JPH0442619A - D/a converter - Google Patents

D/a converter

Info

Publication number
JPH0442619A
JPH0442619A JP15062190A JP15062190A JPH0442619A JP H0442619 A JPH0442619 A JP H0442619A JP 15062190 A JP15062190 A JP 15062190A JP 15062190 A JP15062190 A JP 15062190A JP H0442619 A JPH0442619 A JP H0442619A
Authority
JP
Japan
Prior art keywords
current source
cell
bits
circuit
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15062190A
Other languages
Japanese (ja)
Other versions
JP3039791B2 (en
Inventor
Osamu Kobayashi
修 小林
Kunihiko Goto
邦彦 後藤
Yuji Sekido
関戸 裕治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu VLSI Ltd
Fujitsu Ltd
Original Assignee
Fujitsu VLSI Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu VLSI Ltd, Fujitsu Ltd filed Critical Fujitsu VLSI Ltd
Priority to JP2150621A priority Critical patent/JP3039791B2/en
Publication of JPH0442619A publication Critical patent/JPH0442619A/en
Application granted granted Critical
Publication of JP3039791B2 publication Critical patent/JP3039791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To improve the differentiating linearity and to suppress the increase in a required area by constituting each current source transistor (TR) cell of plural TRs of the same size, and using only the required number of TRs among the plural TRs to attain high precision for the current source TR cells. CONSTITUTION:Current course TR cells T1 - T4 of plural sets are included in the D/A converter and a weighting circuit 10 is provided, in which the current outputted from an m-th (1<=m<=n) TR cell among the n-set of the current source TR cells T1 - T4 is a multiple of 2<m-1> with respect to the current outputted from a TR forming the least significant bit. Then each of the current source TR cells T1 - T4 consists of 2<n-1> sets of TRs t1 of the same size, and 2<m-1> of TRs are connected in series with the m-th TR cell. Thus, while the increase in the required area is suppressed, the differentiating linearity is improved.

Description

【発明の詳細な説明】 〔概要〕 本発明は、DAコンバータ、特に、DAコンバータに使
用される重み付け回路に関し、必要な面積の増加を抑制
しつつ、微分直線性を向上させることができるDAコン
バータを提供することを目的とし、 nビットのデジタル信号に対応する電流値にょってアナ
ログ信号を出力するDAコンバータであって、n個の電
流源トランジスタセルを含み、該nil電流源トランジ
スタセルのうち第m番目(1≦m≦n)のトランジスタ
セルから出力される電流値が、最下位ビットを形成する
トランジス夕から出力される電流値に対して2  倍で
示される重み付け回路を有し、前記電流源トランジスタ
セルのそれぞれは2  個の同一サイズのトランジスタ
で形成され、第m番目のトランジスタセルには、2  
個のトランジスタが直列に接続されて構成される。
Detailed Description of the Invention [Summary] The present invention relates to a DA converter, particularly a weighting circuit used in a DA converter, and provides a DA converter that can improve differential linearity while suppressing an increase in required area. A DA converter that outputs an analog signal according to a current value corresponding to an n-bit digital signal, including n current source transistor cells, of which nil current source transistor cells a weighting circuit in which the current value output from the m-th (1≦m≦n) transistor cell is expressed as twice the current value output from the transistor cell forming the least significant bit; Each of the current source transistor cells is formed by two transistors of the same size, and the mth transistor cell has two transistors of the same size.
It consists of transistors connected in series.

〔産業上の利用分野〕[Industrial application field]

本発明は、DAコンバータ、特に、DAコンバータに使
用される重み付け回路に関するものである。
The present invention relates to a DA converter, and particularly to a weighting circuit used in a DA converter.

近年、テレビ、VTR等に使用される高速DAコンバー
タにおいて、多ビット化、高精度化が要求されている。
In recent years, high-speed DA converters used in televisions, VTRs, etc. are required to have a higher number of bits and higher precision.

DAコンバータにおいては、重み付け回路が使用されて
おり、該重み付け回路は、異なる電流値の複数の電流源
トランジスタセルを含む。そして、多ビット化すると、
該電流源トランジスタセル間の誤差が大きくなり、微分
直線性が悪化する。
In a DA converter, a weighting circuit is used, which includes a plurality of current source transistor cells with different current values. Then, when increasing the number of bits,
The error between the current source transistor cells increases, and differential linearity deteriorates.

そこで、電流源トランジスタセルを高精度化することに
より、電流源トランジスタセル間の誤差を減少させ、こ
の結果、微分直線性を向上させることが望まれている。
Therefore, it is desired to reduce errors between current source transistor cells by increasing the accuracy of current source transistor cells, and as a result, improve differential linearity.

〔従来の技術〕[Conventional technology]

第4図には、従来の重み付け回路が示されている。 FIG. 4 shows a conventional weighting circuit.

第4図において、重み付け回路は、4ビツトであり、4
個の電流源トランジスタセルT1〜T4を含む。ここで
、セルTI−T4のサイズW1〜W4の比は、1:2:
4:8であり、この結果、セル’r  −74からの電
流値の比は、1:2:4:8である。
In FIG. 4, the weighting circuit is 4 bits;
current source transistor cells T1 to T4. Here, the ratio of sizes W1 to W4 of cell TI-T4 is 1:2:
4:8, and as a result, the ratio of current values from cell 'r-74 is 1:2:4:8.

次に、第5図には、上述したような従来の重み付け回路
を使用したDAコンバータが示されている。
Next, FIG. 5 shows a DA converter using the conventional weighting circuit as described above.

第5図において、DAコンバータは、8ビツトタイプで
あり、このため、重み付け回路10は、8個の電流源ト
ランジスタセルTl〜T8を含む。
In FIG. 5, the DA converter is of the 8-bit type, and therefore the weighting circuit 10 includes eight current source transistor cells Tl-T8.

ここで、セルT −T8のサイズWl−W8の比は、1
:2:4:8:16:32:64:128であり、この
結果、セルTI−T8 の比は、1:2:4:8:16: 128である。なお、符号12は、 を示し、符号14は、負荷を示し、 電源電圧を示す。
Here, the ratio of size Wl-W8 of cell T-T8 is 1
:2:4:8:16:32:64:128, and as a result, the ratio of cells TI-T8 is 1:2:4:8:16:128. In addition, the code|symbol 12 shows these, the code|symbol 14 shows a load, and shows a power supply voltage.

からの電流値 32:64: バイアス回路 符号vdは、 (D  SD)、(D、D)は、入力信号であるデジタ
ル信号(これは8ビツトである)の各入力端子を示す。
Current value from 32:64: Bias circuit code vd is (DSD), (D, D) indicates each input terminal of a digital signal (this is 8 bits) which is an input signal.

例えば、デジタル信号のうち第lビット、第2ビツトが
rHJレベルであり、他の第3ビツト〜第8ビツトがr
LJレベルである場合には、入力端子D  SD2がr
HJレベルであり、入力端子D3〜D8がrHJレベル
であるので、電流源トランジスタセルT  ST  か
らの電流値の和が負荷14に供給される。このようにし
て、8ビツトの入力デジタル信号がアナログ信号に変換
される。
For example, the lth bit and the second bit of the digital signal are at rHJ level, and the other third to eighth bits are rHJ level.
When the level is LJ, the input terminal DSD2 is r
Since the input terminals D3 to D8 are at the rHJ level, the sum of the current values from the current source transistor cell TST is supplied to the load 14. In this way, an 8-bit input digital signal is converted to an analog signal.

〔発明が解決しようとする課−題〕[Problem that the invention seeks to solve]

上記のような重み付け回路において、高ビツト化すると
、電流源トランジスタセル間の誤差が大きくなり、微分
直線性が悪化する。ここで、微分直線性とは、各ビット
の平均電流に対する誤差をいう。
In the weighting circuit as described above, when the bits are increased, the error between the current source transistor cells increases and the differential linearity deteriorates. Here, differential linearity refers to an error with respect to the average current of each bit.

また、従来、第6図に示されるように、セグメント回路
を使用したDAコンバータがある。
Furthermore, there is a conventional DA converter using a segment circuit, as shown in FIG.

第6図において、符号16は、セグメント回路を示し、
8ビツトタイプの場合、セグメント回路一 16は、255(=2  1)個の同一特性(同一の電
流値を出力する)の電流源トランジスタ(D  SD)
、(D  SD)は、トランジスFE     FE 
       FF     FFタセルI、!、、、
〜 I  、I  に対応する入I         
     FE     FF刃端子を示す。例えば、
8ビツトの入力デジタル信号のうち第2ビツトがrHJ
レベルであり、他のビットがrLJレベルである場合に
は、デコードされた値がr2Jであるので、2n−1個
の入力端子る。この結果、トランジスタセルI  、I
  からの電流値の和が負荷14に供給される。このよ
うにして、8ビツトの入力デジタル信号がアナログ信号
に変換される。
In FIG. 6, reference numeral 16 indicates a segment circuit;
In the case of the 8-bit type, the segment circuit 16 includes 255 (=21) current source transistors (DSD) with the same characteristics (outputting the same current value).
, (D SD) is transistor FE FE
FF FF Tassel I! ,,,
~I, input I corresponding to I
FE Indicates FF blade terminal. for example,
The second bit of the 8-bit input digital signal is rHJ.
If the other bits are at the rLJ level, the decoded value is r2J, so there are 2n-1 input terminals. As a result, transistor cells I, I
The sum of the current values from is supplied to the load 14. In this way, an 8-bit input digital signal is converted to an analog signal.

上記のようなセグメント回路においては、同一の電流値
を出力する複数の電流源トランジスタセルを使用してい
るので、高ビツト化した場合であっても、トランジスタ
セル間の誤差が小さい。従って、微分直線性が向上し、
高精度化が達成される。
Since the segment circuit described above uses a plurality of current source transistor cells that output the same current value, the error between the transistor cells is small even when the bits are increased. Therefore, the differential linearity is improved,
High accuracy is achieved.

しかしながら、セグメント回路においては、高ビツト化
に伴い、多数の電流源トランジスタセルが必要になり、
例えば、8ビツトの場合には、255(21)個のトラ
ンジスタセルが必要になる。この結果、セグメント回路
の面積が大きくなるという問題がある。
However, in segment circuits, as bits become higher, a large number of current source transistor cells are required.
For example, in the case of 8 bits, 255 (21) transistor cells are required. As a result, there is a problem that the area of the segment circuit increases.

以上のように、DAコンバータにおいて、重み付け回路
を使用した場合には、高ビツト化に伴い、微分直線性が
悪化し、一方、セグメント回路を使用した場合には、高
ビツト化に伴い、該セグメント回路の面積が増加すると
いう問題がある。
As described above, when a weighting circuit is used in a DA converter, the differential linearity deteriorates as the bit rate increases, while when a segment circuit is used, the segment There is a problem that the area of the circuit increases.

本発明の目的は、必要な面積の増加を抑制しつつ、微分
直線性を向上させることができるDAコンバータを提供
することにある。
An object of the present invention is to provide a DA converter that can improve differential linearity while suppressing an increase in required area.

〔課題を解決するための手段〕[Means to solve the problem]

第1図には、請求項1記載の発明に係るDAコンバータ
が示されている。第1図において、重み付け回路は、例
えば、4ビツトであり、4個の電流源トランジスタセル
T1〜T4を含む。各セ4−1    ゛ ルTは、8(=2  )個の同一サイズのトランジスタ
t  1〜t sを備えている。そして、m番目(1≦
m≦4)のトランジスタセルT は、8個のトランジス
タt 〜t のうち2  個のトランジスタのみを使用
している。例えば、3番目のトランジスタセルT は、
4(=2   )個のトランジスタ1 −14のみを使
用している。
FIG. 1 shows a DA converter according to a first aspect of the invention. In FIG. 1, the weighting circuit is, for example, 4 bits and includes four current source transistor cells T1-T4. Each cell 4-1 T includes eight (=2) transistors t1 to ts of the same size. Then, the mth (1≦
The transistor cell T 1 (m≦4) uses only two transistors out of the eight transistors t 1 to t 2 . For example, the third transistor cell T is
Only 4 (=2) transistors 1-14 are used.

なお、第1図において、使用されないトランジスタt1
すなわち、トランジスタセルTlのトランジスタt  
1〜t  sFトランジスタセル2のトランジスタ1−
1.)ランジスタセルT3のトランジスター  −18
は、他の用途のために、例えば、他の重み付け回路の電
流源トランジスタセルのために、使用されてもよい。
In addition, in FIG. 1, the unused transistor t1
That is, the transistor t of the transistor cell Tl
1-t Transistor 1- of sF transistor cell 2
1. ) Transistor of transistor cell T3 -18
may be used for other applications, for example for current source transistor cells in other weighting circuits.

また、請求項2記載の発明は、nビットのディジタル信
号に対応する電流値によってアナログ信号を出力するD
Aコンバータにおいて、前記nビットのうちの上位!ビ
ットをセグメント回路で構成し、下位n−lビットを重
み付け回路で構成し、前記セグメント回路および重み付
け回路の各電流源トランジスタセルのサイズを同一とし
たものである。
Further, the invention according to claim 2 provides a digital signal generator that outputs an analog signal based on a current value corresponding to an n-bit digital signal.
In the A converter, the upper one of the n bits! The bits are constructed with segment circuits, the lower n-l bits are constructed with weighting circuits, and the sizes of the current source transistor cells of the segment circuits and weighting circuits are the same.

〔作用〕 第1図において、請求項1記載の発明によれば、電流源
トランジスタセルT1〜T4は、それぞれ、同一サイズ
のトランジスタtを1個、2n−1個、4個、8個含む
ので、該トランジスタセルTl−T4からの電流値の比
は、1:2:4・8である。そして、トランジスタt 
 ”1〜t sは、同一サイズであるので、トランジス
タセルT t ”” 74間の誤差は小さくなり、微分
直線性が向上する。
[Operation] In FIG. 1, according to the invention as claimed in claim 1, the current source transistor cells T1 to T4 each include one, 2n-1, four, and eight transistors t of the same size. , the ratio of current values from the transistor cells Tl-T4 is 1:2:4.8. And transistor t
Since "1 to ts" have the same size, the error between the transistor cells Tt "" 74 becomes small, and the differential linearity improves.

また、請求項2記載の発明によれば、重み付け回路また
は重み付け回路とセグメント回路を併用することによっ
て、セグメント回路のみを使用する場合と比較して、必
要な面積の増加が抑制される。
Furthermore, according to the second aspect of the invention, by using the weighting circuit or the weighting circuit and the segment circuit together, an increase in the required area is suppressed compared to the case where only the segment circuit is used.

〔実施例〕〔Example〕

箪2図には、本発明の第1実施例による重み付け回路を
使用したDAコンバータが示されている。
FIG. 2 shows a DA converter using a weighting circuit according to a first embodiment of the present invention.

第2図において、DAコンバータは、3ビツトタイプで
あり、このため、重み付け回路10は、3IIの電流源
トランジスタセルT 〜T3を含む。
In FIG. 2, the DA converter is of the 3-bit type, so the weighting circuit 10 includes 3II current source transistor cells T1 to T3.

ここで、各セルTは、4個の同一サイズのトランジスタ
t 〜t4を備えている。そして、セルT は、1個の
トランジスタt1のみを使用し、他のトランジスタt 
 ”””t4を接続していない。
Here, each cell T includes four transistors t1 to t4 of the same size. Then, the cell T uses only one transistor t1, and the other transistor t
"""t4 is not connected.

また、セルT は、2n−1個のトランジスタt1、t
2のみを使用し、他のトランジスタt3、t4を接続し
ていない。また、セルT3は、4個の全てのトランジス
タt1〜t4を使用している。この結果、セルT 1T
2、T3からの電流値の比は、1:2:4である。
Further, the cell T includes 2n-1 transistors t1, t
The other transistors t3 and t4 are not connected. Further, the cell T3 uses all four transistors t1 to t4. As a result, cell T 1T
2. The ratio of current values from T3 is 1:2:4.

そして、トランジスタt  ”” t <は、同一サイ
ズであるので、トランジスタセルT  ST  。
Then, since the transistors t '' t < are the same size, the transistor cell T ST .

13間の誤差が小さく、微分直線性が向上している。The error between 13 and 13 is small, and the differential linearity is improved.

(D、D)は、3ビツトの入力デジタル信号の各入力端
子を示し、例えば、デジタル信号のうち第lビット、第
2ビツトがrHJレベルであり、第3ビツトがrLJレ
ベルである場合には、入力端子D  、D  がrHJ
レベルであり、入力端子D2がrHJレベルであるので
、電流源トランジスタセルT  、T  からの電流値
の和が負荷14に供給される。このようにして、3ビツ
トの入力デジタル信号がアナログ信号に変換される。
(D, D) indicate each input terminal of a 3-bit input digital signal. For example, when the first and second bits of the digital signal are at rHJ level and the third bit is at rLJ level, , input terminals D and D are rHJ
Since the input terminal D2 is at the rHJ level, the sum of the current values from the current source transistor cells T 1 and T 2 is supplied to the load 14. In this way, the 3-bit input digital signal is converted to an analog signal.

また、バイアス回路12とのカレントミラーの精度を向
上させるために、バイアス回路12内のトランジスタセ
ルTbを前記トランジスタセルT  、T  、T  
と同様に(同一サイズの複数のトランジスタで)構成し
てもよい。
In addition, in order to improve the precision of the current mirror with the bias circuit 12, the transistor cell Tb in the bias circuit 12 is replaced with the transistor cells T 1 , T 2 , T
It may also be configured in the same way (using multiple transistors of the same size).

また、入力端子D  、D  SD  、D  、D2
.D に接続されたトランジスタセルT  −79は、
実施例では単独で示されているが、トランジスタセルT
  、T  、T  、及び、トランジスタセルT  
ST  、T  を前記トランジスタセルT1.T2、
T3と同様に(同一サイズの複数のトランジスタで)構
成してもよい。
In addition, input terminals D , D SD , D , D2
.. The transistor cell T-79 connected to D is
Although shown alone in the embodiment, the transistor cell T
, T , T , and transistor cell T
ST, T to the transistor cell T1. T2,
It may be configured similarly to T3 (with a plurality of transistors of the same size).

次に、第3図には、本発明の第2実施例による重み付け
回路を使用したDAコンバータが示されている。
Next, FIG. 3 shows a DA converter using a weighting circuit according to a second embodiment of the present invention.

第3図において、DAコンバータは6ビツトタイブであ
り、重み付け回路10及びセグメント回路16を含む。
In FIG. 3, the DA converter is a 6-bit type and includes a weighting circuit 10 and a segment circuit 16.

ここで、重み付け回路10は、6ビツトのうち下位2ビ
ツトを担当し、セグメント回路16は、6ビツトのうち
上位4ビツトを担当する。
Here, the weighting circuit 10 is responsible for the lower two bits among the six bits, and the segment circuit 16 is responsible for the upper four bits among the six bits.

重み付け回路10は、2n−1個の電流源トランジスタ
セルT、T、、を含み、各セルTは、4個の同一サイズ
のトランジスタt l”’1〜t 4を備えている。
The weighting circuit 10 includes 2n-1 current source transistor cells T, T, , each cell T comprising four identically sized transistors t l''1 to t 4 .

そして、セルT は、1個のトランジスタtlのみを使
用し、他のトランジスタt2〜t4を接続していない。
The cell T 1 uses only one transistor tl and does not connect the other transistors t2 to t4.

また、セルT2は、2n−1個のトランジスター  S
12のみを使用し、他のトランジスタt3、t4を接続
していない。以上の構成により、セルT1は、下位2ビ
ツトのうち第lビットを担当し、セルT2は、下位2ビ
ツトのうち第2ビツトを担当する。
Further, the cell T2 has 2n-1 transistors S
Only transistor 12 is used, and the other transistors t3 and t4 are not connected. With the above configuration, cell T1 is responsible for the 1st bit of the lower 2 bits, and cell T2 is responsible for the 2nd bit of the lower 2 bits.

セグメント回路16は、4ビツトであるので、15(=
2  1)個の同一特性(同一の電流値を出力する)の
電流源トランジスタセル11、■ 〜■ 、■ を含む
。各電流源トランジスタセルIは、4個の同一サイズの
トランジスタt1〜t を備え、4個の全てのトランジ
スタt1〜t4を使用している。
Since the segment circuit 16 has 4 bits, 15 (=
21) current source transistor cells 11 having the same characteristics (outputting the same current value), ■ to ■, and ■. Each current source transistor cell I comprises four transistors t1-t of the same size and uses all four transistors t1-t4.

そして、セグメント回路16内の電流源トランジスタセ
ルIのトランジスタt1〜t4は、重み付け回路10内
の電流源トランジスタセルTのトランジスタt1〜t4
と同一サイズであるので、上位4ビツトと下位2ビツト
との間の誤差が小さくなり、微分直線性が向上する。
The transistors t1 to t4 of the current source transistor cell I in the segment circuit 16 are the transistors t1 to t4 of the current source transistor cell T in the weighting circuit 10.
Since they are the same size, the error between the upper 4 bits and the lower 2 bits is reduced, and differential linearity is improved.

なお、第1実施例と同様に、バイアス回路12内のトラ
ンジスタセルTbをトランジスタセルT  、T  、
トランジスタセル■と同様に(同一サイズの複数のトラ
ンジスタで)構成してもよい。
Note that, similarly to the first embodiment, the transistor cell Tb in the bias circuit 12 is replaced by transistor cells T 1 , T 2 ,
It may be constructed in the same way as transistor cell (2) (with a plurality of transistors of the same size).

また、第2実施例においては、セグメント回路16が上
位4ビツトを担当し、重み付け回路10が下位2ビツト
を担当しており、セグメント回路16の担当するビット
数が少ない(4ビツト)ので、セグメント回路16内の
電流源トランジスタセル■の個数は少ない。それゆえ、
セグメント回路16に必要な面積が大幅に増加すること
がない。
Furthermore, in the second embodiment, the segment circuit 16 is in charge of the upper 4 bits, and the weighting circuit 10 is in charge of the lower 2 bits, and the number of bits that the segment circuit 16 is in charge of is small (4 bits). The number of current source transistor cells (2) in the circuit 16 is small. therefore,
The area required for the segment circuit 16 does not increase significantly.

また、第3図の第2実施例を一般的な形式で述べると、
次のようになる。
Also, to describe the second embodiment of FIG. 3 in a general form,
It will look like this:

nビットのDAコンバータにおいて、nビットを上位!
ビット、下位n−lビットに分割する。
In an n-bit DA converter, the n bit is the upper one!
bit, divided into lower n−l bits.

下位n−lビットは、重み付け方式により処理され、上
位iビットは、セグメント方式により処理される。すな
わち、下位n−lビットの重み付け方式においては、n
−1個の電流源が使用され、1番目の電流源は、2  
(1≦i≦n−1)の電流値を有する。ここで、下位n
−lビットのi番目のビットが「H」レベルであるかr
LJレベルであるかにより、i番目の電流源から電流値
2の電流が出力される。そして、全ての電流源からの電
流値の和が、重み付け方式による出力とされる。
The lower n-l bits are processed using a weighting method, and the upper i bits are processed using a segment method. That is, in the weighting method for the lower n-l bits, n
- one current source is used, the first current source is
It has a current value of (1≦i≦n-1). Here, the lower n
- Is the i-th bit of l bits at “H” level?
Depending on whether it is at the LJ level, a current with a current value of 2 is output from the i-th current source. Then, the sum of current values from all current sources is output by the weighting method.

上位!ビットのセグメント方式においては、2+1−A
’の電流値を有する同一の電流源を2′−1個使用する
。上位lビットは、デコードされ、該上位!ビットが示
す個数だけ電流源から電流が出力される。そして、出力
された電流値の和が、セグメント方式による出力とされ
る。
Top! In the bit segment method, 2+1-A
2'-1 identical current sources with a current value of ' are used. The upper l bits are decoded and the upper l bits are decoded. Current is output from the current source in the number indicated by the bit. Then, the sum of the output current values is output by the segment method.

以上のようにして、重み付け方式による下位n−!ビッ
トの出力とセグメント方式による上位!ビットの出力と
の和が、DAコンバータの出力とされる。
As described above, the lower n-! Upper order by bit output and segment method! The sum with the bit output is the output of the DA converter.

なお、重み付け方式における電流源及びセグメント方式
による電流源は、2  個の同一サイズのトランジスタ
から構成されていてもよい。
Note that the current source in the weighting method and the current source in the segment method may be composed of two transistors of the same size.

この場合に、重み付け方式におけるi番目の電流源は、
2  個の同一サイズのトランジスタのうち2  (1
≦i≦n−1)個のトランジスタを使用している。また
、セグメント方式における各電流源は、2  個の同一
サイズのトランジスタを全て使用している。
In this case, the i-th current source in the weighting scheme is
2 (1
≦i≦n-1) transistors are used. Furthermore, each current source in the segment method uses two transistors of the same size.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、請求項1記載の発明によれば、各
電流源トランジスタセルを同一サイズの複数のトランジ
スタから構成し、複数のトランジスタのうち必要な個数
のトランジスタを使用しているので、電流源トランジス
タセルを高精度化することができる。従って、電流源ト
ランジスタセル間の誤差が小さくなり、微分直線性が向
上する。
As explained above, according to the invention as claimed in claim 1, each current source transistor cell is composed of a plurality of transistors of the same size, and a necessary number of transistors among the plurality of transistors are used. The precision of the source transistor cell can be improved. Therefore, errors between current source transistor cells are reduced, and differential linearity is improved.

また、請求項2記載の発明によれば、重み付け回路とセ
グメント回路を併用しているのでセグメント回路のみを
使用する場合と比較して、必要な面積の増加が抑制され
る。
Further, according to the invention as set forth in claim 2, since the weighting circuit and the segment circuit are used together, an increase in the required area is suppressed compared to the case where only the segment circuit is used.

バークの回路図である。It is a circuit diagram of Burke.

10・・・重み付け回路 12・・・バイアス回路 14・・・負荷 16・・・セグメント回路 T1〜T4・・・電流源トランジスタセル1 −18・
・・同一サイズのトランジスタ11〜■15・・・電流
源トランジスタセル
10... Weighting circuit 12... Bias circuit 14... Load 16... Segment circuits T1 to T4... Current source transistor cell 1 -18.
・Transistors 11 to ■15 of the same size...Current source transistor cells

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の原理による重み付け回路の回路図、 策2図は、本発明の第1実施例による重み付け回路を使
用したDAコンバータの回路図、第3図は、本発明の第
2実施例による重み付け回路を使用したDAコンバータ
の回路図、第4図は、従来の重み付け回路の回路図、第
5図は、従来の重み付け回路を使用したDAコンバータ
の回路図、
FIG. 1 is a circuit diagram of a weighting circuit according to the principle of the present invention, FIG. 2 is a circuit diagram of a DA converter using a weighting circuit according to the first embodiment of the present invention, and FIG. A circuit diagram of a DA converter using the weighting circuit according to the embodiment, FIG. 4 is a circuit diagram of a conventional weighting circuit, and FIG. 5 is a circuit diagram of a DA converter using a conventional weighting circuit.

Claims (1)

【特許請求の範囲】 1、nビットのデジタル信号に対応する電流値によって
アナログ信号を出力するDAコンバータであつて、 n個の電流源トランジスタセル(T_1〜T_n)を含
み、該n個電流源トランジスタセル(T_1〜T_n)
のうち第m番目(1≦m≦n)のトランジスタセル(T
_m)から出力される電流値が、最下位ビットを形成す
るトランジスタから出力される電流値に対して2^m^
−^1倍で示される重み付け回路を有し、 前記電流源トランジスタセル(T_1〜T_n)のそれ
ぞれは2^n^−^1個の同一サイズのトランジスタ(
t_1〜t_2n−1)で形成され、第m番目のトラン
ジスタセル(T_m)には、2^m^−^1個のトラン
ジスタ(T_1〜t_2n−1)が直列に接続されて構
成されてなることを特徴とするDAコンバータ。 2、nビットのディジタル信号に対応する電流値によっ
てアナログ信号を出力するDAコンバータにおいて、 前記nビットのうちの上位lビットをセグメント回路で
構成し、下位n−lビットを重み付け回路で構成し、前
記セグメント回路および重み付け回路の各電流源トラン
ジスタセルのサイズを同一としたことを特徴とするDA
コンバータ。
[Claims] 1. A DA converter that outputs an analog signal according to a current value corresponding to an n-bit digital signal, which includes n current source transistor cells (T_1 to T_n), and the n current sources Transistor cell (T_1 to T_n)
The m-th (1≦m≦n) transistor cell (T
_m) is 2^m^ with respect to the current value output from the transistor forming the least significant bit.
-^1 times the weighting circuit, and each of the current source transistor cells (T_1 to T_n) has 2^n^-^1 transistors of the same size (
t_1 to t_2n-1), and the m-th transistor cell (T_m) has 2^m^-^1 transistors (T_1 to t_2n-1) connected in series. A DA converter featuring: 2. In a DA converter that outputs an analog signal based on a current value corresponding to an n-bit digital signal, the upper l bits of the n bits are configured with a segment circuit, and the lower n-l bits are configured with a weighting circuit, A DA characterized in that the size of each current source transistor cell of the segment circuit and the weighting circuit is the same.
converter.
JP2150621A 1990-06-08 1990-06-08 DA converter Expired - Fee Related JP3039791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2150621A JP3039791B2 (en) 1990-06-08 1990-06-08 DA converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2150621A JP3039791B2 (en) 1990-06-08 1990-06-08 DA converter

Publications (2)

Publication Number Publication Date
JPH0442619A true JPH0442619A (en) 1992-02-13
JP3039791B2 JP3039791B2 (en) 2000-05-08

Family

ID=15500871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2150621A Expired - Fee Related JP3039791B2 (en) 1990-06-08 1990-06-08 DA converter

Country Status (1)

Country Link
JP (1) JP3039791B2 (en)

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031366A (en) * 1997-08-21 2000-02-29 Nec Corporation Variable current source with deviation compensation
JP2000122608A (en) * 1998-10-13 2000-04-28 Seiko Epson Corp Display device and electronic equipment
JP2000276108A (en) * 1999-03-24 2000-10-06 Sanyo Electric Co Ltd Active el display device
JP2002062845A (en) * 2000-06-06 2002-02-28 Semiconductor Energy Lab Co Ltd Display device
WO2003027998A1 (en) * 2001-09-25 2003-04-03 Matsushita Electric Industrial Co., Ltd. El display panel and el display apparatus comprising it
JP2003233347A (en) * 2001-08-02 2003-08-22 Seiko Epson Corp Supply of programming current to pixels
JP2004503974A (en) * 2000-06-09 2004-02-05 サンディスク コーポレイション Multi-output current mirror with improved accuracy
JP2004088158A (en) * 2002-08-22 2004-03-18 Seiko Epson Corp Electronic circuit, electrooptical apparatus, and electronic apparatus
JP2004206045A (en) * 2002-10-31 2004-07-22 Casio Comput Co Ltd Current generating and supplying circuit and control method therefor, and display device provided therewith
JP2004246182A (en) * 2003-02-14 2004-09-02 Mitsubishi Electric Corp Display device and display method therein
JP2004309924A (en) * 2003-04-09 2004-11-04 Matsushita Electric Ind Co Ltd Display device, source driving circuit and display panel
JP2004348026A (en) * 2003-05-26 2004-12-09 Casio Comput Co Ltd Electric current generating and supplying circuit and its control method and display device equipped therewith
JP2005017979A (en) * 2003-06-30 2005-01-20 Casio Comput Co Ltd Current generating/supplying circuit and its control method, and display device provided with the current generating/supplying circuit
JP2005130469A (en) * 2003-09-30 2005-05-19 Rohm Co Ltd D/a converter circuit, organic el drive circuit and organic el display device
JPWO2003091977A1 (en) * 2002-04-26 2005-09-02 東芝松下ディスプレイテクノロジー株式会社 EL display panel driver circuit
US7068978B2 (en) 2003-04-22 2006-06-27 Oki Electric Industry Co., Ltd. Current cell type digital-to-analog converter
JP2007226258A (en) * 2002-04-26 2007-09-06 Toshiba Matsushita Display Technology Co Ltd Driver circuit of el display panel
JP2007233398A (en) * 2002-04-26 2007-09-13 Toshiba Matsushita Display Technology Co Ltd Driving method of el display panel
JP2007256958A (en) * 2002-04-26 2007-10-04 Toshiba Matsushita Display Technology Co Ltd Method of driving el display panel
JP2008072189A (en) * 2006-09-12 2008-03-27 Denso Corp Current addition type high-resolution d-a converter
JP2008139697A (en) * 2006-12-04 2008-06-19 Nec Electronics Corp Circuit and method for driving capacitive load, and method of driving liquid crystal display device
JP2008257258A (en) * 2001-08-02 2008-10-23 Seiko Epson Corp Supply of programming current to pixel
JP2008299343A (en) * 2008-07-24 2008-12-11 Casio Comput Co Ltd Display device
US7561147B2 (en) 2003-05-07 2009-07-14 Toshiba Matsushita Display Technology Co., Ltd. Current output type of semiconductor circuit, source driver for display drive, display device, and current output method
JP2009253952A (en) * 2008-04-11 2009-10-29 Nec Corp Semiconductor device and impedance adjustment method therefor
US7760161B2 (en) 2003-07-16 2010-07-20 Casio Computer Co., Ltd. Current generation supply circuit and display device
US7817149B2 (en) 2002-04-26 2010-10-19 Toshiba Matsushita Display Technology Co., Ltd. Semiconductor circuits for driving current-driven display and display
US7864167B2 (en) 2002-10-31 2011-01-04 Casio Computer Co., Ltd. Display device wherein drive currents are based on gradation currents and method for driving a display device
US7924248B2 (en) 2002-04-26 2011-04-12 Toshiba Matsushita Display Technology Co., Ltd. Drive method of EL display apparatus
JP4856250B2 (en) * 2007-11-20 2012-01-18 株式会社アドバンテスト D / A converter and electron beam exposure apparatus
US8289241B2 (en) 2000-06-06 2012-10-16 Semiconductor Energy Laboratory Co., Ltd. Display device
JPWO2014103265A1 (en) * 2012-12-25 2017-01-12 パナソニック株式会社 Power amplifier
US9633597B2 (en) 2006-04-19 2017-04-25 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US9640112B2 (en) 2011-05-26 2017-05-02 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9685114B2 (en) 2012-12-11 2017-06-20 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9721512B2 (en) 2013-03-15 2017-08-01 Ignis Innovation Inc. AMOLED displays with multiple readout circuits
US9741282B2 (en) 2013-12-06 2017-08-22 Ignis Innovation Inc. OLED display system and method
US9741279B2 (en) 2012-05-23 2017-08-22 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9747834B2 (en) 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
US9773439B2 (en) 2011-05-27 2017-09-26 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US9773441B2 (en) 2010-02-04 2017-09-26 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9786209B2 (en) 2009-11-30 2017-10-10 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9792857B2 (en) 2012-02-03 2017-10-17 Ignis Innovation Inc. Driving system for active-matrix displays
US9799248B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9818323B2 (en) 2013-03-14 2017-11-14 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9830857B2 (en) 2013-01-14 2017-11-28 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9852689B2 (en) 2003-09-23 2017-12-26 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US9947293B2 (en) 2015-05-27 2018-04-17 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US9970964B2 (en) 2004-12-15 2018-05-15 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US9990882B2 (en) 2013-08-12 2018-06-05 Ignis Innovation Inc. Compensation accuracy
US9997110B2 (en) 2010-12-02 2018-06-12 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10019941B2 (en) 2005-09-13 2018-07-10 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
US10078984B2 (en) 2005-02-10 2018-09-18 Ignis Innovation Inc. Driving circuit for current programmed organic light-emitting diode displays
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10163401B2 (en) 2010-02-04 2018-12-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10176736B2 (en) 2010-02-04 2019-01-08 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10181282B2 (en) 2015-01-23 2019-01-15 Ignis Innovation Inc. Compensation for color variations in emissive devices
US10192479B2 (en) 2014-04-08 2019-01-29 Ignis Innovation Inc. Display system using system level resources to calculate compensation parameters for a display module in a portable device
USRE47257E1 (en) 2004-06-29 2019-02-26 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US10235933B2 (en) 2005-04-12 2019-03-19 Ignis Innovation Inc. System and method for compensation of non-uniformities in light emitting device displays
US10304390B2 (en) 2009-11-30 2019-05-28 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US10311780B2 (en) 2015-05-04 2019-06-04 Ignis Innovation Inc. Systems and methods of optical feedback
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
US10325554B2 (en) 2006-08-15 2019-06-18 Ignis Innovation Inc. OLED luminance degradation compensation
US10339860B2 (en) 2015-08-07 2019-07-02 Ignis Innovation, Inc. Systems and methods of pixel calibration based on improved reference values
US10388221B2 (en) 2005-06-08 2019-08-20 Ignis Innovation Inc. Method and system for driving a light emitting device display
US10439159B2 (en) 2013-12-25 2019-10-08 Ignis Innovation Inc. Electrode contacts
US10475379B2 (en) 2011-05-20 2019-11-12 Ignis Innovation Inc. Charged-based compensation and parameter extraction in AMOLED displays
US10553141B2 (en) 2009-06-16 2020-02-04 Ignis Innovation Inc. Compensation technique for color shift in displays
US10573231B2 (en) 2010-02-04 2020-02-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10699613B2 (en) 2009-11-30 2020-06-30 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US10867536B2 (en) 2013-04-22 2020-12-15 Ignis Innovation Inc. Inspection system for OLED display panels
US10996258B2 (en) 2009-11-30 2021-05-04 Ignis Innovation Inc. Defect detection and correction of pixel circuits for AMOLED displays

Cited By (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031366A (en) * 1997-08-21 2000-02-29 Nec Corporation Variable current source with deviation compensation
JP2000122608A (en) * 1998-10-13 2000-04-28 Seiko Epson Corp Display device and electronic equipment
JP2000276108A (en) * 1999-03-24 2000-10-06 Sanyo Electric Co Ltd Active el display device
JP2002062845A (en) * 2000-06-06 2002-02-28 Semiconductor Energy Lab Co Ltd Display device
US8289241B2 (en) 2000-06-06 2012-10-16 Semiconductor Energy Laboratory Co., Ltd. Display device
US8659516B2 (en) 2000-06-06 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2004503974A (en) * 2000-06-09 2004-02-05 サンディスク コーポレイション Multi-output current mirror with improved accuracy
US7489310B2 (en) 2001-08-02 2009-02-10 Seiko Epson Corporation Supply of a programming current to a pixel
JP2008257258A (en) * 2001-08-02 2008-10-23 Seiko Epson Corp Supply of programming current to pixel
JP2003233347A (en) * 2001-08-02 2003-08-22 Seiko Epson Corp Supply of programming current to pixels
EP1450341A1 (en) * 2001-09-25 2004-08-25 Matsushita Electric Industrial Co., Ltd. El display panel and el display apparatus comprising it
EP1450341A4 (en) * 2001-09-25 2009-04-01 Panasonic Corp El display panel and el display apparatus comprising it
WO2003027998A1 (en) * 2001-09-25 2003-04-03 Matsushita Electric Industrial Co., Ltd. El display panel and el display apparatus comprising it
JPWO2003027998A1 (en) * 2001-09-25 2005-01-13 松下電器産業株式会社 EL display device
JP2007256958A (en) * 2002-04-26 2007-10-04 Toshiba Matsushita Display Technology Co Ltd Method of driving el display panel
US8063855B2 (en) 2002-04-26 2011-11-22 Toshiba Matsushita Display Technology Co., Ltd. Drive method of EL display panel
JPWO2003091977A1 (en) * 2002-04-26 2005-09-02 東芝松下ディスプレイテクノロジー株式会社 EL display panel driver circuit
JPWO2003091978A1 (en) * 2002-04-26 2005-09-02 東芝松下ディスプレイテクノロジー株式会社 Driving method of EL display panel
US7924248B2 (en) 2002-04-26 2011-04-12 Toshiba Matsushita Display Technology Co., Ltd. Drive method of EL display apparatus
JP2007226258A (en) * 2002-04-26 2007-09-06 Toshiba Matsushita Display Technology Co Ltd Driver circuit of el display panel
JP2007233398A (en) * 2002-04-26 2007-09-13 Toshiba Matsushita Display Technology Co Ltd Driving method of el display panel
US7932880B2 (en) 2002-04-26 2011-04-26 Toshiba Matsushita Display Technology Co., Ltd. EL display panel driving method
US7777698B2 (en) 2002-04-26 2010-08-17 Toshiba Matsushita Display Technology, Co., Ltd. Drive method of EL display panel
US7817149B2 (en) 2002-04-26 2010-10-19 Toshiba Matsushita Display Technology Co., Ltd. Semiconductor circuits for driving current-driven display and display
JP2004088158A (en) * 2002-08-22 2004-03-18 Seiko Epson Corp Electronic circuit, electrooptical apparatus, and electronic apparatus
JP2004206045A (en) * 2002-10-31 2004-07-22 Casio Comput Co Ltd Current generating and supplying circuit and control method therefor, and display device provided therewith
US7864167B2 (en) 2002-10-31 2011-01-04 Casio Computer Co., Ltd. Display device wherein drive currents are based on gradation currents and method for driving a display device
JP2004246182A (en) * 2003-02-14 2004-09-02 Mitsubishi Electric Corp Display device and display method therein
JP2004309924A (en) * 2003-04-09 2004-11-04 Matsushita Electric Ind Co Ltd Display device, source driving circuit and display panel
US7304621B2 (en) 2003-04-09 2007-12-04 Matsushita Electric Industrial Co., Ltd. Display apparatus, source driver and display panel
US7864171B2 (en) 2003-04-09 2011-01-04 Panasonic Corporation Display apparatus, source driver and dispaly panel
US7068978B2 (en) 2003-04-22 2006-06-27 Oki Electric Industry Co., Ltd. Current cell type digital-to-analog converter
US7561147B2 (en) 2003-05-07 2009-07-14 Toshiba Matsushita Display Technology Co., Ltd. Current output type of semiconductor circuit, source driver for display drive, display device, and current output method
JP2004348026A (en) * 2003-05-26 2004-12-09 Casio Comput Co Ltd Electric current generating and supplying circuit and its control method and display device equipped therewith
US7580011B2 (en) 2003-06-30 2009-08-25 Casio Computer Co., Ltd. Current generation supply circuit and display device
JP2005017979A (en) * 2003-06-30 2005-01-20 Casio Comput Co Ltd Current generating/supplying circuit and its control method, and display device provided with the current generating/supplying circuit
US7760161B2 (en) 2003-07-16 2010-07-20 Casio Computer Co., Ltd. Current generation supply circuit and display device
US10089929B2 (en) 2003-09-23 2018-10-02 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
US9852689B2 (en) 2003-09-23 2017-12-26 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
JP4526338B2 (en) * 2003-09-30 2010-08-18 ローム株式会社 D / A conversion circuit, organic EL drive circuit, and organic EL display device
JP2005130469A (en) * 2003-09-30 2005-05-19 Rohm Co Ltd D/a converter circuit, organic el drive circuit and organic el display device
USRE47257E1 (en) 2004-06-29 2019-02-26 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US10699624B2 (en) 2004-12-15 2020-06-30 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US9970964B2 (en) 2004-12-15 2018-05-15 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US10078984B2 (en) 2005-02-10 2018-09-18 Ignis Innovation Inc. Driving circuit for current programmed organic light-emitting diode displays
US10235933B2 (en) 2005-04-12 2019-03-19 Ignis Innovation Inc. System and method for compensation of non-uniformities in light emitting device displays
US10388221B2 (en) 2005-06-08 2019-08-20 Ignis Innovation Inc. Method and system for driving a light emitting device display
US10019941B2 (en) 2005-09-13 2018-07-10 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
US10127860B2 (en) 2006-04-19 2018-11-13 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US10453397B2 (en) 2006-04-19 2019-10-22 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US9633597B2 (en) 2006-04-19 2017-04-25 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US9842544B2 (en) 2006-04-19 2017-12-12 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US10325554B2 (en) 2006-08-15 2019-06-18 Ignis Innovation Inc. OLED luminance degradation compensation
JP2008072189A (en) * 2006-09-12 2008-03-27 Denso Corp Current addition type high-resolution d-a converter
JP2008139697A (en) * 2006-12-04 2008-06-19 Nec Electronics Corp Circuit and method for driving capacitive load, and method of driving liquid crystal display device
JP4856250B2 (en) * 2007-11-20 2012-01-18 株式会社アドバンテスト D / A converter and electron beam exposure apparatus
JP2009253952A (en) * 2008-04-11 2009-10-29 Nec Corp Semiconductor device and impedance adjustment method therefor
JP2008299343A (en) * 2008-07-24 2008-12-11 Casio Comput Co Ltd Display device
US10553141B2 (en) 2009-06-16 2020-02-04 Ignis Innovation Inc. Compensation technique for color shift in displays
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
US9786209B2 (en) 2009-11-30 2017-10-10 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US10304390B2 (en) 2009-11-30 2019-05-28 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US10679533B2 (en) 2009-11-30 2020-06-09 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US10699613B2 (en) 2009-11-30 2020-06-30 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US10996258B2 (en) 2009-11-30 2021-05-04 Ignis Innovation Inc. Defect detection and correction of pixel circuits for AMOLED displays
US10395574B2 (en) 2010-02-04 2019-08-27 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9773441B2 (en) 2010-02-04 2017-09-26 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10163401B2 (en) 2010-02-04 2018-12-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US10176736B2 (en) 2010-02-04 2019-01-08 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10971043B2 (en) 2010-02-04 2021-04-06 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10573231B2 (en) 2010-02-04 2020-02-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10032399B2 (en) 2010-02-04 2018-07-24 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10460669B2 (en) 2010-12-02 2019-10-29 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US9997110B2 (en) 2010-12-02 2018-06-12 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US10032400B2 (en) 2011-05-20 2018-07-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9799248B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10580337B2 (en) 2011-05-20 2020-03-03 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10325537B2 (en) 2011-05-20 2019-06-18 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10475379B2 (en) 2011-05-20 2019-11-12 Ignis Innovation Inc. Charged-based compensation and parameter extraction in AMOLED displays
US10127846B2 (en) 2011-05-20 2018-11-13 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9978297B2 (en) 2011-05-26 2018-05-22 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US10706754B2 (en) 2011-05-26 2020-07-07 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9640112B2 (en) 2011-05-26 2017-05-02 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US10417945B2 (en) 2011-05-27 2019-09-17 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US9773439B2 (en) 2011-05-27 2017-09-26 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US10380944B2 (en) 2011-11-29 2019-08-13 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US10453394B2 (en) 2012-02-03 2019-10-22 Ignis Innovation Inc. Driving system for active-matrix displays
US10043448B2 (en) 2012-02-03 2018-08-07 Ignis Innovation Inc. Driving system for active-matrix displays
US9792857B2 (en) 2012-02-03 2017-10-17 Ignis Innovation Inc. Driving system for active-matrix displays
US9747834B2 (en) 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US10176738B2 (en) 2012-05-23 2019-01-08 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9741279B2 (en) 2012-05-23 2017-08-22 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9940861B2 (en) 2012-05-23 2018-04-10 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10311790B2 (en) 2012-12-11 2019-06-04 Ignis Innovation Inc. Pixel circuits for amoled displays
US10140925B2 (en) 2012-12-11 2018-11-27 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9685114B2 (en) 2012-12-11 2017-06-20 Ignis Innovation Inc. Pixel circuits for AMOLED displays
JPWO2014103265A1 (en) * 2012-12-25 2017-01-12 パナソニック株式会社 Power amplifier
US9830857B2 (en) 2013-01-14 2017-11-28 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US11875744B2 (en) 2013-01-14 2024-01-16 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US10847087B2 (en) 2013-01-14 2020-11-24 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US10198979B2 (en) 2013-03-14 2019-02-05 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9818323B2 (en) 2013-03-14 2017-11-14 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US10460660B2 (en) 2013-03-15 2019-10-29 Ingis Innovation Inc. AMOLED displays with multiple readout circuits
US9997107B2 (en) 2013-03-15 2018-06-12 Ignis Innovation Inc. AMOLED displays with multiple readout circuits
US9721512B2 (en) 2013-03-15 2017-08-01 Ignis Innovation Inc. AMOLED displays with multiple readout circuits
US10867536B2 (en) 2013-04-22 2020-12-15 Ignis Innovation Inc. Inspection system for OLED display panels
US10600362B2 (en) 2013-08-12 2020-03-24 Ignis Innovation Inc. Compensation accuracy
US9990882B2 (en) 2013-08-12 2018-06-05 Ignis Innovation Inc. Compensation accuracy
US10395585B2 (en) 2013-12-06 2019-08-27 Ignis Innovation Inc. OLED display system and method
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
US10186190B2 (en) 2013-12-06 2019-01-22 Ignis Innovation Inc. Correction for localized phenomena in an image array
US9741282B2 (en) 2013-12-06 2017-08-22 Ignis Innovation Inc. OLED display system and method
US10439159B2 (en) 2013-12-25 2019-10-08 Ignis Innovation Inc. Electrode contacts
US10192479B2 (en) 2014-04-08 2019-01-29 Ignis Innovation Inc. Display system using system level resources to calculate compensation parameters for a display module in a portable device
US10181282B2 (en) 2015-01-23 2019-01-15 Ignis Innovation Inc. Compensation for color variations in emissive devices
US10311780B2 (en) 2015-05-04 2019-06-04 Ignis Innovation Inc. Systems and methods of optical feedback
US10403230B2 (en) 2015-05-27 2019-09-03 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US9947293B2 (en) 2015-05-27 2018-04-17 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US10339860B2 (en) 2015-08-07 2019-07-02 Ignis Innovation, Inc. Systems and methods of pixel calibration based on improved reference values

Also Published As

Publication number Publication date
JP3039791B2 (en) 2000-05-08

Similar Documents

Publication Publication Date Title
JPH0442619A (en) D/a converter
US6362765B2 (en) D/A converter
US6346899B1 (en) Analog current mode D/A converter using transconductors
US20080122671A1 (en) Digital-to-analog converter
JP3904495B2 (en) A / D converter
KR100514320B1 (en) Digital-to-analog converter
JP2004015347A (en) Interpolation circuit having a conversion error correction range for higher-order bit and analog/digital converter circuit utilizing the same
US4803461A (en) R-2R type D/A converter circuit
JPH06132828A (en) D/a converter
US6346906B1 (en) Thermometric-binary code conversion method, conversion circuit therefor and encoder element circuits used therefor
US8749418B2 (en) Interpolative digital-to-analog converter
JPS6059813A (en) Latched comparator
US5272461A (en) Coding circuit
JP3206138B2 (en) Current addition type D / A converter
US20030117300A1 (en) PWM converting circuit, D/A converter and PWM converting method with improved resolution
JPH03216023A (en) A/d converter
JP2560980B2 (en) 1-bit cell and analog / digital converter
JP2877983B2 (en) A / D converter circuit
JPH06224708A (en) Pulse width modulation circuit
JP3101186B2 (en) Digital encoder circuit
JPH03250816A (en) Parallel comparison type a-d converter
JP2000151407A (en) D/a conversion circuit
TWM594242U (en) Amplifier circuits with voltage interpolation function and driving device
JP2904239B2 (en) A / D conversion circuit
JPH0691466B2 (en) A / D converter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080303

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees