JPH0445687Y2 - - Google Patents

Info

Publication number
JPH0445687Y2
JPH0445687Y2 JP7695788U JP7695788U JPH0445687Y2 JP H0445687 Y2 JPH0445687 Y2 JP H0445687Y2 JP 7695788 U JP7695788 U JP 7695788U JP 7695788 U JP7695788 U JP 7695788U JP H0445687 Y2 JPH0445687 Y2 JP H0445687Y2
Authority
JP
Japan
Prior art keywords
catheter
sensor
blood
temperature
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7695788U
Other languages
Japanese (ja)
Other versions
JPH01180203U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7695788U priority Critical patent/JPH0445687Y2/ja
Publication of JPH01180203U publication Critical patent/JPH01180203U/ja
Application granted granted Critical
Publication of JPH0445687Y2 publication Critical patent/JPH0445687Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

【考案の詳細な説明】 イ 産業上の利用分野 本考案は流量測定用カテーテル、特に熱希釈法
に基づく血流量測定用カテーテルに関するもので
ある。
[Detailed Description of the Invention] A. Field of Industrial Application The present invention relates to a catheter for measuring flow rate, particularly a catheter for measuring blood flow rate based on the thermodilution method.

ロ 従来技術 従来、血管の流速を測定する方法としては、レ
ーザードプラー法、パルス変調ドプラー法、超音
波ドプラー法、ピトー管カテーテル法、ホツトフ
イルム法等がある。また、心拍出量(トータル流
量)を原理的に測定できる方法として、インピー
ダンス法、電磁流量計法、アドミタンスプレスモ
グラフイー等がある。
B. Prior Art Conventionally, methods for measuring blood vessel flow velocity include laser Doppler method, pulse modulation Doppler method, ultrasonic Doppler method, Pitot tube catheter method, hot film method, and the like. Further, as methods that can theoretically measure cardiac output (total flow rate), there are impedance method, electromagnetic flowmeter method, admittance splenomography, and the like.

他方、血管径の変化や血管内の流速分布の影響
を受けずに血流量(特に心拍出量)を測定できる
優れた方法として、フイツク(Fick)の法則を
利用した熱希釈法や色素希釈法が用いられてい
る。これらの方法は、冷水塊による低温や色素に
よる着色の如き体外から注入された物理量が血液
によつて希釈される速度を測定し、この測定値か
ら心拍出量を求めるものである。
On the other hand, thermodilution and dye dilution using Fick's law are excellent methods for measuring blood flow (particularly cardiac output) without being affected by changes in blood vessel diameter or intravascular flow velocity distribution. law is used. These methods measure the rate at which a physical quantity injected from outside the body, such as the low temperature caused by a cold water mass or the coloring caused by a dye, is diluted by blood, and the cardiac output is determined from this measured value.

熱希釈法によれば、第7図のように、大静脈1
を通してカテーテル2を心臓3の右心房4、更に
は右心室5を経て肺動脈6にまで導き、右心房4
内へ冷水7を注入し、先端付近のセンサ(通常は
サーミスタ)8によつて血液の温度変化を測定す
る。即ち、冷水7による低温状態から血流により
回復する様子をサーミスタ8により抵抗変化とし
て測定する。なお、図中の9は左心房、10は左
心室、11は肺静脈、12は大動脈である。カテ
ーテル2は、第7図、第8図、第9図及び第10
図に示すように、その本体13には冷水注入用の
側孔14をはじめ、サーミスタ8、バルーン1
6、バルーン16への送気・排気用の側孔31が
夫々設けられ、かつこれらに対応して冷水供給用
のルーメン(図示せず)、サーミスタ8の配線3
4用のルーメン18、圧力測定用のルーメン1
9、バルーン16への空気送り込み用のルーメン
20、更には上流側の血圧測定用の第2の圧力測
定用のルーメン(図示せず)が夫々形成されたも
のである。そして、第7図の如くにカテーテル2
を挿入(通常は経皮挿入)して血流に乗せるに際
し、バルーン16を膨らませて(第8図では一点
鎖線のように)カテーテル2を運ぶ。
According to the thermodilution method, as shown in Figure 7, the vena cava 1
The catheter 2 is guided through the right atrium 4 of the heart 3 and further through the right ventricle 5 to the pulmonary artery 6.
Cold water 7 is injected into the blood, and a sensor (usually a thermistor) 8 near the tip measures changes in blood temperature. That is, the recovery from the low temperature state caused by the cold water 7 due to the blood flow is measured by the thermistor 8 as a change in resistance. In the figure, 9 is the left atrium, 10 is the left ventricle, 11 is the pulmonary vein, and 12 is the aorta. The catheter 2 is shown in FIGS. 7, 8, 9, and 10.
As shown in the figure, the main body 13 includes a side hole 14 for injecting cold water, a thermistor 8, and a balloon 1.
6. Side holes 31 are provided for supplying and exhausting air to the balloon 16, and correspondingly, a lumen (not shown) for supplying cold water and wiring 3 for the thermistor 8 are provided.
18 lumens for pressure measurement, 1 lumen for pressure measurement
9, a lumen 20 for feeding air into the balloon 16, and a second pressure measuring lumen (not shown) for measuring blood pressure on the upstream side. Then, as shown in Fig. 7, the catheter 2
When inserting (usually percutaneously inserting) the catheter 2 into the bloodstream, the balloon 16 is inflated (as shown by the dashed line in FIG. 8) and the catheter 2 is carried.

生体内に挿入されたカテーテル2に対し、名コ
ネクタ33,35,36を介して夫々、血流量演
算表示装置37、バルーン拡張・収縮用のシリン
ジ41、輸液ボトル42(注射筒43及び除菌フ
イルタ44が付属)が接続されている。血流量演
算表示装置37には、血流量計47や条件設定キ
ー46等が設けられている。上記に使用する注入
液7は所定温度に冷却されて注入されるが、その
種類として患者の体液維持に用いられる維持液、
又は栄養補給のための輸液を使用するのが望まし
い。即ち、そうした維持液又は輸液を用いること
により、血流量の測定と同時に維持液等の補給も
行え、非常に効率的であり、体液のバランスを失
うことなしに熱希釈法の実施に必要な注入液を供
給できる。
A blood flow calculation display device 37, a syringe 41 for balloon expansion/deflation, and an infusion bottle 42 (syringe barrel 43 and sterilization filter) are connected to the catheter 2 inserted into the living body via the connectors 33, 35, and 44 (included) is connected. The blood flow calculation display device 37 is provided with a blood flow meter 47, a condition setting key 46, and the like. The injection liquid 7 used above is injected after being cooled to a predetermined temperature, and its types include maintenance liquids used for maintaining body fluids of patients;
Alternatively, it is preferable to use intravenous fluids for nutritional support. In other words, by using such maintenance fluids or infusions, it is possible to replenish maintenance fluids, etc. at the same time as measuring blood flow, which is very efficient and allows for the injection necessary for thermodilution without losing the balance of body fluids. liquid can be supplied.

上記において、センサ8によつて得られた血液
の温度変化を下記式(1)により心拍出量に換算す
る。
In the above, the blood temperature change obtained by the sensor 8 is converted into cardiac output using the following equation (1).

Vb=Vi(Tb−Ti)60/∫ ∝/o ΔTb(t)dt ×Ci−Si/Cb・Sb ……(1) 〔但し、 Vb:心拍出量(血液流量) Vi:注入された冷水の量(ml) Tb:血液の冷水注入前の温度(℃) Ti:注入された冷水の温度(℃) Cb:血液の比熱 Sb:血液の比重 Ci:注入水の比熱 Si:注入水の比重 t:時間(秒) ΔTb:血液の温度変化 この場合、血流量の測定において第9図に示す
フローに沿つて信号が処理される。即ち、カテー
テル2への注入液の温度を測定する測温部21の
測定値をA/D変換器26へ入れてデジタル化す
ると共に、カテーテル2のサーミスタ8で血液温
度を電気抵抗変化として検出し、これをブリツジ
回路23で電流信号として取出して増巾回路24
で増巾し、更に経時的なドリフトを補償する自動
ゼロ調整回路25を経て上記A/D変換器26へ
入力される。そして、A/D変換器26の出力は
中央演算ユニツト(CPU)45で処理され、血
流量が表示装置37で表示され、更にはプリンタ
27で記録される。
Vb=Vi(Tb-Ti)60/∫ ∝/o ΔTb(t)dt ×Ci-Si/Cb・Sb...(1) [However, Vb: cardiac output (blood flow rate) Vi: injected Amount of cold water (ml) Tb: Temperature of blood before cold water injection (°C) Ti: Temperature of injected cold water (°C) Cb: Specific heat of blood Sb: Specific gravity of blood Ci: Specific heat of injected water Si: Specific heat of injected water Specific gravity t: Time (seconds) ΔTb: Blood temperature change In this case, in measuring blood flow, the signal is processed according to the flow shown in FIG. That is, the measured value of the temperature measurement unit 21 that measures the temperature of the liquid injected into the catheter 2 is input to the A/D converter 26 and digitized, and the thermistor 8 of the catheter 2 detects the blood temperature as a change in electrical resistance. , this is extracted as a current signal by the bridge circuit 23 and sent to the amplification circuit 24.
The signal is amplified by , and then input to the A/D converter 26 through an automatic zero adjustment circuit 25 that compensates for drift over time. The output of the A/D converter 26 is processed by a central processing unit (CPU) 45, and the blood flow rate is displayed on a display device 37 and further recorded on a printer 27.

ところで、上記のカテーテル2においては、測
温部28を構成するセンサ8が第9図、第10図
に示すようにカテーテル本体13に直接接触した
状態で接着剤29で固定された構造になつている
ために、これらと外部を流れる血液との間の熱伝
導(即ち、血液からセンサ8への伝熱は本体13
及び接着剤29を介して伝導されること)によつ
てセンサ8による測温が行われることになる。し
かし、本体13及び接着剤を介しての伝熱量又は
伝熱速度は一般に低いので、サーミスタからなる
センサ8が所定の温度を検知するまでに要する時
間が長くなる。従つて、上述のフイツクの法則に
基づいて血流量を算出しても、これは真の血流量
からなり誤差の大きなものとなつてしまう。この
傾向は、特に心拍数が増えるに伴つて著しくな
る。
Incidentally, in the above catheter 2, the sensor 8 constituting the temperature measuring section 28 is fixed with an adhesive 29 in direct contact with the catheter body 13, as shown in FIGS. 9 and 10. Because of the heat transfer between these and the blood flowing outside (that is, heat transfer from the blood to the sensor 8
and conduction via the adhesive 29), the temperature is measured by the sensor 8. However, since the amount or rate of heat transfer through the main body 13 and the adhesive is generally low, it takes a long time for the sensor 8 made of a thermistor to detect a predetermined temperature. Therefore, even if the blood flow rate is calculated based on the above-mentioned Hook's law, it will be the true blood flow rate and will have a large error. This tendency becomes particularly noticeable as the heart rate increases.

ハ 考案の目的 本考案の目的は、測定誤差を大きく減らして正
確な測定を可能にし、かつ生体内への挿入、抜去
をスムーズにできる流量測定用カテーテルを提供
することにある。
C. Purpose of the invention The purpose of the present invention is to provide a flow rate measuring catheter that greatly reduces measurement errors, enables accurate measurement, and allows smooth insertion and removal into a living body.

ニ 考案の構成 即ち、本考案は、熱希釈法による流体の流量測
定に用いるカテーテルにおいて、前記流体の温度
を測定するための測温素子がカテーテル本体とそ
の外面上との間で出し入れ可能に前記カテーテル
本体に配されていることを特徴とする流量測定用
カテーテルに係るものである。
D. Structure of the invention That is, the present invention provides a catheter used for measuring the flow rate of a fluid by the thermodilution method, in which a temperature measuring element for measuring the temperature of the fluid is removable between the catheter body and the outer surface thereof. The present invention relates to a flow rate measuring catheter characterized in that it is disposed in a catheter body.

ホ 実施例 以下、本考案の実施例を説明する。Example Examples of the present invention will be described below.

第1図〜第3図は、本考案の第1の実施例によ
る熱希釈法に基づく血流量測定用カテーテル22
を示すものである。但し、第6図〜第9図で述べ
た部分と共通の部分には共通符号を付し、その説
明を省略することがある。
1 to 3 show a catheter 22 for measuring blood flow based on the thermodilution method according to the first embodiment of the present invention.
This shows that. However, parts common to those described in FIGS. 6 to 9 are given common reference numerals, and their explanations may be omitted.

このカテーテル22は、既述した従来のカテー
テル2とは根本的に異なり、特に血流量測定のた
めのセンサ8がカテーテル本体13に設けたルー
メン58の先端位置に配されると共に、同位置の
外面側をカバーする小片状の開閉部13aが本体
13と一体に弾性変形可能に成形されていて、第
2図の如くに配線34を通した中空の支持部材5
0を生体外からの力で矢印51方向へ押すことに
よつて先端のセンサ8が開閉部13aを上方へ弾
性変形(回動)せしめ、本体13の外面上に露出
(突出)するように構成されている。このために
は、開閉部13aの付け根52は例えばヒンジ部
として形成され、反時計方向又は時計方向へ回動
する(但し、時計方向へは弾性復元力で回動す
る)ようになつている。また、開閉部13aの先
端は、閉状態では本体13との間に段差や隙間が
生じないようにテーパー53となつている。第2
図の状態から、上記支持部材50を矢印51とは
逆方向に引つ張ると、開閉部13aはセンサ8に
よつて更に幾分押し拡げられてからセンサ8がル
ーメン58内へ引きずり込まれ、開閉部13aは
元の状態へと弾性的に復元して、第1図の状態に
戻る。
This catheter 22 is fundamentally different from the conventional catheter 2 described above, in particular, a sensor 8 for measuring blood flow is disposed at the tip of a lumen 58 provided in the catheter body 13, and the sensor 8 is disposed on the outer surface of the same position. A small piece-shaped opening/closing part 13a covering the side is molded so as to be elastically deformable integrally with the main body 13, and a hollow support member 5 through which wiring 34 is passed as shown in FIG.
By pushing 0 in the direction of arrow 51 with a force from outside the body, the sensor 8 at the tip elastically deforms (rotates) the opening/closing part 13a upward and is exposed (protrudes) onto the outer surface of the main body 13. has been done. For this purpose, the base 52 of the opening/closing part 13a is formed as a hinge part, for example, and is configured to rotate counterclockwise or clockwise (however, it rotates clockwise by elastic restoring force). Further, the tip of the opening/closing part 13a is tapered 53 so that there is no step or gap between the opening and closing part 13a and the main body 13 in the closed state. Second
When the support member 50 is pulled in the direction opposite to the arrow 51 from the state shown in the figure, the opening/closing part 13a is further pushed open by the sensor 8, and then the sensor 8 is dragged into the lumen 58. The opening/closing portion 13a elastically restores to its original state and returns to the state shown in FIG.

このように、本実施例によれば、センサ8をカ
テーテル本体13とその外面上との間で出し入れ
可能に配しているので、生体の血管内へカテーテ
ル22を挿入するときは第1図のようにセンサ8
をルーメン58内に配して本体外面を平坦とな
し、挿入を容易に行うことができると共に、上記
血管内に留置した後は第2図のようにして支持部
材50を押してセンサ8を本体外面上に露出さ
せ、血液温度の測定を行う。従つて、測定時は、
既述した如くにセンサ8と血液との間の熱伝達は
もはやカテーテル本体13を介しては行われず、
直接的に血液との間で行われることになる(これ
は、血液による加熱、冷却のいずれの場合にも行
われる。)この結果、センサ8が血液の温度変化
に迅速に応答してその変化を検出できることにな
るから、いわば測温時の熱的時定数が小さくな
り、測定誤差を著しく小さくして正確な測定が可
能となる。
In this way, according to this embodiment, the sensor 8 is placed between the catheter body 13 and its outer surface so that it can be taken in and out, so when inserting the catheter 22 into the blood vessel of the living body, the sensor 8 is inserted into the blood vessel of the living body as shown in FIG. Like sensor 8
is placed in the lumen 58 to make the outer surface of the main body flat, making it easy to insert the sensor 8. After being indwelled in the blood vessel, the support member 50 is pushed as shown in FIG. the blood temperature is measured. Therefore, when measuring,
As already mentioned, heat transfer between the sensor 8 and the blood no longer takes place via the catheter body 13;
This occurs directly with the blood (this is done in both cases of heating and cooling by the blood).As a result, the sensor 8 quickly responds to changes in blood temperature and detects the changes. Since the temperature can be detected, the thermal time constant during temperature measurement is reduced, and measurement errors are significantly reduced, making it possible to perform accurate measurements.

また、血管内からカテーテル22を抜去すると
きも、上記した挿入時と同様にセンサ8をルーメ
ン58内に引つ込めることにより、血管(更には
皮膚)を通してカテーテル22を出し入れする際
にスムーズに作業を行うことができる。
Also, when removing the catheter 22 from inside the blood vessel, the sensor 8 can be retracted into the lumen 58 in the same way as when inserting the catheter 22 described above, so that the operation can be smoothly carried out when inserting and removing the catheter 22 through the blood vessel (and even the skin). It can be performed.

第4図は、第1図に示した開閉部13aを除去
して、センサ8の出し入れ用の開口60を形成し
た例を示す。
FIG. 4 shows an example in which the opening/closing part 13a shown in FIG. 1 is removed to form an opening 60 for inserting and removing the sensor 8.

この例でも、上述の例と同様に、測定時はセン
サ8を一点鎖線のようにカテーテル本体13との
接触面積を小さくして(或いは全く非接触も可
能)配置できるので、測定を正確に行なえる。し
かも、カテーテル22の挿入、抜去時は実線のよ
うにセンサ8を引つ込めるため、作業に支障はな
い。なお、上記開口60の存在によつて血液がル
ーメン58内へ侵入し易くなるが、これは、ルー
メン58内に支持部材50の移動を保証しながら
シール性も出せるシールリング61を設けること
によつて解消できる。。このシールリングは、第
1図〜第3図(更には後述の第5図、第6図)に
示したカテーテルにも同様に採用してよい。
In this example, as well as the above example, during measurement, the sensor 8 can be placed with a small contact area with the catheter body 13 as shown by the dashed line (or it is possible to have no contact at all), so the measurement can be performed accurately. Ru. Moreover, since the sensor 8 can be retracted as shown by the solid line when the catheter 22 is inserted or removed, there is no problem with the operation. The presence of the opening 60 makes it easier for blood to enter the lumen 58, but this can be done by providing a seal ring 61 in the lumen 58 that ensures movement of the support member 50 while also providing sealing performance. It can be resolved. . This seal ring may be similarly employed in the catheters shown in FIGS. 1 to 3 (and also in FIGS. 5 and 6, which will be described later).

第5図及び第6図は、本考案の更に他の実施例
を示すものである。
5 and 6 show still another embodiment of the present invention.

この例によれば、カテーテル本体13の一側面
においてセンサ8の支持部材50を挿入したルー
メン78を設け、このルーメン78の端部(即
ち、センサ8のある箇所)を切除して細長の開口
70となしている。
According to this example, a lumen 78 into which the support member 50 of the sensor 8 is inserted is provided on one side of the catheter body 13, and the end of the lumen 78 (i.e., the location where the sensor 8 is located) is cut out to form an elongated opening 70. That's what I'm saying.

従つて、第6図の実線状態でカテーテル22を
挿入又は抜去すると共に、一点鎖線の如くに、支
持部材50を押すと、ルーメン78の先端では支
持部材50が本体13の壁面に当たる(ここは予
め固定しておいてもよい)と同時に、支持部材5
0が上方へ弾性的に屈曲してセンサ8が本体13
の外面上に持ち上げられる。この状態で血液の測
温を行うことにより、誤差の少ない正確な測定が
可能となる。また、支持部材50への力を解除す
れば、実線で示す元の状態へ戻すことができる。
Therefore, when the catheter 22 is inserted or removed as indicated by the solid line in FIG. 6, and the support member 50 is pushed as shown by the dashed-dotted line, the support member 50 hits the wall surface of the main body 13 at the tip of the lumen 78. ) At the same time, the support member 5
0 is elastically bent upward and the sensor 8 is connected to the main body 13.
lifted onto the outer surface of the By measuring the blood temperature in this state, accurate measurement with less error becomes possible. Moreover, if the force on the support member 50 is released, it can be returned to the original state shown by the solid line.

なお、この例において、第1図〜第3図に13
aで示したと同様の開閉部を上記開口を塞ぐよう
にして設けてもよい。但し、この場合は、開閉部
を両開き方式で丁度センサ8の位置から両側へ開
くようにするのがよい。
In addition, in this example, 13 is shown in Figures 1 to 3.
An opening/closing section similar to that shown in a may be provided to close the opening. However, in this case, it is preferable that the opening/closing part be opened in a double-opening manner so that it opens from exactly the position of the sensor 8 to both sides.

以上、本考案を例示したが、上述の例は本考案
の技術的思想に基づいて更に変形が可能である。
Although the present invention has been illustrated above, the above-mentioned example can be further modified based on the technical idea of the present invention.

例えば、上述の測温部(センサ8の部分)の構
造は種々変更してよく、特にその出し入れの構造
は上述したものに限定されることはない。また、
センサ8もサーミスタ以外にも熱電対を使用する
ことができる。カテーテルの各部分の種類、サイ
ズ、構造、材質等は種々変更できる。
For example, the structure of the above-mentioned temperature measurement section (sensor 8 part) may be modified in various ways, and the structure for inserting and removing it is not limited to that described above. Also,
The sensor 8 can also use a thermocouple instead of a thermistor. The type, size, structure, material, etc. of each part of the catheter can be varied.

なお、本考案のカテーテルは、上述の如くに心
臓に挿入するだけでなく、他の部位にも適用可能
である。
Note that the catheter of the present invention is not only inserted into the heart as described above, but can also be applied to other sites.

ヘ 考案の作用効果 本考案は上述した如く、血液等の流体の測温素
子をカテーテル本体に対し出し入れ可能に配して
いるので、生体への挿入及び抜去時は測温素子を
カテーテル本体内に引つ込めてその外面を平坦に
でき、作業に支障がない。しかも、生体内に留置
後は測温素子をカテーテル本体の外面上に露出さ
せることができ、測温を直接的に流体から行え
て、流体の温度変化に迅速に応答してその変化を
検出できることになるから、いわば測温時の熱的
時定数が小さくなり、測定誤差を著しく小さくし
て正確な測定が可能となる。
F. Functions and Effects of the Invention As mentioned above, in this invention, the temperature measuring element for fluid such as blood is placed in and out of the catheter body, so when it is inserted into and removed from a living body, the temperature measuring element is placed inside the catheter body. It can be retracted to make its outer surface flat, so it does not interfere with work. Furthermore, after indwelling in a living body, the temperature measuring element can be exposed on the outer surface of the catheter body, and temperature can be measured directly from the fluid, allowing rapid response to and detection of temperature changes in the fluid. Therefore, the thermal time constant during temperature measurement becomes small, so that measurement errors are significantly reduced and accurate measurement is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は本考案の実施例を示すもので
あつて、第1図はカテーテルの主要部の拡大断面
図、第2図はセンサ露出時の第1図と同様の断面
図、第3図は第1図の平面図(第3図の−線
断面が第1図)、第4図は他の例によるカテーテ
ルの第1図と同様の断面図、第5図は更に他の例
によるカテーテルの平面図、第6図は第5図の
−線断面図である。第7図〜第10図は従来例
を示すものであつて、第7図は血流量測定時のカ
テーテル挿入状態を示す概略断面図、第8図はカ
テーテルの概略正面図、第9図は血管内でのカテ
ーテルを回路系と共に示す第8図の−線拡大
断面図、第10図は第8図の−線拡大断面図
である。 なお、図面に示す符号において、1……大静
脈、2,22……カテーテル、4……右心房、5
……右心室、6……肺動脈、7……注入液、8…
…センサ(サーミスタ)、13……カテーテル本
体、13a……開閉部、34……配線、50……
支持部材、58,78……ルーメン、61……シ
ール材、70……開口、である。
1 to 6 show an embodiment of the present invention, in which FIG. 1 is an enlarged sectional view of the main part of the catheter, FIG. 2 is a sectional view similar to FIG. 1 when the sensor is exposed, 3 is a plan view of FIG. 1 (- line cross section in FIG. 3 is FIG. 1), FIG. 4 is a sectional view similar to FIG. 1 of a catheter according to another example, and FIG. A plan view of the catheter according to the example, FIG. 6 is a sectional view taken along the line -- of FIG. 7 to 10 show conventional examples, in which FIG. 7 is a schematic sectional view showing the state of catheter insertion during blood flow measurement, FIG. 8 is a schematic front view of the catheter, and FIG. 9 is a blood vessel. FIG. 8 is an enlarged cross-sectional view taken along the line -- in FIG. 8 showing the catheter inside along with the circuit system, and FIG. 10 is an enlarged cross-sectional view taken along the line -- in FIG. In addition, in the symbols shown in the drawings, 1... vena cava, 2, 22... catheter, 4... right atrium, 5
...Right ventricle, 6...Pulmonary artery, 7...Infusion fluid, 8...
...Sensor (thermistor), 13... Catheter body, 13a... Opening/closing part, 34... Wiring, 50...
Supporting member, 58, 78... lumen, 61... sealing material, 70... opening.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 熱希釈法による流体の流量測定に用いるカテー
テルにおいて、前記流体の温度を測定するための
測温素子がカテーテル本体とその外面上との間で
出し入れ可能に前記カテーテル本体に配されてい
ることを特徴とする流量測定用カテーテル。
A catheter used for measuring the flow rate of fluid by a thermodilution method, characterized in that a temperature measuring element for measuring the temperature of the fluid is disposed on the catheter body so as to be removable between the catheter body and the outer surface thereof. A catheter for measuring flow rate.
JP7695788U 1988-06-10 1988-06-10 Expired JPH0445687Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7695788U JPH0445687Y2 (en) 1988-06-10 1988-06-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7695788U JPH0445687Y2 (en) 1988-06-10 1988-06-10

Publications (2)

Publication Number Publication Date
JPH01180203U JPH01180203U (en) 1989-12-25
JPH0445687Y2 true JPH0445687Y2 (en) 1992-10-27

Family

ID=31301963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7695788U Expired JPH0445687Y2 (en) 1988-06-10 1988-06-10

Country Status (1)

Country Link
JP (1) JPH0445687Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383144B1 (en) * 2000-01-18 2002-05-07 Edwards Lifesciences Corporation Devices and methods for measuring temperature of a patient

Also Published As

Publication number Publication date
JPH01180203U (en) 1989-12-25

Similar Documents

Publication Publication Date Title
Levett et al. Thermodilution cardiac output: a critical analysis and review of the literature
US8016766B2 (en) Central venous catheter assembly for measuring physiological data for cardiac output determination and method of determining cardiac output
US4153048A (en) Thermodilution catheter and method
US8715200B2 (en) System for determining the blood flow in a coronary artery
US5509424A (en) Continuous cardiac output monitoring system
Schultz et al. Velocity distribution and transition in the arterial system
US6200301B1 (en) Process and devices for determining the instant of injection and the duration of injection in thermodilution measurements
US20120165689A1 (en) Catheter with common guide wire and indicator lumen
US7549965B2 (en) Compensation method for thermodilution catheter having an injectate induced thermal effect in a blood flow measurement
US20010000792A1 (en) Method and apparatus for measuring continuous blood flow at low power
US6491640B1 (en) Injection channel for a blood vessel catheter
JPH0445687Y2 (en)
JPH0458974B2 (en)
Grahn et al. Design and evaluation of a new linear thermistor velocity probe.
JPH0533623B2 (en)
JPH03176029A (en) Catheter for measuring cardiac output
US20070073180A1 (en) Apparatus, computer system and computer program for determining cardio-vascular parameters
Colgan et al. An assessment of cardiac output by thermodilution in infants and children following cardiac surgery
JPH0520322Y2 (en)
JPH0533622B2 (en)
JPH0578332B2 (en)
JPH0556899B2 (en)
JPH0775600B2 (en) Cardiac output measurement catheter
JPS63234946A (en) Catheter for measuring blood flow
JPH08266490A (en) Ejection rate measuring apparatus for ventricle