幅、昇圧及
び波形の一定部をカツト整形する位相制御により
調整し、該周期波状電圧と直流電圧との重畳電圧
を用いて前記周期波状電圧の波形を変化させた振
動電界を印加せしめ、前記現像域で像担持体上の
静電像を前記トナー粒子により現像することを特
徴とする現像方法。
1. A developing method in which an oscillating electric field is applied to a developer made of toner particles and an insulating magnetic carrier, and the toner particles are caused to fly from a magnetic brush to the surface of an image carrier, thereby developing the image.
The periodic waveform voltage generated in the development area is adjusted by amplifying, boosting, and phase control that cuts a certain part of the waveform, and changing the waveform of the periodic waveform voltage using the superimposed voltage of the periodic waveform voltage and the DC voltage. 1. A developing method, comprising: applying a vibrating electric field of a certain magnitude to develop an electrostatic image on an image carrier with the toner particles in the developing area.
JP24007283A 1983-12-20 1983-12-20 Developing method Granted JPS60131555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24007283A JPS60131555A (en) 1983-12-20 1983-12-20 Developing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24007283A JPS60131555A (en) 1983-12-20 1983-12-20 Developing method

Publications (2)

Publication Number Publication Date
JPS60131555A JPS60131555A (en) 1985-07-13
JPH0451027B2 true JPH0451027B2 (en) 1992-08-17

Family

ID=17054069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24007283A Granted JPS60131555A (en) 1983-12-20 1983-12-20 Developing method

Country Status (1)

Country Link
JP (1) JPS60131555A (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55118048A (en) * 1979-03-05 1980-09-10 Canon Inc Method and apparatus for developing
JPS56135849A (en) * 1980-03-27 1981-10-23 Canon Inc Electrophotographic developing method
JPS56144442A (en) * 1980-04-14 1981-11-10 Canon Inc Developing method
JPS5740279A (en) * 1980-08-21 1982-03-05 Canon Inc Image stabilization method
JPS57116368A (en) * 1981-01-13 1982-07-20 Canon Inc Development bias device of electrostatic recorder
JPS57116367A (en) * 1981-01-13 1982-07-20 Canon Inc Development bias device of electrostatic recorder
JPS57116365A (en) * 1981-01-13 1982-07-20 Canon Inc Electrostatic recorder
JPS5837656A (en) * 1982-07-21 1983-03-04 Canon Inc Developing method and its apparatus
JPS5837657A (en) * 1982-07-21 1983-03-04 Canon Inc Developing method and its apparatus
JPS58129447A (en) * 1982-01-28 1983-08-02 Toshiba Corp Copying device
JPS58171065A (en) * 1982-04-01 1983-10-07 Canon Inc Developing bias device of electrostatic recorder
JPS58187962A (en) * 1982-04-27 1983-11-02 Canon Inc Method and apparatus for forming picture

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55118048A (en) * 1979-03-05 1980-09-10 Canon Inc Method and apparatus for developing
JPS56135849A (en) * 1980-03-27 1981-10-23 Canon Inc Electrophotographic developing method
JPS56144442A (en) * 1980-04-14 1981-11-10 Canon Inc Developing method
JPS5740279A (en) * 1980-08-21 1982-03-05 Canon Inc Image stabilization method
JPS57116368A (en) * 1981-01-13 1982-07-20 Canon Inc Development bias device of electrostatic recorder
JPS57116367A (en) * 1981-01-13 1982-07-20 Canon Inc Development bias device of electrostatic recorder
JPS57116365A (en) * 1981-01-13 1982-07-20 Canon Inc Electrostatic recorder
JPS58129447A (en) * 1982-01-28 1983-08-02 Toshiba Corp Copying device
JPS58171065A (en) * 1982-04-01 1983-10-07 Canon Inc Developing bias device of electrostatic recorder
JPS58187962A (en) * 1982-04-27 1983-11-02 Canon Inc Method and apparatus for forming picture
JPS5837656A (en) * 1982-07-21 1983-03-04 Canon Inc Developing method and its apparatus
JPS5837657A (en) * 1982-07-21 1983-03-04 Canon Inc Developing method and its apparatus

Also Published As

Publication number Publication date
JPS60131555A (en) 1985-07-13

Similar Documents

Publication Publication Date Title
US4797335A (en) Developing method for electrostatic images using composite component developer under non-contacting conditions
JPS59181362A (en) Developing method
US3889637A (en) Self-biased development electrode and reproducing machine employing same
JPH0451027B2 (en)
JPH0416112B2 (en)
JP2887015B2 (en) Developing method and developing device
JPS6037563A (en) Developing method
JPS60249171A (en) Image forming method
JPH0310948B2 (en)
JPH0439070B2 (en)
JPS6033577A (en) Developing method
JP2885425B2 (en) Electrophotographic development method
JPH0376752B2 (en)
JPS6113269A (en) Developing device
JP2986026B2 (en) Development method
JPH0462384B2 (en)
JPH0359436B2 (en)
JPS61198170A (en) Adjusting method for image density of electrophotographic image forming device
JPH0695483A (en) Image forming device
JPH0533794B2 (en)
JPS58220156A (en) Developing device
JPH05119592A (en) Developing device
JPH0695242B2 (en) Image forming method
JPS6173975A (en) Developing method
JPH047509B2 (en)