JPH04371940A - Split irradiation type flash lighting system, camera on which split irradiation type flash lighting device can be mounted, and the same - Google Patents

Split irradiation type flash lighting system, camera on which split irradiation type flash lighting device can be mounted, and the same

Info

Publication number
JPH04371940A
JPH04371940A JP3176139A JP17613991A JPH04371940A JP H04371940 A JPH04371940 A JP H04371940A JP 3176139 A JP3176139 A JP 3176139A JP 17613991 A JP17613991 A JP 17613991A JP H04371940 A JPH04371940 A JP H04371940A
Authority
JP
Japan
Prior art keywords
light
emission
areas
type flash
irradiation type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3176139A
Other languages
Japanese (ja)
Inventor
Tadao Takagi
忠雄 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3176139A priority Critical patent/JPH04371940A/en
Publication of JPH04371940A publication Critical patent/JPH04371940A/en
Priority to US08/232,349 priority patent/US5448330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Control For Cameras (AREA)
  • Stroboscope Apparatuses (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To control a light distribution by using one flash light tube, to reduce the size and weight of the device, and to reduce heat generation in continuous use and prevent an irregularity in light distribution. CONSTITUTION:The device consists of a light emission part and a light quantity control part which is arranged in front of the light emission part and controls the quantity of light emitted from plural light projection areas corresponding to plural irradiated areas of a subject field, and is equipped with a flash light means 21 which performs preliminary light emission and main light emission, split light measuring means 23 and 33 which splits luminous flux emitted by this flash light means 21 and reflected by the subject field into plural areas and measures the light, a calculating means 35 which calculates weighting quantities at the time of the main light emission by the projection areas of the flash light means 21 according to light measurement results obtained by the split light measuring means 23 and 33 at the time of the preliminary light emission of the flash light means 21, and a control means 35 which controls the quantities of projection light by the projection areas of the flash light means 21 according to the weighting quantities calculated by the calculating means 35.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、被写界における被写体
の分布状況に応じて、閃光発光時の配光分布を変える分
割照射型閃光照明システム,分割照射型閃光装置および
この分割照射型閃光装置を装着可能なカメラに関する。
[Industrial Application Field] The present invention relates to a divided irradiation type flash illumination system, a divided irradiation type flash device, and a divided irradiation type flash illumination system that changes the light distribution at the time of flash emission according to the distribution of objects in the subject field. The present invention relates to a camera to which a device can be attached.

【0002】0002

【従来の技術】被写体の空間分布状態に応じて配光分布
を制御する分割照射型閃光装置が知られている(例えば
、特開昭63−115148号公報参照)。この装置は
、複数個の閃光管を備え、それぞれの閃光管の発光,非
発光を制御して撮影対象画面内の異なる領域を分割照射
するものである。
2. Description of the Related Art A divided irradiation type flash device is known that controls the light distribution according to the spatial distribution of an object (see, for example, Japanese Patent Laid-Open No. 115148/1983). This device is equipped with a plurality of flash tubes, and controls whether each flash tube emits or does not emit light to separately irradiate different areas within the screen to be photographed.

【0003】0003

【発明が解決しようとする課題】しかしながら、このよ
うな従来の分割照射型閃光装置には次のような問題があ
る。 (1)複数の閃光管と各閃光管に対応する配光光学系を
必要とするから、装置全体が大型化し、重量も重い。 (2)複数個の閃光管が発光するため、使用エネルギー
が大きく、また連続使用時の発熱量が大きい。 (3)複数の閃光管と各閃光管に対応する配光光学系を
必要とするから、分割された各領域の境界部で照射光の
重なりや抜けが発生し、配光ムラが発生する。 (4)複数の閃光管のそれぞれを調光する調光装置が必
要となり、制御が複雑になる。
However, such conventional divided irradiation type flash devices have the following problems. (1) Since a plurality of flash tubes and a light distribution optical system corresponding to each flash tube are required, the entire device becomes large and heavy. (2) Since a plurality of flash tubes emit light, a large amount of energy is used and a large amount of heat is generated during continuous use. (3) Since a plurality of flash tubes and a light distribution optical system corresponding to each flash tube are required, irradiated light may overlap or drop out at the boundaries of each divided area, resulting in uneven light distribution. (4) A light control device is required to control each of the plurality of flash tubes, making control complicated.

【0004】本発明の目的は、1つの閃光管を用いて配
光分布を制御可能とし、これにより上記問題を解決する
ことができる分割照射型閃光照明システム,分割照射型
閃光装置およびこの分割照射型閃光装置を装着可能なカ
メラを提供することにある。
An object of the present invention is to provide a divided irradiation type flash illumination system, a divided irradiation type flash device, and a divided irradiation type flash illumination system that can control the light distribution using one flash tube and thereby solve the above problems. An object of the present invention is to provide a camera to which a type flash device can be attached.

【0005】[0005]

【課題を解決するための手段】クレーム対応図である図
1(a)に対応づけて請求項1の発明を説明すると、請
求項1の発明は、発光部と、この発光部の前方に配置さ
れ、被写界の複数の照射領域に対応した複数の射出領域
から射出される光量を調節可能な光量調節部とから成り
、予備発光と本発光とを行なう閃光手段21と、この閃
光手段21により発光され被写界で反射された光束を、
複数の領域に分割して測光する分割測光手段23,33
と、閃光手段21の予備発光時に分割測光手段23,3
3で測光した測光結果に基づいて、閃光手段21の複数
の射出領域ごとに本発光時の重み付け量を算出する算出
手段35と、この算出手段35で算出された重み付け量
に従って、閃光手段21で複数の射出領域ごとの射出光
量を制御する制御手段35とを備え、これにより、上記
目的を達成する。請求項2の発明は、上記請求項1の発
明に加え、分割測光手段23,33の複数の分割測光領
域の分割パターン形状と、閃光手段21の複数の射出領
域の分割パターン形状とをほぼ同じ形状とした。クレー
ム対応図である図1(b)に対応づけて請求項3の発明
を説明すると、請求項3の発明は、発光部と、この発光
部の前方に配置され、被写界の複数の照射領域に対応し
た複数の射出領域から射出される光量を調節可能な光量
調節部とから成り、予備発光と本発光とを行なう分割照
射型閃光装置21を装着可能なカメラであって、この分
割照射型閃光装置21により発光され被写界で反射され
た光束を、複数の領域に分割して測光する分割測光手段
23,33と、分割照射型閃光装置21の予備発光時に
分割測光手段23,33で測光した測光結果に基づいて
、分割照射型閃光装置21の複数の射出領域ごとに本発
光時の重み付け量を算出する算出手段35と、この算出
手段35で算出された重み付け量に従って、分割照射型
閃光装置21で複数の射出領域ごとの射出光量を制御す
る制御手段35とを備え、これにより、上記目的を達成
する。請求項4の発明は、上記請求項3の発明に加え、
分割測光手段23,33の複数の分割測光領域の分割パ
ターン形状と、分割照射型閃光装置21の複数の射出領
域の分割パターン形状とをほぼ同じ形状とした。請求項
5の発明は、発光部と、この発光部の前方に配置され、
被写界の照射領域に対応した複数の射出領域から射出さ
れる光量を調節可能な光量調節部とから成り、予備発光
と本発光とを行なう分割照射型閃光装置であって、この
分割照射型閃光装置の光量調節部は、予備発光時に発光
部から発光され被写界で反射された光束を、複数の領域
に分割して測光した測光結果に基づき算出された複数の
射出領域ごとの重み付け量を入力し、その重み付け量に
従って本発光時の複数の射出領域ごとの光量を調節する
。請求項6の発明は、上記請求項5の発明に加え、予備
発光時に複数の領域に分割して測光した時の分割パター
ン形状と、分割照射型閃光装置の複数の射出領域の分割
パターン形状とをほぼ同じ形状とした。
[Means for Solving the Problem] The invention of claim 1 will be explained in conjunction with FIG. 1(a) which is a claim correspondence diagram. A flash means 21 for performing preliminary light emission and main light emission; The luminous flux emitted by and reflected by the subject,
Divided photometry means 23, 33 that measures light by dividing it into multiple areas
When the flash unit 21 flashes preliminary light, the divided photometry units 23 and 3
Calculating means 35 calculates the weighting amount at the time of main emission for each of the plurality of emission areas of the flashing means 21 based on the photometry results obtained in step 3; A control means 35 is provided for controlling the amount of emitted light for each of the plurality of emitting areas, thereby achieving the above object. In addition to the above-mentioned invention of claim 1, the invention of claim 2 is such that the shape of the division pattern of the plurality of divided photometry areas of the divisional photometry means 23, 33 and the shape of the division pattern of the plurality of emission areas of the flashing means 21 are almost the same. Shape. The invention of claim 3 will be explained in conjunction with FIG. 1(b), which is a diagram corresponding to the claim. The camera is equipped with a divided irradiation type flash device 21 that is composed of a light amount adjustment section that can adjust the amount of light emitted from a plurality of emission areas corresponding to the areas, and performs preliminary light emission and main light emission. divisional photometry means 23, 33 that divides and measures the luminous flux emitted by the type flash device 21 and reflected in the subject field into a plurality of areas; and divisional photometry means 23, 33 during preliminary flashing of the divisional irradiation type flash device 21. A calculation means 35 calculates the weighting amount for main emission for each of the plurality of emission areas of the split irradiation type flash device 21 based on the photometry results measured by the split irradiation flash device 21, The flash device 21 is provided with a control means 35 for controlling the amount of light emitted from each of the plurality of emitting areas, thereby achieving the above object. The invention of claim 4 is, in addition to the invention of claim 3,
The shape of the division patterns of the plurality of divided photometry regions of the divisional photometry means 23 and 33 and the shape of the division patterns of the plurality of emission regions of the divisional irradiation type flash device 21 were made to be approximately the same shape. The invention according to claim 5 includes a light emitting section, a light emitting section disposed in front of the light emitting section,
This is a split-irradiation type flash device that is composed of a light amount adjustment unit that can adjust the amount of light emitted from a plurality of emission areas corresponding to the irradiation area of the subject, and performs preliminary flash and main flash. The light intensity adjustment section of the flash device adjusts the weighting amount for each of the plurality of emission areas, which is calculated based on the photometry results of dividing the luminous flux emitted from the light emitting part and reflected in the subject field into a plurality of areas during preliminary flashing. is input, and the amount of light for each of the plurality of emission areas during main emission is adjusted according to the weighting amount. The invention of claim 6 provides, in addition to the invention of claim 5, a division pattern shape when photometry is performed by dividing into a plurality of regions at the time of preliminary light emission, and a division pattern shape of a plurality of emission regions of a divisional irradiation type flash device. have almost the same shape.

【0006】[0006]

【作用】請求項1では、算出手段35が、予備発光時に
分割測光手段23,33で測光された各分割領域の測光
値に基づいて、閃光手段21の複数の射出領域ごとに本
発光時の重み付け量を算出し、制御手段35が、これら
の重み付け量に従って閃光手段21で複数の射出領域ご
との射出光量を制御する。請求項3では、算出手段35
が、分割照射型閃光装置21の予備発光時に分割測光手
段23,33で測光した測光結果に基づいて、分割照射
型閃光装置21の複数の射出領域ごとに本発光時の重み
付け量を算出し、制御手段35が、これらの重み付け量
に従って分割照射型閃光装置21で複数の射出領域ごと
の射出光量を制御する。請求項5では、分割照射型閃光
装置の光量調節部が、予備発光時に発光部から発光され
被写界で反射された光束を、複数の領域に分割して測光
した測光結果に基づき算出された複数の射出領域ごとの
重み付け量を入力し、その重み付け量に従って本発光時
の複数の射出領域ごとの光量を調節する。
[Operation] According to claim 1, the calculation means 35 calculates each of the plurality of emission regions of the flash means 21 at the time of the main light emission based on the photometric values of each divided region measured by the divided light metering means 23 and 33 at the time of the preliminary light emission. The weighting amounts are calculated, and the control means 35 controls the amount of emitted light for each of the plurality of emitting areas using the flashing means 21 according to these weighting amounts. In claim 3, the calculation means 35
calculates the weighting amount at the time of main emission for each of the plurality of emission areas of the split irradiation type flash device 21, based on the photometry results measured by the split photometry means 23 and 33 during the preliminary flash of the split irradiation type flash device 21, The control means 35 controls the amount of emitted light for each of the plurality of emitting areas in the divided irradiation type flash device 21 according to these weighting amounts. In claim 5, the light amount adjustment section of the split irradiation type flash device calculates the light amount based on the photometry results obtained by dividing the luminous flux emitted from the light emitting section during preflash and reflected in the subject field into a plurality of areas. The amount of weighting for each of the plurality of emission areas is input, and the amount of light for each of the plurality of emission areas at the time of main emission is adjusted according to the weighting amount.

【0007】なお、本発明の構成を説明する上記課題を
解決するための手段および作用の項では、本発明を分り
やすくするために各手段の符号に対応する実施例の要素
と同一の符号を用いたが、これにより本発明が実施例に
限定されるものではない。
[0007] In the section of the means for solving the above-mentioned problems and operations which explains the structure of the present invention, the same reference numerals as the elements of the embodiments corresponding to the reference numerals of each means are used to make the present invention easier to understand. However, the present invention is not limited to the examples.

【0008】[0008]

【実施例】図2〜図6は、本発明の概要を説明する図で
ある。これらの図において、1は本発明に関わるカメラ
、2a,2bは撮影レンズの画角、3は従来の閃光装置
の配光特性、A〜Eは被写体である。まず、図2に示す
ように、被写体A〜Eがカメラ1から等距離に並んでい
る場合は、従来の閃光装置でも全被写体A〜Eが適正な
露出で露光される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 2 to 6 are diagrams for explaining the outline of the present invention. In these figures, 1 is a camera according to the present invention, 2a and 2b are angles of view of photographic lenses, 3 is a light distribution characteristic of a conventional flash device, and A to E are objects. First, as shown in FIG. 2, when the subjects A to E are lined up at the same distance from the camera 1, all the subjects A to E are exposed with proper exposure even with a conventional flash device.

【0009】しかし、図3に示すように、被写体A〜E
がカメラ1から遠ざかるように斜めに並んでいる場合、
配光特性3を有した従来の閃光装置では、すべての被写
体A〜Eが適正な露出で露光されない。すなわち、被写
体Cは適正な露出になるが、被写体Aはオーバーに、被
写体Bはややオーバーに、被写体Dはややアンダーに、
被写体Eはアンダーになる。そこで本発明では、図4に
示すように、配光特性を4に示すようにし、全ての被写
体A〜Eを適正な露出で露光する。
However, as shown in FIG.
are arranged diagonally away from camera 1,
In the conventional flash device having the light distribution characteristic 3, all the subjects A to E are not exposed with proper exposure. In other words, subject C will be properly exposed, but subject A will be overexposed, subject B will be slightly overexposed, and subject D will be slightly underexposed.
Subject E will be undershot. Therefore, in the present invention, as shown in FIG. 4, the light distribution characteristics are set as shown in 4, and all subjects A to E are exposed to light at appropriate exposures.

【0010】また、図5に示すように、被写体A〜Eが
V字型に並んでいる場合、配光特性3の従来の閃光装置
では、全ての被写体A〜Eが適正な露出で露光されない
。すなわち、被写体A,Eはアンダーに、被写体B,D
はややアンダーになる。このような場合本発明では、図
6に示すように、配光特性を5に示すようにし、全ての
被写体A〜Eを適正な露出で露光する。
Furthermore, as shown in FIG. 5, when objects A to E are lined up in a V-shape, all objects A to E cannot be exposed with proper exposure using a conventional flash device with light distribution characteristic 3. . In other words, subjects A and E are under-photographed, and subjects B and D are under-photographed.
will be slightly under. In such a case, in the present invention, as shown in FIG. 6, the light distribution characteristics are set as shown in 5, and all the subjects A to E are exposed with proper exposure.

【0011】図7は、本発明に係わるTTL自動調光カ
メラ11の構成を示す図である。ファインダー観察時に
は、撮影レンズ12を通過した光束(定常光)は、破線
で示すダウン状態のミラー13で反射され、スクリーン
14,ペンタプリズム15を通過してその一部は接眼レ
ンズ16へ導かれ、他の一部は集光レンズ17を通過し
て露出制御用測光素子18へ導かれる。また、撮影時に
は、不図示のシャッターレリーズボタンがレリーズされ
ると、ミラー13が実線で示すアップ位置に駆動された
後、絞り19が絞り込まれ、シャッター20が開閉され
る。これによって、撮影レンズ12を通過した被写体光
は、フィルムFIへ導かれ、フィルムFIが露光される
FIG. 7 is a diagram showing the configuration of a TTL automatic light control camera 11 according to the present invention. During viewfinder observation, the light flux (stationary light) that has passed through the photographic lens 12 is reflected by the mirror 13 in the down state shown by the broken line, passes through the screen 14 and the pentaprism 15, and a part of it is guided to the eyepiece lens 16. The other part passes through the condenser lens 17 and is guided to the exposure control photometric element 18 . Further, during photographing, when a shutter release button (not shown) is released, the mirror 13 is driven to the up position shown by the solid line, the aperture 19 is narrowed down, and the shutter 20 is opened and closed. As a result, the subject light that has passed through the photographic lens 12 is guided to the film FI, and the film FI is exposed.

【0012】さらに、閃光撮影時には、シャッター20
の開後に閃光装置21が本発光して被写体を照明する。 被写体からの反射光は、撮影レンズ12を介してフィル
ム面に到達し、さらにフィルム面で反射された光束は、
集光レンズアレイ22を介して調光用の受光素子23へ
導かれる。さらに本実施例のカメラでは、上記本発光の
前に被写界の状態を調べるための予備発光が可能であり
、この予備発光による被写界からの反射光は、シャッタ
ー20が開く前の幕面で反射されて受光素子23で受光
される。
Furthermore, during flash photography, the shutter 20
After opening, the flash device 21 emits the main light to illuminate the subject. The reflected light from the subject reaches the film surface via the photographic lens 12, and the light beam reflected on the film surface is
The light is guided through a condensing lens array 22 to a light receiving element 23 for dimming. Furthermore, the camera of this embodiment is capable of preflashing to check the state of the subject before the main flash, and the light reflected from the subject due to this preflash is reflected from the curtain before the shutter 20 opens. The light is reflected by the surface and received by the light receiving element 23.

【0013】図8は、本発明に係わる閃光装置を備えた
カメラの制御ブロック図である。図において、11は、
分割照射型閃光装置21を装着もしくは接続可能なカメ
ラである。露出制御用測光素子18は、撮影レンズ12
を通過した光束(主に定常光)を5つの領域18a〜1
8eに分割して測光する。また調光用受光素子23は、
撮影レンズ12を通過した光束(主に閃光)を5つの領
域23a〜23eに分割して受光する。31は、イメー
ジセンサなどの焦点検出素子であり、撮影レンズ12を
通過した光束を用いて領域31aで撮影レンズ12の焦
点調節状態を検出する。なお、焦点検出領域31aは、
分割調光領域23aに含まれる。
FIG. 8 is a control block diagram of a camera equipped with a flash device according to the present invention. In the figure, 11 is
This is a camera to which a divided irradiation type flash device 21 can be attached or connected. The exposure control photometric element 18 is connected to the photographic lens 12
The light flux (mainly stationary light) that has passed through is divided into five areas 18a to 1
Measure the light by dividing it into 8e. In addition, the light receiving element 23 for dimming is
The light beam (mainly flash) that has passed through the photographic lens 12 is divided into five areas 23a to 23e and received. Reference numeral 31 denotes a focus detection element such as an image sensor, which detects the focus adjustment state of the photographic lens 12 in a region 31a using the light beam that has passed through the photographic lens 12. Note that the focus detection area 31a is
It is included in the divided light control area 23a.

【0014】32は測光回路であり、露出制御用測光素
子18の出力信号を対数圧縮して輝度値に変換する。3
3は調光回路であり、調光用受光素子23の出力信号を
増幅して時間積分する。34は焦点検出回路であり、焦
点検出素子31の出力信号に基づいて撮影レンズ12の
ピントズレ量およびズレ方向を算出する。35はCPU
であり、測光回路32からの輝度値に基づいて露出値を
演算し、調光回路33からの出力信号に従って閃光装置
21の閃光停止制御を行ない、焦点検出回路34からの
ズレ量およびズレ方向に従って撮影レンズ12の駆動制
御などを行なう。
A photometric circuit 32 logarithmically compresses the output signal of the exposure control photometric element 18 and converts it into a luminance value. 3
3 is a dimming circuit which amplifies the output signal of the dimming light receiving element 23 and integrates it over time. 34 is a focus detection circuit, which calculates the amount and direction of focus shift of the photographic lens 12 based on the output signal of the focus detection element 31. 35 is CPU
The exposure value is calculated based on the brightness value from the photometry circuit 32, the flash stop control of the flash device 21 is performed according to the output signal from the dimming circuit 33, and the flash control is performed according to the amount and direction of deviation from the focus detection circuit 34. It performs drive control of the photographing lens 12, etc.

【0015】36は発光制御回路であり、CPU35か
らの発光開始および発光停止指令信号に従って閃光管3
7を駆動制御する。38は、後述する配光分布制御回路
であり、閃光装置37の前方に配置され、閃光管37で
発光された光束を被写界の照明領域に対応した射出領域
ごとに調光する配光分布制御素子39を駆動制御する。
36 is a light emission control circuit, which controls the flash tube 3 according to the light emission start and light emission stop command signals from the CPU 35.
7 is driven and controlled. Reference numeral 38 denotes a light distribution control circuit, which will be described later, and is arranged in front of the flash device 37, and controls the light distribution for controlling the luminous flux emitted by the flash tube 37 for each emission area corresponding to the illumination area of the object. The control element 39 is driven and controlled.

【0016】図9は、閃光装置21から発光され、被写
界で反射された光束を受光する調光用受光素子23廻り
の詳細を示す図である。被写界中央部の円形の測光領域
に対応する調光用受光素子23aと、被写界周辺部の矩
形を円弧で切り欠いた形状の測光領域に対応する調光受
光素子23b〜23eとが、同一の平面上に配置される
。すなわち、本実施例では被写界を5つの測光領域に分
割して分割測光を行なう。また集光レンズアレイ22は
、上記受光素子23a〜23eの左,中間,右の3ブロ
ックに対応する3つのレンズ部分を有する光学部材であ
る。
FIG. 9 is a diagram showing details of the area around the dimming light receiving element 23 that receives the light beam emitted from the flash device 21 and reflected in the field of view. A light-adjusting light-receiving element 23a corresponding to a circular photometry area in the center of the field, and light-adjustable light-receiving elements 23b to 23e corresponding to a photometry area in the shape of a circular arc cut out of a rectangle at the periphery of the field. , placed on the same plane. That is, in this embodiment, the field of view is divided into five photometry areas and divided photometry is performed. The condensing lens array 22 is an optical member having three lens portions corresponding to the left, middle, and right three blocks of the light receiving elements 23a to 23e.

【0017】図9に示すように、シャッター20の幕面
に投影される被写界を、中央の円形領域20aと周辺を
4分割した領域20b〜20eとに5分割すると、受光
素子23a〜23eの上記左,中間,右の3ブロックは
、それぞれ破線で示されるように、集光レンズアレイ2
2の左半分,中央,右半分と対峙している。さらに、受
光素子23とシャッター20の幕面に投影される被写界
の各領域とはほぼ共役関係にあるので、5つの領域20
a〜20eの明るさを概略同形状に分割して測光する。
As shown in FIG. 9, when the field projected on the curtain surface of the shutter 20 is divided into five areas, a central circular area 20a and four areas 20b to 20e, the light receiving elements 23a to 23e The three blocks on the left, middle, and right of
It faces the left half, center, and right half of 2. Furthermore, since the light-receiving element 23 and each area of the field projected on the curtain surface of the shutter 20 are approximately conjugate, the five areas 20
The brightness of a to 20e is divided into approximately the same shape and measured.

【0018】図10は、調光回路33の詳細を示す回路
図である。調光回路33は、調光用受光素子23a〜2
3eの出力を増幅する増幅器41a〜41eと、CPU
35からの指令に応答して各増幅器41a〜41eの増
幅率をそれぞれ設定するゲイン設定器42a〜42eと
を有し、ゲイン設定器42a〜42eは、CPU35か
らのディジタル信号をアナログ信号に変換するD/A変
換器を有する。またCPU35からの指令に応答して、
上記予備発光時の各増幅器41a〜41eの出力をそれ
ぞれ時間で積分する積分回路43a〜43eと、本発光
時の各増幅器41a〜41eの出力を加算する加算回路
44と、CPU35からの指令に応答して加算回路44
の加算結果を時間で積分する積分回路45と、CPU3
5内に予め格納されたアナログ信号としての調光レベル
をディジタル信号に変換する変換回路46と、この変換
された調光レベルと上記積分回路45の出力とを比較し
、積分回路45の出力が上記調光レベルに達した時に発
光停止信号を出力する比較器47とを有する。
FIG. 10 is a circuit diagram showing details of the dimming circuit 33. The light control circuit 33 includes light receiving elements 23a to 2 for light control.
Amplifiers 41a to 41e that amplify the output of 3e, and the CPU
The gain setting devices 42a to 42e respectively set the amplification factors of the amplifiers 41a to 41e in response to commands from the CPU 35, and the gain setting devices 42a to 42e convert digital signals from the CPU 35 into analog signals. It has a D/A converter. Also, in response to commands from the CPU 35,
Integrating circuits 43a to 43e that integrate the outputs of the amplifiers 41a to 41e during the preliminary light emission over time, an adding circuit 44 that adds the outputs of the amplifiers 41a to 41e during the main light emission, and responding to commands from the CPU 35. Addition circuit 44
an integration circuit 45 that integrates the addition result over time, and a CPU 3
A conversion circuit 46 that converts the dimming level as an analog signal stored in advance in 5 into a digital signal compares the converted dimming level with the output of the integrating circuit 45, and determines that the output of the integrating circuit 45 is The comparator 47 outputs a light emission stop signal when the dimming level is reached.

【0019】図11は閃光装置21の構成図、図12は
、被写界の照射領域に対応した配光分布制御素子39の
射出領域を示す図、図13は、配光分布制御素子39の
他の射出領域例を示す図、図14は、配光分布制御素子
39を透光性セラミックPLZTで構成した時の構成図
である。これらの図により、配光分布制御素子39によ
る被写界の配光動作を説明する。閃光装置21は、閃光
管37と、反射笠51と、配光レンズ52と、配光分布
制御素子39と、この配光分布制御素子39の前後に配
設される偏向板54,58と、保護ガラス53とを有す
る。
FIG. 11 is a configuration diagram of the flash device 21, FIG. 12 is a diagram showing the emission area of the light distribution control element 39 corresponding to the irradiation area of the object, and FIG. 13 is a diagram showing the emission area of the light distribution control element 39. FIG. 14, which is a diagram showing another example of the emission area, is a configuration diagram when the light distribution control element 39 is made of a translucent ceramic PLZT. The light distribution operation of the object field by the light distribution control element 39 will be explained with reference to these figures. The flash device 21 includes a flash tube 37, a reflector 51, a light distribution lens 52, a light distribution control element 39, and deflection plates 54 and 58 disposed before and after the light distribution control element 39. It has a protective glass 53.

【0020】配光分布制御素子39は、透光性セラミッ
クPLZTや液晶などから構成され、図11に示すよう
に閃光管37の前方に配置される。そして、被写界の照
射領域に対応した各射出領域から射出される光量を調節
する。これらの射出領域は、図12に示すように、5つ
の領域55a〜55eに分割される。なお、配光分布制
御素子39の射出領域を、図13に示すように、より細
分化することによって、被写界の配光分布をさらにきめ
細かく制御することができる。また、配光分布制御素子
39を透光性セラミックPLZTで構成する場合は、図
14に示すように、各射出領域ごとに透明電極56,5
7を設け、これらの電極56,57間に電圧を印加して
セラミックの光透過率を変える。
The light distribution control element 39 is made of transparent ceramic PLZT, liquid crystal, or the like, and is arranged in front of the flash tube 37 as shown in FIG. Then, the amount of light emitted from each emission area corresponding to the irradiation area of the object field is adjusted. These injection regions are divided into five regions 55a to 55e, as shown in FIG. 12. Note that by dividing the emission area of the light distribution control element 39 into smaller parts as shown in FIG. 13, the light distribution of the object field can be controlled more finely. Furthermore, when the light distribution control element 39 is made of a translucent ceramic PLZT, as shown in FIG.
7 is provided, and a voltage is applied between these electrodes 56 and 57 to change the light transmittance of the ceramic.

【0021】図15は、配光分布制御素子39の透明電
極56,57間に印加される重み付け電圧V(n)と、
透光性セラミックPLZTの光透過率T(n)との関係
を示す図である。この実施例では、図中のA点を基準と
し、ほぼ線形な範囲B〜Cを使用する。
FIG. 15 shows the weighted voltage V(n) applied between the transparent electrodes 56 and 57 of the light distribution control element 39;
It is a figure which shows the relationship with the light transmittance T(n) of translucent ceramic PLZT. In this embodiment, a substantially linear range B to C is used with point A in the figure as a reference.

【0022】ここで、被写界の中央の照射領域に対応す
る配光分布制御素子39の射出領域55aは、露出制御
用測光素子18の中央の分割測光領域18a、および調
光用受光素子23の中央の分割測光領域23aと対応し
、それらはほぼ同じ形状に設定される。その他の4つの
被写界の照射領域に対応する配光分布制御素子39の射
出領域55b,55c,55d,55eも、それぞれ露
出制御用測光素子18の分割測光領域18b,18c,
18d,18e、および調光用受光素子23の分割測光
領域23b,23c,23d,23eと対応し、各領域
ごとにほぼ同じ形状に設定される。
Here, the emission area 55a of the light distribution control element 39 corresponding to the irradiation area at the center of the field is divided into the central divided photometry area 18a of the exposure control photometry element 18 and the light receiving element 23 for light adjustment. corresponds to the central divided photometric area 23a, and they are set to have approximately the same shape. The emission areas 55b, 55c, 55d, and 55e of the light distribution control element 39 corresponding to the irradiation areas of the other four objects are also the divided photometry areas 18b, 18c, and 18c of the exposure control photometry element 18, respectively.
18d, 18e, and the divided photometric areas 23b, 23c, 23d, and 23e of the dimming light receiving element 23, and are set to have substantially the same shape for each area.

【0023】図16は、CPU35のメイン制御プログ
ラム例を示すフローチャートである。このフローチャー
トにより、実施例の動作を説明する。CPU35は、不
図示のシャッターレリーズボタンの半押し操作に続いて
全押し操作されると、このメイン制御プログラムの実行
を開始する。ステップS1で、自動露出モードの場合は
公知のプログラム線図により撮影絞り値Fを決定する。 なお、手動露出モードの場合は撮影者の設定値を読み込
む。続くステップS2で、撮影レンズ12の不図示の絶
対距離エンコーダーにより主要被写体までの撮影距離X
を検出する。ステップS3では、予備発光用の重み付け
電圧として配光分布制御素子39の電極間電圧V(n)
(n=1〜5)に100を設定する。図15に示すよう
に、電極間電圧V(n)を100に設定すると、配光分
布制御素子39の光透過率T(n)は最高に近い0.8
になり、予備発光の効率が上がる。
FIG. 16 is a flowchart showing an example of the main control program for the CPU 35. The operation of the embodiment will be explained using this flowchart. The CPU 35 starts executing the main control program when a shutter release button (not shown) is pressed halfway and then fully pressed. In step S1, in the case of automatic exposure mode, the photographing aperture value F is determined based on a known program chart. Note that in manual exposure mode, the photographer's settings are read. In the following step S2, an absolute distance encoder (not shown) of the photographing lens 12 determines the photographing distance X to the main subject.
Detect. In step S3, the inter-electrode voltage V(n) of the light distribution control element 39 is used as a weighted voltage for preliminary light emission.
(n=1 to 5) is set to 100. As shown in FIG. 15, when the interelectrode voltage V(n) is set to 100, the light transmittance T(n) of the light distribution control element 39 is 0.8, which is close to the maximum.
This increases the efficiency of preliminary light emission.

【0024】ステップS4で、配光分布制御回路38を
制御して配光分布制御素子39の電極間に上記ステップ
で設定された重み付け電圧V(n)=100(n=1〜
5)を印加する。ステップS5で、後述するサブルーチ
ンを実行し、閃光装置21で本発光に先立ち予備発光を
行なうとともに、予備発光時の被写界からの反射光を受
光素子23で領域分割して測光する。続くステップS6
で、後述するサブルーチンを実行して、予備発光時の測
光結果に基づいて本発光時の重み付け電圧V(n)を算
出する。ステップS7では、算出された本発光時の重み
付け電圧を配光分布制御回路38を介して配光分布制御
素子39の電極間に印加し、射出領域ごとに本発光の重
み付けを行なう。ステップS8で、閃光装置21の本発
光を開始し、ステップS9で、受光素子23の中央の分
割測光領域23aで調光を行ない、所定の調光レベルに
達した時に閃光装置21の本発光を停止する。
In step S4, the light distribution control circuit 38 is controlled to set the weighted voltage V(n)=100 (n=1 to 1) between the electrodes of the light distribution control element 39.
5) is applied. In step S5, a subroutine to be described later is executed, and the flash device 21 performs a preliminary light emission prior to the main light emission, and the light receiving element 23 divides the reflected light from the object field during the preliminary light emission into areas and measures the light. Next step S6
Then, a subroutine to be described later is executed to calculate a weighted voltage V(n) at the time of main light emission based on the photometry result at the time of preliminary light emission. In step S7, the calculated weighted voltage for main emission is applied between the electrodes of the light distribution control element 39 via the light distribution control circuit 38, and the main emission is weighted for each emission region. In step S8, the main flash of the flash device 21 is started, and in step S9, the light is adjusted in the central divided photometry area 23a of the light receiving element 23, and when a predetermined dimming level is reached, the main flash of the flash device 21 is started. Stop.

【0025】図17,図18は、予備発光処理サブルー
チンを示すフローチャートである。ステップS11のお
いて、予備発光の1回当りのガイドナンバーGNp1を
2に設定する。すなわち、この実施例では予備発光とし
てガイドナンバー2のチョップ発光を複数回行なう。ス
テップS12で、次式により調光回路40のゲイン設定
器42a〜42eに与えるゲインGpre(n)を求め
る。   Gpre(n)=γ(AV−3+log2(1/5
))      ・・・(1)ここで、γは定数、AV
は、予備発光時のアペックス値である。ステップS13
で、チョップ発光回数カウンタQpreをリセットし、
続くステップS14で、カウンタQpreをインクリメ
ントする。ステップS15において、ガイドナンバーG
Np1(=2)で閃光装置21のチョップ発光を行なう
FIGS. 17 and 18 are flowcharts showing the preliminary light emission processing subroutine. In step S11, the guide number GNp1 per preliminary light emission is set to 2. That is, in this embodiment, chop light emission with guide number 2 is performed multiple times as preliminary light emission. In step S12, the gain Gpre(n) given to the gain setters 42a to 42e of the dimming circuit 40 is determined using the following equation. Gpre(n)=γ(AV-3+log2(1/5
)) ...(1) Here, γ is a constant, AV
is the apex value at the time of preliminary light emission. Step S13
, reset the chop light emission counter Qpre,
In the following step S14, the counter Qpre is incremented. In step S15, guide number G
The flash device 21 performs chop light emission at Np1 (=2).

【0026】ステップS16で、チョップ発光時の測光
を行なう。すなわち、チョップ発光時に閃光装置21か
ら発光され被写界で反射された光束は、撮影レンズ12
を通過してシャッター20の幕面で反射され、集光レン
ズアレイ22を介して5つの分割受光素子23a〜23
eで受光される。各分割受光素子23a〜23eは、そ
れぞれの受光量に応じた測光信号を逐次調光回路33の
増幅器41a〜41eへ出力する。増幅器41a〜41
eは、これらの測光信号をゲイン設定器42a〜42e
のゲインGpre(n)で増幅し、積分回路43a〜4
3eへ出力する。CPU35は、積分回路43a〜43
eへ作動信号を出力し、この作動信号を受信した積分回
路43a〜43eは、増幅器41a〜41eからの増幅
された測光信号をそれぞれの時間で積分し、測光信号I
G(n)(n=1〜5)としてCPU35へ出力する。
In step S16, photometry is performed during chopped light emission. In other words, the luminous flux emitted from the flash device 21 and reflected in the field during chopping flash is transmitted to the photographing lens 12.
is reflected by the curtain surface of the shutter 20, and is transmitted through the condensing lens array 22 to five divided light receiving elements 23a to 23.
The light is received at e. Each of the divided light receiving elements 23a to 23e outputs a photometric signal corresponding to the amount of light received by each of the divided light receiving elements to the amplifiers 41a to 41e of the sequential dimming circuit 33. Amplifiers 41a-41
e transmits these photometric signals to gain setters 42a to 42e.
The integration circuits 43a to 4 are amplified with a gain Gpre(n) of
Output to 3e. The CPU 35 includes integral circuits 43a to 43.
Integrating circuits 43a to 43e, which output an activation signal to e and receive this activation signal, integrate the amplified photometric signals from amplifiers 41a to 41e at respective times, and convert the photometric signal I
It is output to the CPU 35 as G(n) (n=1 to 5).

【0027】ステップS17で、受光素子23の5つの
分割測光領域からの測光信号IG(n)の総和IGを算
出し、ステップS18で、測光信号の総和IGが所定の
調光レベルに達したか否かを判別し、所定の調光レベル
に達するとステップS20へ進み、そうでなければステ
ップS19へ進む。ステップS18で所定の調光レベル
に達していないと判定された時は、ステップS19で、
チョップ発光回数Qpreが16か否かを判別し、16
であればステップS20へ進み、そうでなければステッ
プS14へ戻る。測光信号の総和IGが所定の調光レベ
ルに達するか、またはチョップ発光回数Qpreが16
回の時は、ステップS20へ進んで、予備発光の測光に
要した総測光時間tpreを計時する。ステップS21
で、閃光装置21の予備発光を測光したのと同じ光学系
で定常光の測光を行ない、測光値Ipst(n)を得る
。なお、この定常光の測光時間tpstは、予備発光時
の総測光時間tpreと同じ時間とする。
In step S17, the total sum IG of the photometric signals IG(n) from the five divided photometric areas of the light receiving element 23 is calculated, and in step S18, it is determined whether the total photometric signal IG has reached a predetermined dimming level. If the predetermined dimming level is reached, the process proceeds to step S20, and if not, the process proceeds to step S19. When it is determined in step S18 that the predetermined dimming level has not been reached, in step S19,
Determine whether the number of chop flashes Qpre is 16 or not, and
If so, the process advances to step S20; otherwise, the process returns to step S14. The total IG of the photometric signals reaches the predetermined dimming level, or the number of chop flashes Qpre is 16.
If it is the second time, the process advances to step S20, and the total photometry time tpre required for photometry for preliminary light emission is measured. Step S21
Then, the steady light is measured using the same optical system that measures the preliminary light emission of the flash device 21, and a photometric value Ipst(n) is obtained. Note that the photometry time tpst of this steady light is the same time as the total photometry time tpre during preliminary light emission.

【0028】次に図18のステップS22〜S28で、
受光素子23の5つの分割測光領域ごとに定常光成分の
補正とガイドナンバーGNrtnの計算を行なう。まず
ステップS22で、領域番号nをクリヤし、ステップS
23で、nをインクリメントする。ステップS24で、
閃光装置21の予備発光成分と定常光成分とを含む測光
信号IG(n)から、定常光成分Ipstを差引いて補
正し、その値を改めて測光信号IG(n)とする。ステ
ップS25で、補正後の測光信号IG(n)が正か否か
を判別し、正であればステップS26へ進み、そうでな
ければステップS27へ進む。ステップS26では、次
式によりGNrtnを算出する。   GNrtn(n)=(GNp12×Qpre)1/
2×(230/IG(n)×            
        2AV−2×1/5)1/2    
              ・・・(2)
Next, in steps S22 to S28 of FIG.
Correction of the stationary light component and calculation of the guide number GNrtn are performed for each of the five divided photometric regions of the light receiving element 23. First, in step S22, the area number n is cleared, and in step S22, the area number n is cleared.
23, increment n. In step S24,
The constant light component Ipst is subtracted and corrected from the photometric signal IG(n) including the preliminary light emission component of the flash device 21 and the constant light component, and the value is reused as the photometric signal IG(n). In step S25, it is determined whether the corrected photometric signal IG(n) is positive or not. If it is positive, the process proceeds to step S26, and if not, the process proceeds to step S27. In step S26, GNrtn is calculated using the following equation. GNrtn(n)=(GNp12×Qpre)1/
2×(230/IG(n)×
2AV-2×1/5)1/2
...(2)

【0029
】(2)式によれば、GNrtn(n)は、各領域の被
写体が標準反射率を有する場合には絞り値Fに撮影距離
Xを乗じた値となる。言い換えると、F×X=GNrt
n(n)の領域は、撮影距離Xの位置に標準反射率の被
写体があると考えられ、F×X>GNrtn(n)の領
域は、撮影距離Xの位置に標準反射率よりも高い反射率
の物体が存在すると考えられ、さらにF×X<GNrt
n(n)の領域は、撮影距離Xの位置に標準反射率より
も低い反射率の物体が存在すると考えられる。一方、ス
テップS25で測光信号IG(n)が正でないと判定さ
れた時は、ステップS27で、GNrtn(n)に無限
大と見なせる非常に大きな数、ここでは999を設定し
てステップS28へ進む。ステップS28では、領域番
号nが5か、すなわちすべての分割測光領域に対して上
記処理を終了したか否かを判別し、終了したらメインプ
ログラムへリターンする。
0029
According to equation (2), GNrtn(n) is a value obtained by multiplying the aperture value F by the photographing distance X when the subject in each region has a standard reflectance. In other words, F×X=GNrt
In the area n(n), it is considered that there is a subject with standard reflectance at the position of shooting distance It is considered that there exists an object with a rate of F×X<GNrt
In the region n(n), it is considered that an object with a reflectance lower than the standard reflectance exists at the position of the shooting distance X. On the other hand, when it is determined in step S25 that the photometric signal IG(n) is not positive, in step S27, a very large number that can be considered infinite, 999 in this case, is set for GNrtn(n), and the process proceeds to step S28. . In step S28, it is determined whether the area number n is 5, that is, whether the above processing has been completed for all the divided photometry areas, and when the process is completed, the process returns to the main program.

【0030】図19は、本発光時の重み付け電圧算出処
理サブルーチンを示すフローチャートである。ステップ
S31で、合焦後の撮影距離とGNrtnとから、領域
に応じて補正すべき照射量(照射補正量)を算出する。 受光素子23aに対応する中央の分割測光領域の照射補
正量ΔEV(1)は、   ΔEV(1)=0               
                         
・・・(3)また、受光素子23b〜23eに対応する
分割測光領域の照射補正量ΔEV(n)(n=2〜5)
は、  ΔEV(n)=2×log2(GNrtn(n
)/(X×F))・・・(4)
FIG. 19 is a flowchart showing a weighted voltage calculation processing subroutine during main light emission. In step S31, the irradiation amount (irradiation correction amount) to be corrected according to the area is calculated from the photographing distance after focusing and GNrtn. The irradiation correction amount ΔEV(1) of the central divided photometry area corresponding to the light receiving element 23a is as follows: ΔEV(1)=0

...(3) Also, the irradiation correction amount ΔEV(n) of the divided photometry area corresponding to the light receiving elements 23b to 23e (n=2 to 5)
is ΔEV(n)=2×log2(GNrtn(n
)/(X×F))...(4)

【0031】ステップS
32で、極端な量の補正は配光ムラを発生させる危険が
あるので、リミット処理を行なって補正量を制限する。 すなわち、ΔEV(n)>+1の時は、ΔEV(n)=
+1とし、ΔEV(n)<−2の時は、ΔEV(n)=
−2とする。正負でリミット値を変えたのは、至近値が
オーバー露出になるのを防止する側を重要視したためで
ある。ステップS33で、算出されたΔEV(n)に基
づいて、配光分布制御素子39の各射出領域の光透過率
を算出する。   T(n)=0.4×2m            
                       ・・
・(5)ここで、m=ΔEV(n) 次にステップS34で、図15に示すように、算出され
た透過率T(n)から配光分布制御回路38が配光分布
制御素子39の電極間に印加する重み付け電圧V(n)
を算出する。   V(n)=(500/7)×(T(n)+6/10
)        ・・・(6)
Step S
At step 32, since an extreme amount of correction may cause uneven light distribution, limit processing is performed to limit the amount of correction. That is, when ΔEV(n)>+1, ΔEV(n)=
+1, and when ΔEV(n)<-2, ΔEV(n)=
-2. The reason why we changed the limit values for positive and negative values was to place emphasis on preventing overexposure of the closest value. In step S33, the light transmittance of each emission area of the light distribution control element 39 is calculated based on the calculated ΔEV(n). T(n)=0.4×2m
・・・
-(5) Here, m=ΔEV(n) Next, in step S34, as shown in FIG. Weighted voltage V(n) applied between electrodes
Calculate. V(n)=(500/7)×(T(n)+6/10
) ...(6)

【0032】このよう
に、予備発光時の被写体からの反射光を領域分割して測
光し、被写体の空間分布状態を検出し、1個の閃光管か
ら発せられた閃光を検出された被写体の空間分布状態に
応じて配光するようにしたので、被写界に分布したすべ
ての被写体に最適な光量が照射される。
In this way, the reflected light from the subject during the preliminary flash is divided into areas and photometered, the spatial distribution of the subject is detected, and the spatial distribution of the subject where the flash emitted from one flash tube is detected is measured. Since the light is distributed according to the distribution state, the optimal amount of light is irradiated to all subjects distributed in the field.

【0033】なお、上記実施例ではTTL調光方式を例
に上げて説明したが、本発明はTTL調光方式に限定さ
れず、外光式やフラッシュマチック方式にも応用するこ
とができる。
Although the above embodiment has been explained using the TTL dimming method as an example, the present invention is not limited to the TTL dimming method, but can also be applied to an external light method or a flashmatic method.

【0034】また、露出制御用測光素子の測光領域の分
割パターン形状,調光用受光素子の測光領域の分割パタ
ーン形状,さらに焦点検出領域の形状および配置は、上
記実施例に限定されない。
Further, the shape of the dividing pattern of the photometric area of the exposure control photometric element, the dividing pattern of the photometric area of the dimming light receiving element, and the shape and arrangement of the focus detection area are not limited to the above embodiments.

【0035】以上の実施例の構成において、閃光装置2
1が閃光手段および分割照射型閃光装置を、調光用受光
素子23および調光回路33が分割測光手段を、CPU
35が算出手段および制御手段をそれぞれ構成する。
In the configuration of the above embodiment, the flash device 2
1 is a flash unit and a split irradiation type flash device, a dimming light receiving element 23 and a dimming circuit 33 are a split photometer unit, and a CPU
35 respectively constitute calculation means and control means.

【0036】[0036]

【発明の効果】以上詳細に説明したように本発明によれ
ば、予備発光時に被写体からの反射光を複数の領域に分
割して測光し、それらの測光結果に基づいて閃光手段の
複数の射出領域ごとに重み付け量を算出し、本発光時に
1つの発光部から発せられた閃光を、算出された重み付
け量に応じて複数の射出領域ごとに調節して被写体に照
射するようにしたので、(1)装置全体の小型化、軽量
化が図られ、(2)使用エネルギーが小さく、また連続
使用時の発熱が小さくでき、(3)従来のように分割さ
れた各領域の境界部で照射光の重りや抜けが発生せず、
配光ムラが防止でき、(4)単一の調光回路でよく、制
御回路が簡素化される、という効果に加え、被写界に分
布した遠い被写体や近い被写体などのすべての被写体に
均一で最適な光量の閃光が照射され、撮影画面内のどの
部分でも閃光撮影時の露出が最適になる。また、分割測
光手段の測光領域の分割パターン形状と、閃光手段の射
出領域の分割パターン形状とをほぼ同じ形状としたので
、予備発光時の測光値に基づいて検出された被写体の空
間分布状態と、本発光時の閃光装置の配光分布とをほぼ
正確に一致させることができ、撮影画面内のすべての被
写体を最適な露出で閃光撮影できる。
As explained in detail above, according to the present invention, the reflected light from the subject is divided into a plurality of areas and photometered at the time of preliminary flashing, and based on the photometry results, a plurality of flashes are emitted from the flash unit. The weighting amount is calculated for each area, and the flash light emitted from one light emitting part during the main flash is adjusted for each of the multiple emission areas according to the calculated weighting amount, so that the subject is irradiated with ( 1) The entire device is smaller and lighter; (2) it consumes less energy and generates less heat during continuous use; No weight or slippage occurs,
In addition to the effects of preventing uneven light distribution and (4) simplifying the control circuit by requiring only a single dimming circuit, it also provides uniform illumination for all subjects, including distant and close subjects, distributed in the field. The optimal amount of flash is emitted, and the exposure for flash photography is optimized for any part of the shooting screen. In addition, since the shape of the division pattern of the photometry area of the division photometry means and the division pattern shape of the emission area of the flash unit are almost the same, the spatial distribution state of the subject detected based on the photometry value at the time of preliminary flashing is It is possible to almost exactly match the light distribution of the flash device during the main flash, and it is possible to photograph all objects within the photographic screen with flash light at optimal exposure.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】クレーム対応図。FIG. 1: Complaint correspondence diagram.

【図2】被写体の空間分布状態とそれに応じた配光分布
制御状態を説明する図。
FIG. 2 is a diagram illustrating a spatial distribution state of a subject and a corresponding light distribution control state.

【図3】被写体の空間分布状態とそれに応じた配光分布
制御状態を説明する図。
FIG. 3 is a diagram illustrating a spatial distribution state of a subject and a corresponding light distribution control state.

【図4】被写体の空間分布状態とそれに応じた配光分布
制御状態を説明する図。
FIG. 4 is a diagram illustrating a spatial distribution state of a subject and a corresponding light distribution control state.

【図5】被写体の空間分布状態とそれに応じた配光分布
制御状態を説明する図。
FIG. 5 is a diagram illustrating a spatial distribution state of a subject and a corresponding light distribution control state.

【図6】被写体の空間分布状態とそれに応じた配光分布
制御状態を説明する図。
FIG. 6 is a diagram illustrating a spatial distribution state of a subject and a corresponding light distribution control state.

【図7】本発明に係わるTTL自動調光カメラの構成を
示す図。
FIG. 7 is a diagram showing the configuration of a TTL automatic light adjustment camera according to the present invention.

【図8】本発明に係わる閃光装置を備えたカメラの制御
ブロック図。
FIG. 8 is a control block diagram of a camera equipped with a flash device according to the present invention.

【図9】閃光装置から発光され、被写界で反射された光
束を受光する調光用受光素子廻りの詳細を示す図。
FIG. 9 is a diagram showing details around a dimming light-receiving element that receives light beams emitted from a flash device and reflected in a subject field.

【図10】調光回路の詳細を示す回路図。FIG. 10 is a circuit diagram showing details of a dimming circuit.

【図11】閃光装置の構成図。FIG. 11 is a configuration diagram of a flash device.

【図12】被写界の照射領域に対応した配光分布制御素
子の射出領域を示す図。
FIG. 12 is a diagram showing the emission area of the light distribution control element corresponding to the irradiation area of the object field.

【図13】配光分布制御素子の他の射出領域例を示す図
FIG. 13 is a diagram showing another example of the emission area of the light distribution control element.

【図14】配光分布制御素子を透光性セラミックPLZ
Tで構成した時の構成図。
[Figure 14] The light distribution control element is made of translucent ceramic PLZ.
A configuration diagram when configured with T.

【図15】配光分布制御素子の透明電極間に印加される
電圧と、透光性セラミックPLZTの光透過率との関係
を示す図。
FIG. 15 is a diagram showing the relationship between the voltage applied between the transparent electrodes of the light distribution control element and the light transmittance of the translucent ceramic PLZT.

【図16】メイン制御プログラム例を示すフローチャー
ト。
FIG. 16 is a flowchart showing an example of a main control program.

【図17】予備発光処理サブルーチンを示すフローチャ
ート。
FIG. 17 is a flowchart showing a preliminary light emission processing subroutine.

【図18】予備発光処理サブルーチンを示すフローチャ
ート。
FIG. 18 is a flowchart showing a preliminary light emission processing subroutine.

【図19】本発光時の重み付け電圧算出処理サブルーチ
ンを示すフローチャート。
FIG. 19 is a flowchart showing a weighted voltage calculation processing subroutine during main light emission.

【符号の説明】[Explanation of symbols]

1,11  カメラ 2a,2b  撮影レンズの画角 3〜5  配光特性 12  撮影レンズ 13  ミラー 14  スクリーン 15  ペンタプリズム 16  接眼レンズ 17  集光レンズ 18  露出制御用測光素子 18a〜18e  分割測光領域 19  絞り 20  シャッター 21  閃光装置 22  集光レンズアレイ 23  調光用受光素子 23a〜23e  分割測光領域 31  焦点検出素子 31a  焦点検出領域 32  測光回路 33  調光回路 34  焦点検出回路 35  CPU 36  発光制御回路 37  閃光管 38  配光分布制御回路 39  配光分布制御素子 41a〜41e  増幅器 42a〜42e  ゲイン設定器 43a〜43e,45  積分回路 44  加算回路 46  変換回路 47  比較器 51  反射笠 52  配光レンズ 53  保護レンズ 54,58  偏向レンズ 55a〜55e  射出領域 56,57  透明電極 FI  フィルム 1,11 Camera 2a, 2b Angle of view of photographic lens 3-5 Light distribution characteristics 12 Photography lens 13 Mirror 14 Screen 15 Pentaprism 16 Eyepiece lens 17 Condensing lens 18 Photometering element for exposure control 18a-18e Divided photometry area 19 Aperture 20 Shutter 21 Flash device 22 Condensing lens array 23 Light receiving element for dimming 23a-23e Divided photometry area 31 Focus detection element 31a Focus detection area 32 Photometry circuit 33 Dimming circuit 34 Focus detection circuit 35 CPU 36 Light emission control circuit 37 Flash tube 38 Light distribution control circuit 39 Light distribution control element 41a-41e Amplifier 42a-42e Gain setting device 43a-43e, 45 Integral circuit 44 Adder circuit 46 Conversion circuit 47 Comparator 51 Reflective hat 52 Light distribution lens 53 Protective lens 54, 58 Polarizing lens 55a-55e Injection area 56, 57 Transparent electrode FI film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】発光部と、この発光部の前方に配置され、
被写界の複数の照射領域に対応した複数の射出領域から
射出される光量を調節可能な光量調節部とから成り、予
備発光と本発光とを行なう閃光手段と、この閃光手段に
より発光され被写界で反射された光束を、複数の領域に
分割して測光する分割測光手段と、前記閃光手段の予備
発光時に前記分割測光手段で測光した測光結果に基づい
て、前記閃光手段の前記複数の射出領域ごとに前記本発
光時の重み付け量を算出する算出手段と、この算出手段
で算出された重み付け量に従って、前記閃光手段で前記
複数の射出領域ごとの射出光量を制御する制御手段とを
備えることを特徴とする分割照射型閃光照明システム。
Claims 1: A light-emitting part; a light-emitting part disposed in front of the light-emitting part;
It consists of a light amount adjustment section that can adjust the amount of light emitted from a plurality of emission areas corresponding to a plurality of irradiation areas of the subject, a flash unit that performs preliminary light emission and main light emission, and a light source that is emitted by this flash unit and that is emitted by the subject. divisional photometry means for dividing and metering the luminous flux reflected in the photographic field into a plurality of areas; A calculation means for calculating the weighting amount during the main emission for each emission region, and a control means for controlling the amount of emitted light for each of the plurality of emission regions by the flashing means according to the weighting amount calculated by the calculation means. A split irradiation type flash lighting system characterized by:
【請求項2】請求項1に記載の分割照射型閃光照明シス
テムにおいて、前記分割測光手段の前記複数の分割測光
領域の分割パターン形状と、前記閃光手段の前記複数の
射出領域の分割パターン形状とをほぼ同じ形状としたこ
とを特徴とする分割照射型閃光照明システム。
2. The divided irradiation type flash illumination system according to claim 1, wherein the division pattern shape of the plurality of divided photometry areas of the division photometry means, and the division pattern shape of the plurality of emission areas of the flash unit. A split irradiation type flash lighting system characterized by having almost the same shape.
【請求項3】発光部と、この発光部の前方に配置され、
被写界の複数の照射領域に対応した複数の射出領域から
射出される光量を調節可能な光量調節部とから成り、予
備発光と本発光とを行なう分割照射型閃光装置を装着可
能なカメラであって、この分割照射型閃光装置により発
光され被写界で反射された光束を、複数の領域に分割し
て測光する分割測光手段と、前記分割照射型閃光装置の
予備発光時に前記分割測光手段で測光した測光結果に基
づいて、前記分割照射型閃光装置の前記複数の射出領域
ごとに前記本発光時の重み付け量を算出する算出手段と
、この算出手段で算出された重み付け量に従って、前記
分割照射型閃光装置で前記複数の射出領域ごとの射出光
量を制御する制御手段とを備えることを特徴とする分割
照射型閃光装置を装着可能なカメラ。
3. A light emitting unit, a light emitting unit disposed in front of the light emitting unit,
A camera that can be equipped with a split-irradiation type flash device that performs preliminary flash and main flash, and includes a light amount adjustment section that can adjust the amount of light emitted from a plurality of emission areas corresponding to a plurality of irradiation areas of a subject. a divisional photometry means for dividing and metering the luminous flux emitted by the divisional irradiation type flash device and reflected in the subject field into a plurality of areas, and said divisional photometry means at the time of preliminary flashing of said divisional irradiation type flash device. calculation means for calculating the weighting amount during the main flash for each of the plurality of emission areas of the split irradiation type flash device based on the photometry results obtained by the photometry; A camera to which a divided irradiation type flash device can be attached, characterized in that the irradiation type flash device is equipped with a control means for controlling the amount of emitted light for each of the plurality of emission areas.
【請求項4】請求項3に記載の分割照射型閃光装置を装
着可能なカメラにおいて、前記分割測光手段の前記複数
の分割測光領域の分割パターン形状と、前記分割照射型
閃光装置の前記複数の射出領域の分割パターン形状とを
ほぼ同じ形状としたことを特徴とする分割照射型閃光装
置を装着可能なカメラ。
4. A camera to which a divided irradiation type flash device can be attached, according to claim 3, wherein the division pattern shape of the plurality of divided photometry areas of the divided photometry means and the plurality of divided irradiation type flash devices of the divided irradiation type flash device are different from each other. A camera to which a divided irradiation type flash device can be attached, characterized in that the shape of the division pattern of the emission area is approximately the same shape.
【請求項5】発光部と、この発光部の前方に配置され、
被写界の照射領域に対応した複数の射出領域から射出さ
れる光量を調節可能な光量調節部とから成り、予備発光
と本発光とを行なう分割照射型閃光装置であって、前記
光量調節部は、予備発光時に前記発光部から発光され被
写界で反射された光束を、複数の領域に分割して測光し
た測光結果に基づき算出された前記複数の射出領域ごと
の重み付け量を入力し、その重み付け量に従って前記本
発光時の前記複数の射出領域ごとの光量を調節すること
を特徴とする分割照射型閃光装置。
5. A light-emitting section; disposed in front of the light-emitting section;
A split-irradiation type flash device that performs preliminary light emission and main light emission, comprising a light amount adjustment section that can adjust the amount of light emitted from a plurality of emission areas corresponding to the irradiation area of the object, the light amount adjustment section inputs the weighting amount for each of the plurality of emission areas calculated based on the photometry results of dividing the luminous flux emitted from the light emitting unit and reflected in the subject field into a plurality of areas during preliminary light emission, A divided irradiation type flash device, characterized in that the amount of light for each of the plurality of emission areas during the main emission is adjusted according to the weighting amount.
【請求項6】請求項5に記載の分割照射型閃光装置にお
いて、前記予備発光時に複数の領域に分割して測光した
時の分割パターン形状と、前記分割照射型閃光装置の前
記複数の射出領域の分割パターン形状とをほぼ同じ形状
としたことを特徴とする分割照射型閃光装置。
6. The divided irradiation type flash device according to claim 5, wherein the division pattern shape when the preliminary light emission is divided into a plurality of areas and photometry is performed, and the plurality of emission areas of the divided irradiation type flash device. A divided irradiation type flash device characterized in that the shape of the divided pattern is approximately the same as the shape of the divided pattern.
JP3176139A 1991-06-20 1991-06-20 Split irradiation type flash lighting system, camera on which split irradiation type flash lighting device can be mounted, and the same Pending JPH04371940A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3176139A JPH04371940A (en) 1991-06-20 1991-06-20 Split irradiation type flash lighting system, camera on which split irradiation type flash lighting device can be mounted, and the same
US08/232,349 US5448330A (en) 1991-06-20 1994-04-22 Divided radiation type flashlight system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3176139A JPH04371940A (en) 1991-06-20 1991-06-20 Split irradiation type flash lighting system, camera on which split irradiation type flash lighting device can be mounted, and the same

Publications (1)

Publication Number Publication Date
JPH04371940A true JPH04371940A (en) 1992-12-24

Family

ID=16008348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3176139A Pending JPH04371940A (en) 1991-06-20 1991-06-20 Split irradiation type flash lighting system, camera on which split irradiation type flash lighting device can be mounted, and the same

Country Status (1)

Country Link
JP (1) JPH04371940A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347757A (en) * 2003-05-21 2004-12-09 Nikon Corp Camera and multiple flashes photographing system of camera
US7616874B2 (en) 2005-02-25 2009-11-10 Fujifilm Corporation Image-taking apparatus
JP2015519587A (en) * 2012-02-22 2015-07-09 コーニンクレッカ フィリップス エヌ ヴェ Writing equipment
US9581525B2 (en) 2012-09-30 2017-02-28 Compagnie Generale Des Etablissements Michelin Method of applying particulate material along a tire footprint during tire testing on a tire testing surface
US9702789B2 (en) 2012-10-31 2017-07-11 Compagnie Generale Des Etablissements Michelin Method and apparatus for distributing particulate material along a tire footprint during tire test

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347757A (en) * 2003-05-21 2004-12-09 Nikon Corp Camera and multiple flashes photographing system of camera
JP4622210B2 (en) * 2003-05-21 2011-02-02 株式会社ニコン Camera and camera multiple flash photography system
US7616874B2 (en) 2005-02-25 2009-11-10 Fujifilm Corporation Image-taking apparatus
JP2015519587A (en) * 2012-02-22 2015-07-09 コーニンクレッカ フィリップス エヌ ヴェ Writing equipment
US9581525B2 (en) 2012-09-30 2017-02-28 Compagnie Generale Des Etablissements Michelin Method of applying particulate material along a tire footprint during tire testing on a tire testing surface
US9702789B2 (en) 2012-10-31 2017-07-11 Compagnie Generale Des Etablissements Michelin Method and apparatus for distributing particulate material along a tire footprint during tire test

Similar Documents

Publication Publication Date Title
JPH04257830A (en) Flash light dimming controller for camera
JPH10312009A (en) Camera system
JPH04371940A (en) Split irradiation type flash lighting system, camera on which split irradiation type flash lighting device can be mounted, and the same
JPH037086B2 (en)
JPH0368928A (en) Automatic dimming controller for camera
JP3647085B2 (en) Camera system
JP2004264783A (en) Camera and electronic camera
JP2967626B2 (en) Partially illuminated flashlight system and camera with split illuminated flash device
JPH035569B2 (en)
JP3831422B2 (en) Camera with dimmer
JP2967625B2 (en) Split-illumination type flash lighting system, split-illumination type flash device, and camera mountable with the split-illumination type flash device
JP2000089290A (en) Automatic focusing camera
JPH05196859A (en) Auto focus device
JP2006017854A (en) Imaging apparatus and flash light emitting device
JP2562197B2 (en) Camera control device
JPH03287240A (en) Ttl automatic dimming camera
JPH04371939A (en) Split irradiation type flash lighting system, camera on which split irradiation type flash lighting device can be mounted, and the same
JPH0455837A (en) Automatic dimming device for camera
JPH08327886A (en) Camera with built-in stroboscope
JPH0465639A (en) Ttl automatic dimming camera
JPH11125848A (en) Automatic light control device for camera
JPS6383713A (en) Automatic daytime synchro flash system for camera
JP2000089316A (en) Camera
JPH03287241A (en) Ttl automatic dimming camera
JPH04355739A (en) Flash illumination device and camera provided therewith