JPH0448715A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0448715A
JPH0448715A JP2157302A JP15730290A JPH0448715A JP H0448715 A JPH0448715 A JP H0448715A JP 2157302 A JP2157302 A JP 2157302A JP 15730290 A JP15730290 A JP 15730290A JP H0448715 A JPH0448715 A JP H0448715A
Authority
JP
Japan
Prior art keywords
pattern
exposure
dummy
patterns
sparse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2157302A
Other languages
Japanese (ja)
Inventor
Shinichi Horiba
堀場 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2157302A priority Critical patent/JPH0448715A/en
Publication of JPH0448715A publication Critical patent/JPH0448715A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To obtain the manufacture of a semiconductor, which generates a proximity effect and in which the dimensional error of a pattern at the time of exposure is removed, by conducting first exposure by using a reticule, in which a dummy pattern unnecessary on circuit operation is formed around a sparse pattern, and performing second exposure by employing a reticule, in which only the dummy pattern is taken off. CONSTITUTION:A positive type photo-resist 5 is exposed by employing a reticule 6 shaped by patterning chromium on silica glass in order to form a gate electrode pattern. Since dummy resist patterns 9, 10 are formed adjoined to a sparse resist pattern 11 at that time, the pattern 11 receives the same proximity effect as a dense resist pattern 12. The dummy patterns 9, 10 formed by first exposure are exposed in place of a reticule 13 for exposure for removing the dummy patterns 9, 10 by the reticule 6 after the completion of exposure. Developing is conducted after second exposure, the dummy patterns 9, 10 sections shaped for the first time are taken off, and a photo-resist pattern is formed. Accordingly, dimensional errors in the sparse and dense patterns 11, 12 can be suppressed to one third or less of conventional devices.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は半導体装置の製造方法に関し、特に微細なパタ
ーンを精度良く形成するための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for forming fine patterns with high precision.

〔従来の技術〕[Conventional technology]

近年リソグラフィー技術、エツチング技術等の微細加工
技術の進歩により、LSIの設計寸法は年々小さくなり
、サブミクロンの領域に達しており、微妙な寸法変化が
LSIの特性に大きな影響を与えている。このため、微
細なパターンを設計寸法通り形成することは非常に重要
なこととなっている。
In recent years, due to advances in microfabrication technology such as lithography technology and etching technology, the design dimensions of LSIs have become smaller year by year, reaching the submicron range, and subtle dimensional changes have a large impact on the characteristics of LSIs. For this reason, it is extremely important to form fine patterns according to the designed dimensions.

第7図は従来例を説明するための断面図である。FIG. 7 is a sectional view for explaining a conventional example.

第7図に示すように、シリコン基板l上にフィールド酸
化膜2とゲート酸化膜3を形成し、その上に4000 
A程度のゲート電極層4が形成され、ゲート電極形成の
ためのポジ型フォトレジスト5が塗布されている。ポジ
型フォトレジストはゲート電極パターン形成のため、石
英ガラスにクロムをパターンニングして形成したレチク
ル20を用いて露光される。露光された部分は現像液に
より除去され、ゲート電極のフォトレジストパターン7
.8が形成される(第8図)。
As shown in FIG. 7, a field oxide film 2 and a gate oxide film 3 are formed on a silicon substrate l, and a
A gate electrode layer 4 of approximately A size is formed, and a positive photoresist 5 for forming the gate electrode is applied. The positive photoresist is exposed to light to form a gate electrode pattern using a reticle 20 formed by patterning chromium on quartz glass. The exposed portion is removed by a developer and the photoresist pattern 7 of the gate electrode is removed.
.. 8 is formed (FIG. 8).

第9図は、第8図において、繰り返しパターンが並んで
いてパターン間隔が2. OF m程度以下の密なパタ
ーン7の寸法りと、周りにパターンがないパターン間隔
が2. Op m程度以上の疎なパターン8の寸法りと
をウェハ内で5点測定し、グラフにしたものである。0
.6p mの設計寸法に対し、密なパターン7はほぼ設
計通りフォトレジストがパターンニングされているが、
疎なパターン8では設計寸法より0.lpm程度寸法が
太ってしまっている。
In FIG. 9, the repeating patterns are lined up in FIG. 8, and the pattern interval is 2. 2. The size of the dense pattern 7, which is about OF m or less, and the pattern spacing with no surrounding patterns. The dimensions of a sparse pattern 8 of approximately Opm or more were measured at five points within the wafer and graphed. 0
.. For the design dimension of 6pm, the photoresist is patterned almost as designed in dense pattern 7;
For sparse pattern 8, the design dimension is 0. The dimensions have increased by about lpm.

この原因は、密なパターンでは隣りのパターンの影響で
光強度変化(近接効果)が起こっているが、疎なパター
ンでは隣りのパターンがかなり離れているため近接効果
の影響を受けないためである。
The reason for this is that in dense patterns, light intensity changes (proximity effect) occur due to the influence of neighboring patterns, but in sparse patterns, neighboring patterns are far apart and are not affected by the proximity effect. .

この効果はパターン間隔の設計寸法が小さいほど顕著に
でる。
This effect becomes more pronounced as the design dimension of the pattern interval becomes smaller.

この従来例ではゲート電極の形成工程について述べたが
、他の工程についても同様の効果が生じる。
In this conventional example, the process of forming the gate electrode has been described, but similar effects occur in other processes as well.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この従来の露光方法ではパターン密度の密なパターンと
疎なパターンで近接効果の差により設計寸法が同じでも
出来上りの寸法に差がでてしまうため、ゲート工程なら
ば、トランジスタ特性、フィールド工程ならば、素子分
離特性にバラツキが生じ、半導体集積回路の歩留り低下
や、性能の劣化を引き起こすという問題点があった。
With this conventional exposure method, the difference in the proximity effect between patterns with dense pattern density and patterns with sparse density causes differences in the finished dimensions even if the design dimensions are the same. However, there has been a problem in that variations occur in element isolation characteristics, resulting in lower yields and performance deterioration of semiconductor integrated circuits.

本発明の目的は疎なパターンと密なパターンのレジスト
寸法差を少なくすることにより、従来の問題点を解決し
た半導体装置の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that solves the conventional problems by reducing the difference in resist dimension between a sparse pattern and a dense pattern.

[課題を解決するための手段] 前記目的を達成するため、本発明に係る半導体装置の製
造方法においては、パターン密度の疎なパターンとパタ
ーン密度の密なパターンとからなる半導体集積回路パタ
ーンを半導体装置に形成する半導体装置の製造方法であ
って、 該半導体装置を露光する際に疎なパターンの周囲に回路
動作上必要のないダミーパターンを形成したレチクルを
用いて第1の露光を行い、その後、該ダミーパターンの
みを取り除くようなレチクルを用いて第2の露光を行う
ものである。
[Means for Solving the Problems] In order to achieve the above object, in the method for manufacturing a semiconductor device according to the present invention, a semiconductor integrated circuit pattern consisting of a pattern with a low pattern density and a pattern with a high pattern density is A method of manufacturing a semiconductor device formed in a device, the method comprising: performing a first exposure using a reticle in which a dummy pattern unnecessary for circuit operation is formed around a sparse pattern when exposing the semiconductor device; , a second exposure is performed using a reticle that removes only the dummy pattern.

また、本発明においては、前記半導体装置を露光する際
に疎なパターン及び密なパターンの周囲に回路動作上必
要のないダミーパターンを形成したレチクルを用いて第
1の露光を行い、その後、該ダミーパターンのみを取り
除くようなレチクルを用いて第2の露光を行うものであ
る。
Further, in the present invention, when exposing the semiconductor device, the first exposure is performed using a reticle in which dummy patterns unnecessary for circuit operation are formed around the sparse pattern and the dense pattern, and then The second exposure is performed using a reticle that removes only the dummy pattern.

〔作用〕[Effect]

本発明によれば、少なくとも疎なパターンの周囲に隣接
したダミーパターンを露光することにより、近接効果を
生じさせて露光時における該パターンの寸法誤差をなく
すものである。
According to the present invention, by exposing at least a dummy pattern adjacent to the periphery of a sparse pattern, a proximity effect is generated to eliminate dimensional errors in the pattern during exposure.

〔実施例] 次に本発明について図面を参照して説明する。〔Example] Next, the present invention will be explained with reference to the drawings.

(実施例1) 第1図は本発明の実施例1の半導体チップを示す断面図
である。
(Example 1) FIG. 1 is a sectional view showing a semiconductor chip of Example 1 of the present invention.

第1図において、シリコン基板l上にフィールド酸化M
2とゲート酸化膜3とを形成し、その上に4000人程
度0ゲート電極層4が形成され、ゲート電極パターン形
成のためのポジ型フォトレジスト5がlpm程度の厚さ
で塗布されている。ポジ型フォトレジスト5はゲート電
極パターン形成のため、石英ガラスにクロムをパターン
ニングして形成したレチクル6を用いて露光される。こ
の実施例では、従来例の第7図と違い疎なパターンII
に隣接するようにダミーパターン9. toを形成して
いるため、パターン11は密なパターン12と同様の近
接効果を受ける。露光終了後、レチクル6をダミーパタ
ーン9.IOの除去のための露光用レチクル13に換え
て第2図に示すように、1回目の露光で形成されたダミ
ーパターン9.lOを露光する。このとき露光領域は露
光機のアライメント誤差を考慮して0.2μm程度大き
くなるようにレチクルを作製しておく。2回目の露光後
、現像を行う。現像により1回目に露光された部分と、
2回目に露光された1回目で形成されていたダミーパタ
ーン9.10部が除去され、第3図に示すようなフォト
レジストパターンが形成される。この場合、疎なパター
ン11は1回目にダミーパターン9.lOと一体に露光
されているため、密なパターン12と同等の近接効果を
受けており、疎、密パターン11.12での寸法変差は
従来の1/3以下に抑えることができる。
In FIG. 1, a field oxide M is formed on a silicon substrate L.
A gate electrode layer 4 of about 4000 layers is formed thereon, and a positive photoresist 5 for forming a gate electrode pattern is coated to a thickness of about lpm. The positive photoresist 5 is exposed to light to form a gate electrode pattern using a reticle 6 formed by patterning chromium on quartz glass. In this embodiment, unlike the conventional example shown in FIG.
A dummy pattern 9. is placed adjacent to the dummy pattern 9. Since the pattern 11 forms a to, the pattern 11 is subjected to the same proximity effect as the dense pattern 12. After exposure is completed, the reticle 6 is covered with a dummy pattern 9. In place of the exposure reticle 13 for removing IO, as shown in FIG. 2, a dummy pattern 9. formed in the first exposure is used. Expose IO. At this time, the reticle is prepared so that the exposure area is about 0.2 μm larger, taking into account the alignment error of the exposure machine. After the second exposure, development is performed. The part exposed for the first time by development,
In the second exposure, 9.10 parts of the dummy pattern formed in the first exposure are removed, and a photoresist pattern as shown in FIG. 3 is formed. In this case, the sparse pattern 11 is used as the dummy pattern 9 for the first time. Since it is exposed integrally with lO, it receives the same proximity effect as the dense pattern 12, and the dimensional variation between the sparse and dense patterns 11 and 12 can be suppressed to 1/3 or less of the conventional one.

(実施例2) 前記実施例では、疎なパターンにダミーパターンを用い
た場合について説明したが、次に密なパターンの端部に
もダミーパターンを用いた場合について説明する。第4
図は実施例2の断面図である。
(Embodiment 2) In the above embodiment, a case was explained in which a dummy pattern was used for a sparse pattern. Next, a case will be explained in which a dummy pattern is also used at an end of a dense pattern. Fourth
The figure is a sectional view of Example 2.

第4図に示すように、シリコン基板l上にフィルド酸化
膜2とゲート酸化膜3を形成し、その上に4000人程
度0ゲート電極層4が形成され、ゲート電極パターン形
成のためのポジ型フォトレジスト5がlpm程度の厚さ
で塗布されている。ポジ型フォトレジスト5はゲート1
1極パターン形成のため、石英ガラスにクロムをパター
ン同士グして形成したレチクル14を用いて1回目の露
光が行われる。
As shown in FIG. 4, a filled oxide film 2 and a gate oxide film 3 are formed on a silicon substrate 1, and a gate electrode layer 4 of about 4,000 layers is formed thereon, and a positive type film for forming a gate electrode pattern is formed. A photoresist 5 is applied to a thickness of about lpm. Positive photoresist 5 is gate 1
In order to form a single-pole pattern, a first exposure is performed using a reticle 14 formed by bonding chromium patterns onto quartz glass.

実施例1では密なパターンの端のパターンの片側は近接
効果の影響を受けているが、もう一方の片側は近接効果
の影響を受けていないため、疎なパターンはどではない
が、密なパターン同士で寸法差を生じる。この実施例で
は密なパターン12の端のパターン17.18にもダミ
ーパターン15.16を形成しているため、端パターン
17.18もレジスト寸法差を生じない、1回目の露光
後、レチクル14をダミーパターン除去のための露光用
レチクル19に交換して2回目の露光を行う(第5図)
、 II光後後現像行いゲート電極レジストパターンが
形成される(第6図)、ここで、ゲート電極レジストパ
ターン11.1?、 12.18の寸法は先に述べた理
由により、それぞれ設計寸法通り形成され、パターンに
よる寸法変差は従来の1/3以下に抑えられる。
In Example 1, one side of the pattern at the end of the dense pattern is affected by the proximity effect, but the other side is not affected by the proximity effect. Dimensional differences occur between patterns. In this embodiment, since the dummy patterns 15.16 are also formed in the end patterns 17.18 of the dense pattern 12, the end patterns 17.18 also do not cause a difference in resist dimension. is replaced with the exposure reticle 19 for removing the dummy pattern, and a second exposure is performed (Fig. 5).
, II light and post-development to form a gate electrode resist pattern (FIG. 6), where the gate electrode resist pattern 11.1? , 12.18 are formed as designed dimensions for the reasons stated above, and the dimensional variation due to the pattern is suppressed to 1/3 or less of the conventional size.

以上の実施例では、ゲート電極形成工程について述べた
が、フィールド形成工程等、他の工程でも同様の効果が
得られることは自明である。
In the above embodiments, the gate electrode forming process has been described, but it is obvious that similar effects can be obtained in other processes such as the field forming process.

〔発明の効果] 以上説明したように本発明は疎なパターンの周囲に隣接
したダミーパターンを露光し、近接効果の影響を密なパ
ターンと同等にすることにより、疎なパターンと密なパ
ターンのレジスト寸法差を少なくできる。さらに、密な
パターンの端部にダミーパターンを配置して露光を行う
ことにより、密なパターン同士でのレジスト寸法差を少
なくできるという効果を有する。
[Effects of the Invention] As explained above, the present invention exposes a dummy pattern adjacent to the periphery of a sparse pattern to make the influence of the proximity effect equal to that of a dense pattern. The difference in resist dimensions can be reduced. Furthermore, by arranging a dummy pattern at the end of a dense pattern and performing exposure, it is possible to reduce the difference in resist dimension between dense patterns.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は本発明の実施例1を示す断面
図、第4図、第5図、第6図は本発明の実施例2を示す
断面図、第7図、第8図は従来例を説明するための断面
図、第9図はレジスト寸法と設計寸法とを比較した図で
ある。 1・・・シリコン基板    2・・・フィールド酸化
膜3・・・ゲート酸化膜    4・・・ゲート電極層
5・・・ポジ型フォトレジスト 6、13. +4.19.20・・・レチクル7.12
・・・密なレジストパターン 8.11・・・疎なレジストパターン 9、10.15.16・・・ダミーレジストパターン1
7.18・・・端パターン
1, 2, and 3 are sectional views showing a first embodiment of the present invention; FIGS. 4, 5, and 6 are sectional views showing a second embodiment of the present invention; FIG. FIG. 8 is a sectional view for explaining a conventional example, and FIG. 9 is a diagram comparing resist dimensions and design dimensions. 1...Silicon substrate 2...Field oxide film 3...Gate oxide film 4...Gate electrode layer 5...Positive photoresist 6, 13. +4.19.20...Reticle 7.12
...Dense resist pattern 8.11...Sparse resist pattern 9, 10.15.16...Dummy resist pattern 1
7.18...edge pattern

Claims (2)

【特許請求の範囲】[Claims] (1)パターン密度の疎なパターンとパターン密度の密
なパターンとからなる半導体集積回路パターンを半導体
装置に形成する半導体装置の製造方法であって、 該半導体装置を露光する際に疎なパターンの周囲に回路
動作上必要のないダミーパターンを形成したレチクルを
用いて第1の露光を行い、その後、該ダミーパターンの
みを取り除くようなレチクルを用いて第2の露光を行う
ことを特徴とする半導体装置の製造方法。
(1) A method for manufacturing a semiconductor device in which a semiconductor integrated circuit pattern consisting of a pattern with a sparse pattern density and a pattern with a dense pattern density is formed on a semiconductor device, the method comprising: A semiconductor characterized in that a first exposure is performed using a reticle on which a dummy pattern unnecessary for circuit operation is formed, and then a second exposure is performed using a reticle that removes only the dummy pattern. Method of manufacturing the device.
(2)前記半導体装置を露光する際に疎なパターン及び
密なパターンの周囲に回路動作上必要のないダミーパタ
ーンを形成したレチクルを用いて第1の露光を行い、そ
の後、該ダミーパターンのみを取り除くようなレチクル
を用いて第2の露光を行うことを特徴とする請求項第(
1)項記載の半導体装置の製造方法。
(2) When exposing the semiconductor device, the first exposure is performed using a reticle in which dummy patterns unnecessary for circuit operation are formed around the sparse patterns and dense patterns, and then only the dummy patterns are formed. Claim 1, characterized in that the second exposure is performed using a reticle that is removed.
1) A method for manufacturing a semiconductor device according to item 1).
JP2157302A 1990-06-15 1990-06-15 Manufacture of semiconductor device Pending JPH0448715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2157302A JPH0448715A (en) 1990-06-15 1990-06-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2157302A JPH0448715A (en) 1990-06-15 1990-06-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0448715A true JPH0448715A (en) 1992-02-18

Family

ID=15646694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2157302A Pending JPH0448715A (en) 1990-06-15 1990-06-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0448715A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817703A (en) * 1994-06-27 1996-01-19 Nec Corp Pattern formation method
US5985699A (en) * 1997-06-09 1999-11-16 Nec Corporation Method for designing semiconductor integrated circuit
US6235836B1 (en) 1995-11-28 2001-05-22 Hyundai Electronics Industries Co., Ltd. Vinyl 4-t-butoxycarbonyloxbenzal-vinyl alcohol-vinylacetate copolymer and preparation method thereof
JP2002252165A (en) * 2001-02-27 2002-09-06 Matsushita Electric Ind Co Ltd Hole pattern forming method
US6553274B1 (en) 1994-12-12 2003-04-22 Fujitsu Limited Method for designing reticle, reticle, and method for manufacturing semiconductor device
US6881991B2 (en) * 1998-08-07 2005-04-19 Ulvac Coating Corporation Dry-etching method and apparatus, photomasks and method for the preparation thereof, and semiconductor circuits and method for the fabrication thereof
JP2016110367A (en) * 2014-12-05 2016-06-20 欣永立企業有限公司 Configuration of touch electrode substrate and method for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817703A (en) * 1994-06-27 1996-01-19 Nec Corp Pattern formation method
US6553274B1 (en) 1994-12-12 2003-04-22 Fujitsu Limited Method for designing reticle, reticle, and method for manufacturing semiconductor device
US6235836B1 (en) 1995-11-28 2001-05-22 Hyundai Electronics Industries Co., Ltd. Vinyl 4-t-butoxycarbonyloxbenzal-vinyl alcohol-vinylacetate copolymer and preparation method thereof
US6559228B2 (en) 1995-11-28 2003-05-06 Hyundai Electronics Industries Co. Ltd. Vinyl 4-t-butoxycarbonyloxybenzal-vinyl 4-hydroxybenzal-vinyl alcohol-vinyl acetate copolymer
US5985699A (en) * 1997-06-09 1999-11-16 Nec Corporation Method for designing semiconductor integrated circuit
US6881991B2 (en) * 1998-08-07 2005-04-19 Ulvac Coating Corporation Dry-etching method and apparatus, photomasks and method for the preparation thereof, and semiconductor circuits and method for the fabrication thereof
JP2002252165A (en) * 2001-02-27 2002-09-06 Matsushita Electric Ind Co Ltd Hole pattern forming method
JP2016110367A (en) * 2014-12-05 2016-06-20 欣永立企業有限公司 Configuration of touch electrode substrate and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5300379A (en) Method of fabrication of inverted phase-shifted reticle
JP2002131883A (en) Method for manufacturing photomask, and photomask
US6656646B2 (en) Fabrication method of semiconductor integrated circuit device
JPH097924A (en) Equipment and method for manufacturing semiconductor device
JP2001235850A (en) Method for designing photomask pattern, method for forming resist pattern and method for manufacturing semiconductor device
JPH0448715A (en) Manufacture of semiconductor device
JP2007093798A (en) Photomask and its manufacturing method
US5885756A (en) Methods of patterning a semiconductor wafer having an active region and a peripheral region, and patterned wafers formed thereby
JPH05243115A (en) Manufacture of semiconductor device
JP2003075985A (en) Mask for manufacturing of semiconductor device, and its manufacturing method and exposing method
KR100728947B1 (en) Method for exposing using reticle for semiconductor device
KR100401517B1 (en) Method of fabricating exposure mask for semiconductor manufacture
KR0138066B1 (en) The manufacture of phase shift mask
JPH09213609A (en) Method for manufacturing semiconductor device
JPH05165195A (en) Glass mask and manufacture of semiconductor device by using this glass mask
KR100289664B1 (en) Manufacturing Method of Exposure Mask
KR100442572B1 (en) Method for fabricating of semiconductor reticle
KR20000004485A (en) Method for forming fine patterns of semiconductor devices
JPH04101146A (en) Photomask and resist pattern forming method
TW550440B (en) Method of transferring photomask patterns
KR970002430B1 (en) Photoresist patterning method of semiconductor device
KR970009821B1 (en) Fabrication method of semiconductor device
KR20100034621A (en) Photomask having assist pattern and method for fabricating the same
JPH0770466B2 (en) X-ray mask and method of manufacturing the same
JPH0653107A (en) Manufacture of semiconductor device