JPH04502507A - electronic equipment - Google Patents

electronic equipment

Info

Publication number
JPH04502507A
JPH04502507A JP2500956A JP50095690A JPH04502507A JP H04502507 A JPH04502507 A JP H04502507A JP 2500956 A JP2500956 A JP 2500956A JP 50095690 A JP50095690 A JP 50095690A JP H04502507 A JPH04502507 A JP H04502507A
Authority
JP
Japan
Prior art keywords
sensor
circuit
processing circuit
output signal
analysis circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2500956A
Other languages
Japanese (ja)
Inventor
イェーニッケ・エドムント
バルツァー・クヌート
エープナー・ノルベルト
タウファー・ペーター
Original Assignee
ローベルト・ボッシュ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローベルト・ボッシュ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング filed Critical ローベルト・ボッシュ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング
Publication of JPH04502507A publication Critical patent/JPH04502507A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0891Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values with indication of predetermined acceleration values
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • B60R2021/01322Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value comprising variable thresholds, e.g. depending from other collision parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Air Bags (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 電子装置 従来の技術 例えば雑誌1141 r自動車技術(Ingenieurs de 1’Aut omobile)J(1982)第6号69〜77頁に記載された加速センサは 、構造上の制約から比較的大きな許容誤差範囲を有している(約2.5倍)。[Detailed description of the invention] electronic equipment Conventional technology For example, magazine 1141r Automotive Technology (Ingenieurs de 1'Aut) The acceleration sensor described in J (1982) No. 6, pp. 69-77 is , has a relatively large tolerance range (approximately 2.5 times) due to structural constraints.

従って、このようなセンサを車両搭乗者の安全装置などの電子装置に用いる場合 には、コストのかかる機械的な調整あるいは粗調整と微調整を組み合わせた調整 が必要となる。後者の調整を実現するためには、まずセンサの感度をクラス別に 分け、それぞれの感度クラスに応じてセンサ出力信号処理に必要な処理回路の規 格特性を選択できるようにしなければならない。この感度クラス分類はよけいな 作業工程で、不要なコストがかかり、ひいては装置全体のコスト高につながる。Therefore, when using such sensors in electronic devices such as safety devices for vehicle occupants, requires costly mechanical adjustment or a combination of coarse and fine adjustments. Is required. In order to achieve the latter adjustment, we first need to adjust the sensitivity of the sensor by class. The specifications for the processing circuits required for sensor output signal processing are determined according to each sensitivity class. It must be possible to select case characteristics. This sensitivity class classification is good. Unnecessary costs are incurred during the work process, which ultimately increases the cost of the entire device.

不要コストがかかるのは、異なる感度クラスに対応する各センサに、それぞれ処 理回路を割り当てるためである。The unnecessary cost is that each sensor corresponding to a different sensitivity class must be processed separately. This is to allocate logic circuits.

発明の利点 請求の範囲第1項の特徴部分に記載した本発明による解決手段によれば、感度ク ラスに応じてセンサをクラス分けしたり、各感度クラスに関連させて処理回路の 特性を別々に調節しなくてすむという利点が得られる。装置のコストは、よりコ ストのかからない微調整のものに低減される。すなわち、この種の電子装置を従 来よりはるかに小型軽量かつ低コスト化して提供することができる。本発明の解 決手段が特に有利なのは、センサをハイブリッド回路の一部に組み込んだ電子装 置を提供できる点にある。従来方法では、センサの感度クラスはハイブリッド回 路全体を完成した後初めて設定できるものであまた。しかしこの時点では、セン サ信号処理のための処理回路の特性をそれ以上変更することはできない。これに 対して、本発明の手段はこの種の装置のハイブリッド化を初めて可能にするもの である。Advantages of invention According to the solution according to the invention described in the characteristic part of claim 1, the sensitivity Sensors can be divided into classes according to their sensitivity class, and processing circuits can be The advantage is that the characteristics do not have to be adjusted separately. The cost of equipment is less It is reduced to a fine adjustment that does not require much effort. In other words, if this type of electronic device is It can be provided in a much smaller size, lighter weight, and at a lower cost than ever before. Solution of the invention A particularly advantageous solution is the electronic system in which the sensor is integrated as part of the hybrid circuit. The point is that it can provide a lot of support. In the conventional method, the sensitivity class of the sensor is This is something that can only be set after completing the entire road. However, at this point, The characteristics of the processing circuit for signal processing cannot be changed further. to this In contrast, the means of the present invention makes it possible for the first time to hybridize this type of device. It is.

センサ出力信号の処理回路が、センサから出力された出力信号を増幅したり、必 要に応じて不要な周波数領域を以降の信号処理から分離するための増幅及び/あ るいはフィルタ手段を有している場合、本発明は特に効果的である。The sensor output signal processing circuit amplifies the output signal output from the sensor and Amplification and/or processing to separate unwanted frequency regions from further signal processing as required. The present invention is particularly effective when the filter has filter means.

さらに、好ましくは、分析回路はA/D変換器を有している。Furthermore, preferably the analysis circuit has an A/D converter.

このA/D変換器はセンサから直接出力された、あるいは処理回路で処理された センサ信号を所定のデジタル信号に変換するもので、このデジタル信号は好まし くは信号処理手段、特に計算回路でさらに処理される。This A/D converter is output directly from the sensor or processed by a processing circuit. It converts the sensor signal into a predetermined digital signal, and this digital signal is preferable. The signals are then further processed by signal processing means, in particular calculation circuits.

本装置は、車両搭乗者の安全装置に適用した場合量も有効である。というのも、 装置の製造を低コストに抑えたにもかかわらず、信号処理の精度を高レベルに保 つことができるためである。This device is also effective when applied to a safety device for vehicle occupants. Because, Despite keeping the manufacturing cost of the device low, the accuracy of signal processing is maintained at a high level. This is because it is possible to

図面 図は本発明の一実施例を示しており、以下で詳細に説明する。第1図は車両搭乗 者の安全装置における電子装置のブロック図、第2図は第1図装置における分析 回路のブロック図、第3図はセンサの出力信号を処理した場合ないし処理しない 場合を加速度の関数として示した線図である。drawing The figure shows one embodiment of the invention, which will be explained in detail below. Figure 1 shows vehicle boarding A block diagram of electronic equipment in personal safety equipment, Figure 2 is an analysis of the equipment in Figure 1. Circuit block diagram, Figure 3 shows the case where the sensor output signal is processed or not processed. FIG. 3 is a diagram showing the case as a function of acceleration;

実施例の説明 車両搭乗者の安全装置は加速度を感知するセンサlを有しており、センサlの出 力端の一方は分析回路3の第1の入力端に直接接続されている(結線200)。Description of examples The safety device for vehicle occupants has a sensor l that detects acceleration, and the output of the sensor l One of the power ends is directly connected to a first input of the analysis circuit 3 (connection 200).

一方、センサlの出力端は処理回路2の入力端と接続される(結線10)。分析 回路3の出力端は、空気バッグ(エアバッグ)やベルトタイトナなどの拘束手段 4の入力端に接続されている。処理回路2は、少なくとも増幅手段とフィルタ手 段を有している。分析回路3は、第2図の実施例においては切換装置3a、A/ D変換器3b及び計算回路3cを存している。これによって、センサlのアナロ グ出力信号ないし処理回路2で処理されたセンサ1の出力信号がデジタル化され 、ひきつづきデジタル処理される。On the other hand, the output end of the sensor l is connected to the input end of the processing circuit 2 (connection 10). analysis The output end of circuit 3 is connected to a restraining means such as an air bag or belt tightener. It is connected to the input terminal of 4. The processing circuit 2 includes at least an amplification means and a filter means. It has steps. In the embodiment of FIG. 2, the analysis circuit 3 includes a switching device 3a, A/ It includes a D converter 3b and a calculation circuit 3c. This allows the analog of sensor l to The output signal of the sensor 1 processed by the processing circuit 2 is digitized. , continues to be digitally processed.

次に第3図を参照して第1図及び第2図の回路機構の機能をより詳細に説明する 。第3図の線図には、センサlの出力電圧Uの許容誤差範囲がセンサ1の受ける 加速値aの関数として図示されている。図において、加速値aはX軸上でO〜最 大値aMAXの値をとる。Y軸上では、電圧値UがUR−UMAX間の値で示さ れる。ORは非動作時の電圧値で、センサ1の非動作状態、すなわち加速値aが ない時にセンサ1の出力に生じる。UMAXは、所定の最大電圧値である。Next, with reference to FIG. 3, the functions of the circuit mechanisms shown in FIGS. 1 and 2 will be explained in more detail. . In the diagram of FIG. 3, the permissible error range of the output voltage U of sensor l is shown. It is illustrated as a function of the acceleration value a. In the figure, the acceleration value a ranges from O to maximum on the X-axis. Takes the value of the maximum value aMAX. On the Y-axis, the voltage value U is shown as a value between UR and UMAX. It will be done. OR is the voltage value when the sensor 1 is not operating, that is, when the acceleration value a is occurs in the output of sensor 1 when there is no UMAX is a predetermined maximum voltage value.

符号20は、処理回路2で処理されたセンサ1のセンサ出力信号の電圧値の第1 の許容誤差範囲を示している。符号21はセンサ1の出力に直接発生するセンサ 出力信号の電圧値の第2の許容誤差範囲を示している。このような許容誤差が生 じるのは、はじめに述べたようにセンサ1が製造時の、すなわち構造上の制約か ら複数の感度クラスに分かれており、従ってそれぞれのセンサが異なる感度クラ スに属しているので、前提となる加速値aは同一であるのに種々の異なる電圧値 を出力するためである。センサん力信号の評価を開始する時点で、センサ1から の直接の出力信号及び処理回路2で処理されたセンサ出力信号が分析回路3の入 力端10′及び20に入力される。Reference numeral 20 indicates the first voltage value of the sensor output signal of the sensor 1 processed by the processing circuit 2. It shows the permissible error range. Reference numeral 21 is a sensor that directly generates the output of sensor 1. A second tolerance range for the voltage value of the output signal is shown. Such tolerances The reason for this is that, as mentioned in the beginning, sensor 1 was manufactured due to structural constraints. The sensor is divided into multiple sensitivity classes, so each sensor has a different sensitivity class. Therefore, although the prerequisite acceleration value a is the same, there are various different voltage values. This is to output . At the beginning of the evaluation of the sensor force signal, from sensor 1 The direct output signal of the sensor and the sensor output signal processed by the processing circuit 2 are input to the analysis circuit 3. It is input to force ends 10' and 20.

分析回路3は2つの信号曲線(第3図では20及び21の範、囲)からそれぞれ そのときの加速値aとしてより適当な方を選んで、加速度を特徴づけている信号 の振幅値を決定する。加速値aが小さい領域では、処理回路2で処理されたセン サ1の出力信号、すなわち範囲20にある信号が分析される。というは、この領 域ではセンサlの出力に直接発生する出力信号の分解能が小さすぎるためである 。そのため切換装置3aは、結線lO°を介して第1の入力端に入力される信号 をA/D変換器3bが接続された出力端に接続する。このA/D変換器3bはア ナログ信号をデジタル信号に変換し、変換されたデジタル信号は、計算回路3C でさらに処理される。The analysis circuit 3 extracts each signal from two signal curves (ranges 20 and 21 in FIG. 3). A signal characterizing the acceleration by selecting a more appropriate one as the acceleration value a at that time. Determine the amplitude value of In the region where the acceleration value a is small, the sensor processed by the processing circuit 2 The output signal of sensor 1, ie the signal in range 20, is analyzed. I mean, this territory This is because the resolution of the output signal directly generated at the output of sensor l is too small in the range . For this purpose, the switching device 3a receives the signal input via the connection lO° to the first input terminal. is connected to the output terminal connected to the A/D converter 3b. This A/D converter 3b is The analog signal is converted into a digital signal, and the converted digital signal is processed by the calculation circuit 3C. further processed.

加速値aが大きくなり処理回路2で処理されたセンサ1の出力信号が所定の電圧 限界値UMAXに達すると(範WI20の左の境界では、例えば加速値a1にな った場合)、分析回路3では直接センサlの出力に発生する信号(範囲21)が 分析される。そのため切換装置3aは、電圧限界値UMAXが検出された場合、 結線200を介して2番目の入力端に導かれたセンサ1の出力信の値はUlとな る。As the acceleration value a increases, the output signal of the sensor 1 processed by the processing circuit 2 becomes a predetermined voltage. When the limit value UMAX is reached (at the left boundary of range WI20, for example, the acceleration value a1 is reached) ), in the analysis circuit 3, the signal (range 21) generated directly at the output of the sensor l is be analyzed. Therefore, when the voltage limit value UMAX is detected, the switching device 3a The value of the output signal of sensor 1 led to the second input via connection 200 is Ul. Ru.

分析回路3が処理回路2で処理済の信号を分析するか、あるいはセンサ1から直 接出力された出力信号を分析するがの決定を行う加速値a(上記例では加速値a l)は、それぞれのセンサlの感度によって決定される。このことは、第3図の 範囲20.21に示された感度の許容誤差範囲から明らかになる。例えば、処理 回路2で処理されたセンサ1が範囲20の右境界に対応する感度クラスを有する 場合には、このセンサの信号は、加速度がより大きいa2の値になるとき初めて 、未処理信号の分析に切り換えられる所定の電圧値UMAXに到達する。加速値 aが大きな領域では、加速値が小さい場合よりも分析されるべきセンサlの出力 信号の分解能は小さくてよく、電子装置の動作特性に不利な影響を残すことがな い。第3図で説明すると、センサ1の感度があまり高くない場合(範囲20の右 境界に対応する特性)には、処理回路2で処理されたセンサ信号と直接セン処理 回路2には増幅手段の他に、センサ1の出力信号を引き続き処理する際障害とな る信号成分を取り除くためのフィルタ手段を設けるのが望ましい。これによって 、例えば分析の妨げとなる高周波信号成分を除去することができる。また、分析 回路3は切換装置3aの他にA/D変換器3bを有しているのが望ましい。この A/D変換器3bはアナログ形のセンサ1の出力信号及び処理回路2で処理され たセンサ1出力信号を、計算回路3cでデジタル手段を用いてさらに処理するた めに、対応するデジタル信号に変換するものである。分析回路3は、一 センサl出力信号を分析することにより加速度aの所定の限界値を超えたことが 明らかになった場合に、空気バッグ(エアバッグ)やベルトタイトナなどの拘束 手段4を起動させる。The analysis circuit 3 analyzes the signal processed by the processing circuit 2 or directly from the sensor 1. The acceleration value a (in the above example, the acceleration value a l) is determined by the sensitivity of the respective sensor l. This can be seen in Figure 3. This becomes clear from the sensitivity tolerance range shown in range 20.21. For example, processing Sensor 1 processed in circuit 2 has a sensitivity class corresponding to the right boundary of range 20 In this case, the signal of this sensor is only when the acceleration becomes a larger value of a2. , a predetermined voltage value UMAX is reached at which the analysis of the raw signal is switched on. acceleration value In the region where a is large, the output of sensor l to be analyzed is less than when the acceleration value is small. The resolution of the signal may be small without leaving any adverse effects on the operating characteristics of the electronic device. stomach. To explain with Figure 3, when the sensitivity of sensor 1 is not very high (to the right of range 20), The characteristic corresponding to the boundary) includes the sensor signal processed by the processing circuit 2 and the direct sensor processing. In addition to the amplification means, the circuit 2 also includes a Preferably, filter means are provided for removing signal components that are present. by this For example, high frequency signal components that interfere with analysis can be removed. Also, analysis Preferably, the circuit 3 includes an A/D converter 3b in addition to the switching device 3a. this The A/D converter 3b processes the output signal of the analog sensor 1 and the processing circuit 2. The output signal of the sensor 1 is further processed by the calculation circuit 3c using digital means. For this purpose, it is converted into a corresponding digital signal. The analysis circuit 3 is one By analyzing the sensor l output signal, it can be determined that the acceleration a has exceeded a predetermined limit value. Restraints such as air bags (airbags) or belt tighteners, if revealed. Activate means 4.

Fl[31 補正書の写しく翻訳文)提出書(特許法第184条の8)平成3年6月21日Fl[31 Copy and translation of written amendment) Submission (Article 184-8 of the Patent Law) June 21, 1991

Claims (1)

【特許請求の範囲】 1)センサ(1)と、処理回路(2)と、センサ出力信号の分析回路(3)と、 分析回路(3)によって起動される拘束手段(4)とを備えた電子装置において 、分析回路(3)が処理回路(2)の出力に接続されるとともに、直接センサ( 1)の出力端と接続されることを特徴とする電子装置。 2)分析回路(3)が切換装置(3a)を有し、この切換装置(3a)は、セン サ(1)出力信号の所定の限界値(UMAX)に従ってそれぞれ分析回路(3) の一つの入力端をその出力端に接続することを特徴とする請求の範囲第1項に記 載の電子装置。 3)センサ(1)が加速度を感知することを特徴とする請求の範囲第1項又は第 2項に記載の電子装置。 4)処理回路(2)が増幅及び/あるいはフィルタ手段を有することを特徴とす る請求の範囲第1項から第3項までのいずれか1項に記載の電子装置。 5)分析回路(3)がA/D変換器(3b)を有することを特徴とする請求の範 囲第1項から第4項までのいずれか1項に記載の電子装置。 6)請求の範囲第1項から第5項までのいずれか1項に記載の電子装置を車両搭 乗者の安全装置に応用する方法。 7)請求の範囲第1項から第5項までのいずれか1項に記載の装置を動作させる 方法において、センサ(1)で検出されセンサ出力信号として変換された測定量 が第1の範囲(20)にある場合には、分析回路(3)が間接的に(結線10′ )処理回路(2)を介してセンサ(1)と接続され、また処理回路(2)により 処理されたセンサ信号を分析することによりこのセンサ(1)の出力信号が所定 の限界値(UMAX)を超えたかどうかが検査され、センサ出力信号が所定の限 界値(UMAX)を超えた場合分析回路(3)がセンサ(1)の出力端と直接( 結線200)接続されて第2の範囲(21)の測定量が検出されることを特徴と する方法。 8)加速値(a)を測定量として検出する場合、加速値が小さいときには分析回 路(3)が処理回路(2)を介してセンサ(1)に間接的に接続されることを特 徴とする請求の範囲第7項に記載の方法。[Claims] 1) A sensor (1), a processing circuit (2), a sensor output signal analysis circuit (3), and restraint means (4) activated by the analysis circuit (3). , the analysis circuit (3) is connected to the output of the processing circuit (2) and directly connected to the sensor ( An electronic device characterized by being connected to the output end of 1). 2) The analysis circuit (3) has a switching device (3a), and this switching device (3a) analysis circuit (3) respectively according to a predetermined limit value (UMAX) of the output signal. As set forth in claim 1, wherein one input end of the device is connected to an output end thereof. electronic equipment. 3) Claim 1 or claim 3, wherein the sensor (1) senses acceleration. The electronic device according to item 2. 4) characterized in that the processing circuit (2) has amplification and/or filter means; An electronic device according to any one of claims 1 to 3. 5) Claim characterized in that the analysis circuit (3) has an A/D converter (3b) The electronic device according to any one of items 1 to 4. 6) The electronic device according to any one of claims 1 to 5 is installed in a vehicle. How to apply it to passenger safety equipment. 7) Operating the device according to any one of claims 1 to 5. In the method, the measurand quantity detected by the sensor (1) and converted as a sensor output signal is in the first range (20), the analysis circuit (3) indirectly (connection 10' ) is connected to the sensor (1) via the processing circuit (2), and is also connected to the sensor (1) via the processing circuit (2). The output signal of this sensor (1) is determined by analyzing the processed sensor signal. The sensor output signal is checked to see if it exceeds the limit value (UMAX) of If the limit value (UMAX) is exceeded, the analysis circuit (3) connects the output terminal of the sensor (1) directly ( connection 200) is connected to detect the measured quantity of the second range (21). how to. 8) When detecting the acceleration value (a) as a measured quantity, if the acceleration value is small, the analysis cycle is (3) is indirectly connected to the sensor (1) via the processing circuit (2). The method according to claim 7, characterized in that
JP2500956A 1988-12-30 1989-12-14 electronic equipment Pending JPH04502507A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3844351,1 1988-12-30
DE3844351A DE3844351A1 (en) 1988-12-30 1988-12-30 ELECTRONIC DEVICE

Publications (1)

Publication Number Publication Date
JPH04502507A true JPH04502507A (en) 1992-05-07

Family

ID=6370548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2500956A Pending JPH04502507A (en) 1988-12-30 1989-12-14 electronic equipment

Country Status (4)

Country Link
EP (1) EP0453451A1 (en)
JP (1) JPH04502507A (en)
DE (1) DE3844351A1 (en)
WO (1) WO1990007718A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4207493A1 (en) * 1992-03-10 1993-11-18 Telefunken Microelectron Contactless temp. monitoring system for ferromagnetic vehicle brake disc - measures temp. dependent permeability in air gap of transformer, with min. permeability larger than one below Curie temp. and threshold permeability between min. and one, and compares actual and threshold values.
DE4230221A1 (en) * 1992-09-10 1994-03-17 Sprave Kg Ingenieurgesellschaf Heating load distributor for single-pipe space heating system - calculates heat emission from pipe by operation on signal from special temp. sensor in pocket of heater supply valve
DE4404265C3 (en) * 1994-02-10 2001-02-15 Siemens Ag Method of manufacturing a calibrated sensor unit
DE19909297B4 (en) * 1999-03-03 2004-11-18 Siemens Ag Control system for an occupant protection system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2222038C3 (en) * 1972-05-05 1978-07-06 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen Test circuit for the triggering device of a safety device used to protect the occupants of a vehicle during an accident
DE2450235A1 (en) * 1974-10-23 1976-05-06 Messerschmitt Boelkow Blohm SAFETY DEVICE FOR THE OCCUPANTS OF A VEHICLE

Also Published As

Publication number Publication date
WO1990007718A1 (en) 1990-07-12
DE3844351A1 (en) 1990-07-05
EP0453451A1 (en) 1991-10-30

Similar Documents

Publication Publication Date Title
US5205582A (en) Occupant protective system
JPH04502365A (en) Sensor signal processing method
US6208249B1 (en) Passenger detection system
US5610817A (en) Passenger restraint system with an electronic crash sensor
US5449198A (en) Apparatus and method for actuating a safety system for the protection of an occupant of a vehicle
EP1783006B1 (en) Vehicle restraint device control method and apparatus using dynamically determined threshold
US5667244A (en) Method and apparatus for detecting an impact on a vehicle
US6677538B2 (en) Signal processing in a vehicle weight classification system
JPH10512514A (en) Vehicle airbag deployment control device and method
US5185701A (en) Method for determining frequency components in a vehicle crash
JP4267836B2 (en) Crew weight measuring device
JPH03504949A (en) Device and method for activating safety device to protect vehicle occupants
US7278657B1 (en) Method and apparatus for controlling an actuatable occupant protection device using an ultrasonic sensor
US7082830B2 (en) Physical quantity sensor capable of outputting time-serial signal indicative of plural ranges of physical quantity
JP3759619B2 (en) Electronic device and driving method thereof
JPH04502507A (en) electronic equipment
JP2003344145A (en) Apparatus for detecting load on seat
JP2875040B2 (en) Vehicle safety device control system
US6212454B1 (en) Method and apparatus for disabling an actuatable restraint based on determined crash velocity and displacement
US7373845B2 (en) Seat belt tension sensor
US7236867B2 (en) Short-circuit detecting circuit device
US20030025310A1 (en) Air bag operation control system
JPH0699787A (en) Impact deciding device for vehicle
US8186711B2 (en) Separation of abuse conditions and crash events to control occupant restraint devices
US7162351B2 (en) Acceleration sensor module