JPH0436736B2 - - Google Patents

Info

Publication number
JPH0436736B2
JPH0436736B2 JP6894587A JP6894587A JPH0436736B2 JP H0436736 B2 JPH0436736 B2 JP H0436736B2 JP 6894587 A JP6894587 A JP 6894587A JP 6894587 A JP6894587 A JP 6894587A JP H0436736 B2 JPH0436736 B2 JP H0436736B2
Authority
JP
Japan
Prior art keywords
pipe
liquid
reaction
solid
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6894587A
Other languages
Japanese (ja)
Other versions
JPS63236536A (en
Inventor
Tetsuo Urabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6894587A priority Critical patent/JPS63236536A/en
Publication of JPS63236536A publication Critical patent/JPS63236536A/en
Publication of JPH0436736B2 publication Critical patent/JPH0436736B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J16/00Chemical processes in general for reacting liquids with non- particulate solids, e.g. sheet material; Apparatus specially adapted therefor

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高温高圧下における固体・液体間の
反応の態様を調べることを可能にした反応試験装
置に関するものであり、特に、固体の体積が大き
く変化しないような反応における反応速度を理論
的に予測するための基礎実験等に有効に利用でき
る反応試験装置に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a reaction test device that makes it possible to investigate the mode of reaction between a solid and a liquid under high temperature and high pressure. The present invention relates to a reaction test device that can be effectively used in basic experiments for theoretically predicting the reaction rate in reactions in which the reaction rate does not change significantly.

[従来の技術] 流体・固体間の反応は無数にあり、工業的にも
非常に重要な意義を持つている。このための反応
容器は、第2図a〜cに示すように、反応槽に収
容した固体及び液体を撹拌機で撹拌するようにし
た反応槽(バツチ)型a、固体を収容した容器内
に液体の栓流を発生させるようにした栓流(plug
flow)型b、反応槽に液体を供給すると同時に
反応液を排出しながら反応槽内において固体及び
液体を撹拌機で撹拌する混合フロー型cの三つに
大別される。
[Prior Art] There are countless reactions between fluids and solids, and they are of great industrial significance. As shown in Figure 2 a to c, the reaction vessels used for this purpose are a reaction vessel (batch) type a in which the solid and liquid contained in the reaction vessel are stirred with a stirrer, and a reaction vessel (batch type) in which the solids and liquid contained in the reaction vessel are stirred with a stirrer. Plug flow is a system that generates a plug flow of liquid.
There are three types: flow) type b, and mixed flow type c, in which the solid and liquid are stirred by a stirrer in the reaction tank while simultaneously supplying the liquid to the reaction tank and discharging the reaction liquid.

上記のいずれの場合も、反応を促進するために
固体粒子は流体の流れの中に置かれているが、同
図a及びcの場合は、粒子のまわりの流速が一定
でないので、反応速度の解析は勢い経験にたよら
ざるを得ず、最適条件を見つけるために数多くの
試行が必要である。また、同図bの場合も、その
ままでは入口と出口で反応進行度が異なる欠点が
ある。
In all of the above cases, solid particles are placed in a fluid stream to promote the reaction, but in cases a and c of the same figure, the flow velocity around the particles is not constant, so the reaction rate is Analysis must rely on experience, and many trials are required to find the optimal conditions. In addition, in the case of FIG. 5B, there is a drawback that the rate of reaction progress is different between the inlet and the outlet if left as is.

これらの方法に対し、固体・流体間の反応機構
をより理論的にとらえ、最適条件を見つけるのを
容易にするために考え出されたのが、以下に述べ
る回転デイスク法(Boomer、D.R.et al.Review
of Scientific Instruments、vol.43、p.225−229、
[1972])であり、広く利用されている。
In contrast to these methods, the rotating disk method described below (Boomer, DRet al. Review
of Scientific Instruments, vol.43, p.225−229,
[1972]) and is widely used.

この回転デイスク法は、デイスク状に形成した
固体を回転させ、その回転する固体デイスクに液
流を当てるというもので、以下の特長を持つてい
る。
This rotating disk method involves rotating a solid disk-shaped object and applying a liquid stream to the rotating solid disk, and has the following features.

1 流れを当てるためのフロートンネルが不要で
ある。
1. No flow tunnel is required to direct the flow.

2 溶液の量が少なくて良い。2. The amount of solution is small.

3 デイスク外端部での不均一な流れの問題が軽
減される。
3. The problem of uneven flow at the outer edge of the disk is reduced.

4 溶液が三次元的に動いているので、ナビエ・
ストークス則が適用できる。
4 Since the solution is moving three-dimensionally, Navier
Stokes law can be applied.

5 デイスクの全面にわたつて熱物質伝導係数が
等しい。
5 The thermal mass conductivity coefficient is the same over the entire surface of the disk.

しかしながら、この方法では、デイスクに加工
できるだけの大きな固体が必要なばかりでなく、
デイスク上の位置にり流速が異なるので、結果の
数学的な解析が容易では無い。そのため、応用が
ごく限られた範囲にとどくまらざるを得なかつ
た。
However, this method not only requires a large solid that can be processed into disks;
Since the flow velocity varies depending on the position on the disk, mathematical analysis of the results is not easy. As a result, its application has been limited to a very limited range.

[発明が解決しようとする問題点] 本発明は、固体・液体反応機構の解明を、少な
い固体量で、しかも少ない試行回数のデータか
ら、簡単な数学的解析により容易に行えるように
した反応試験装置を提供するものである。
[Problems to be Solved by the Invention] The present invention provides a reaction test that allows elucidation of the solid-liquid reaction mechanism by simple mathematical analysis using a small amount of solid and data from a small number of trials. It provides equipment.

[問題点を解決するための手段] 上記目的を達成するため、本発明の反応試験装
置は、耐熱性及び耐圧性を有する筒状容器内の圧
力室に、細長いパイプを配設し、上記パイプの一
端に圧力室内の液体に対してパイプ内への軸流を
発生させるプロペラを設けると共に、該パイプの
他端側に球状に形成した反応させるべき固体を内
装可能とし、且つ上記パイプはプロペラによつて
パイプ内の固体装着位置に栓流を発生させるに十
分な長さに設定し、パイプと圧力室の内壁との間
に、パイプ内を通過した液体をパイプの基端側に
還流させるための流路を形成することによつて構
成される。
[Means for Solving the Problems] In order to achieve the above object, the reaction test device of the present invention includes an elongated pipe disposed in a pressure chamber in a cylindrical container having heat resistance and pressure resistance, and A propeller is provided at one end of the pipe to generate an axial flow into the pipe for the liquid in the pressure chamber, and a spherical solid to be reacted can be placed at the other end of the pipe, and the pipe is connected to the propeller. Therefore, the length is set to be sufficient to generate plug flow at the solid mounting position in the pipe, and between the pipe and the inner wall of the pressure chamber, in order to cause the liquid that has passed through the pipe to flow back to the base end of the pipe. It is constructed by forming a flow path.

[作用] 固体と液体の反応を行わせるには、固体の球を
パイプの一端に配置し、圧力室内に所要の液体を
必要な圧力になるように注入し、また液体を必要
な温度に保ちながら、プロペラを回転させる。こ
のプロペラの回転に伴い、圧力室内の液体はパイ
プ内及び流路を通つて圧力室内を強制対流せしめ
られ、パイプ内における固体の球の装着位置にお
いては栓流となる。
[Operation] To cause a reaction between a solid and a liquid, place a solid sphere at one end of a pipe, inject the required liquid into the pressure chamber to the required pressure, and maintain the liquid at the required temperature. while rotating the propeller. As the propeller rotates, the liquid in the pressure chamber is forced to convect within the pressure chamber through the pipe and the flow path, and becomes a plug flow at the position where the solid ball is installed in the pipe.

このようにして、圧力室内は、温度、圧力、液
体の流速が一定に保たれ、且つ固体の球の装着位
置においては栓流が発生するので、固体・液体間
の反応速度を容易に調べることができ、固体と液
体との反応機構の数学的解析が非常に容易にな
る。
In this way, the temperature, pressure, and liquid flow rate are kept constant in the pressure chamber, and a plug flow is generated at the position where the solid sphere is attached, so it is easy to investigate the reaction rate between solid and liquid. This greatly facilitates the mathematical analysis of the reaction mechanism between solids and liquids.

[実施例] 第1図は、本発明に係る反応試験装置の実施例
を示すものである。
[Example] FIG. 1 shows an example of a reaction test device according to the present invention.

この反応試験装置は、高温(例えば400℃)及
び高圧(例えば400Kg/cm2)に耐える耐熱性及び
耐圧性をもつた筒状容器1を備え、この容器1内
に形成された細長い円筒状の圧力室2の一端は、
液体の注入口4及び排出口5を有する中蓋3をキ
ヤツプ6の螺着で固定することによつて閉鎖し、
また、上記圧力室2の他端は、タービン・ブレー
ド型プロペラ8のシヤフト9を挿通した中蓋7を
キヤツプ10の螺着で固定することにより閉鎖し
ている。このプロペラ8は、その回転により圧力
室2内の液体に対して軸流を発生させるものであ
るが、そのプロペラ8のシヤフト9は、中蓋7か
ら外部に突出させることなく、その中蓋7の内部
に位置する被駆動磁石11を有し、中蓋7の外部
において被駆動磁石11のまわりに回転駆動され
る外部誘導磁石12の作用により、その被駆動磁
石11を回転駆動可能に構成している。
This reaction test device includes a cylindrical container 1 having heat and pressure resistance that can withstand high temperatures (e.g., 400°C) and high pressures (e.g., 400 Kg/cm 2 ). One end of the pressure chamber 2 is
An inner lid 3 having a liquid inlet 4 and an outlet 5 is fixed by screwing a cap 6 to close it.
The other end of the pressure chamber 2 is closed by screwing a cap 10 onto an inner lid 7 through which a shaft 9 of a turbine blade type propeller 8 is inserted. This propeller 8 generates an axial flow for the liquid in the pressure chamber 2 by its rotation, but the shaft 9 of the propeller 8 does not protrude from the inner cover 7 to the outside. The driven magnet 11 is configured to be rotatably driven by the action of an external induction magnet 12 which is rotated around the driven magnet 11 outside the inner lid 7. ing.

また、上記中蓋7の内端面には、圧力室2内に
挿入される薄肉ステンレスにより形成した細長い
パイプ14が取付けられている。上記パイプ14
は、少なくともパイプ内の固体装着位置における
流れを栓流(plug flow)とするため、その栓流
を発生させる十分な長さに形成し、具体的にはパ
イプ14の長さと内径の比(長さ/内径)を25以
上としたものである。さらに、上記パイプ14に
は、中蓋7への取付け部分に近い位置に多数の液
体流通孔15を穿設し、それらの流通孔15の開
設位置よりも内方に前記プロペラ8を位置させて
いる。一方、パイプ14の他端近傍には、圧力室
2内の液体と反応させる固体の球16を接着等に
より取付けた網体17を着脱自在に内装可能と
し、このパイプ14と圧力室2の内壁との間に、
パイプ14内を通過した液体をパイプ14の基端
側に還流させるための流路18を形成している。
Further, an elongated pipe 14 made of thin stainless steel and inserted into the pressure chamber 2 is attached to the inner end surface of the inner lid 7. Said pipe 14
In order to make the flow at least at the solid mounting position in the pipe into a plug flow, it is formed to have a sufficient length to generate the plug flow. Specifically, the length of the pipe 14 and the inner diameter (length diameter/inner diameter) of 25 or more. Further, a large number of liquid circulation holes 15 are bored in the pipe 14 at a position close to the part where it is attached to the inner lid 7, and the propeller 8 is positioned inward from the opening position of these circulation holes 15. There is. On the other hand, near the other end of the pipe 14, a net 17 can be removably installed, to which a solid ball 16 that reacts with the liquid in the pressure chamber 2 is attached by bonding or the like. Between,
A flow path 18 is formed for causing the liquid that has passed through the pipe 14 to flow back to the base end side of the pipe 14.

なお、図中、20,21は固定用のナツト、2
2,23はパツキング、24,25はバツクアツ
プリング、26,27は水抜き孔を示している。
In addition, in the figure, 20 and 21 are fixing nuts, 2
2 and 23 are packings, 24 and 25 are back-up springs, and 26 and 27 are drain holes.

上記構成を有する反応試験装置において固体と
液体の反応を行わせるには、固体の球16を取付
けた網体17をパイプ14の端部に取付け、中蓋
3に設けた液体の注入口4から圧力室2内に所要
の液体を必要な圧力になるように注入し、また必
要な温度になるように液体を加熱し、その状態で
プロペラ8を回転させる。このプロペラ8の回転
に伴い、圧力室2内の液体はパイプに設けた流通
孔15から入り、パイプ14の他端から流出し
て、流路18により再び流通孔15側に還流し、
圧力室2内を強制対流せしめられ、パイプ14内
における固体の球16の装着位置においては栓流
となる。
In order to perform a reaction between a solid and a liquid in the reaction test apparatus having the above configuration, the net body 17 to which the solid sphere 16 is attached is attached to the end of the pipe 14, and the liquid is injected from the liquid inlet 4 provided in the inner lid 3. A required liquid is injected into the pressure chamber 2 to a required pressure, the liquid is heated to a required temperature, and the propeller 8 is rotated in this state. As the propeller 8 rotates, the liquid in the pressure chamber 2 enters through the circulation hole 15 provided in the pipe, flows out from the other end of the pipe 14, and returns to the circulation hole 15 side through the flow path 18.
Forced convection is caused within the pressure chamber 2, and a plug flow occurs at the position where the solid ball 16 is installed within the pipe 14.

このようにして、圧力室2内は、温度、圧力、
液体の流速が一定に保たれ、且つ固体の球16の
装着位置においては栓流が発生するので、固体・
液体間の反応速度を容易に調べることができ、固
体と液体との反応機構の数学的解析が非常に容易
になる。特に、固体・液体間の反応の速度は、流
速により変化するが、反応の最適条件をより少な
い試行回数のデータから数学的に推定することが
できれば工業化学上利する点が多い。上記反応試
験装置は、流速の反応速度に対する影響を調べ、
その数学的解析による固体・液体反応機構の解明
に極めて好適なものである。
In this way, the temperature, pressure,
Since the flow velocity of the liquid is kept constant and a plug flow is generated at the position where the solid ball 16 is attached, the solid and
The reaction rate between liquids can be easily investigated, and the mathematical analysis of the reaction mechanism between solids and liquids becomes very easy. In particular, the reaction rate between solids and liquids changes depending on the flow rate, and there are many advantages in industrial chemistry if the optimal conditions for the reaction can be mathematically estimated from data obtained from fewer trials. The above reaction test device examines the influence of flow rate on reaction rate,
It is extremely suitable for elucidating the solid-liquid reaction mechanism through mathematical analysis.

上述した数学的解析の方法は、Levenspiel O.”
Chemical Reaction Engineering 2nd ed.”
(John Wiley、N.Y.1972)により打ち立てられ、
その後数人の手によつて発展させられている
“unreacted core model(未反応核モデル)”を利
用することができる。
The method of mathematical analysis described above was developed by Levenspiel O.
Chemical Reaction Engineering 2nd ed.”
(John Wiley, NY1972)
It is possible to use the "unreacted core model," which has since been developed by several people.

上記反応試験装置は、反応中に固体の体積がそ
れほど変化しない反応には広く応用でき、例え
ば、金属表面のメツキ及び薬品による保護、放射
性廃棄物の地層内処分の安全性の検討、溶脱によ
る低品位鉱石よりの金属の回収に際して、それら
の反応速度を理論的に予測するための基礎実験用
の装置として、広く利用することができる。
The above reaction test device can be widely applied to reactions in which the volume of solids does not change significantly during the reaction, such as plating metal surfaces and protecting them with chemicals, examining the safety of underground disposal of radioactive waste, and reducing the risk of damage caused by leaching. It can be widely used as a basic experimental device for theoretically predicting reaction rates during the recovery of metals from high-grade ores.

[発明の効果] このような本発明の固体・液体間の反応試験装
置によれば、 1 反応させる固体の量が少なくて良い(径3〜
4mmの球)。
[Effects of the Invention] According to the solid-liquid reaction test device of the present invention, 1. The amount of solid to be reacted may be small (diameter 3 to 3).
4mm ball).

2 固体が球対称であるため、数学的処理が簡単
である。このため、現実に化学工業で用いられ
る反応器への応用が容易である。
2. Mathematics is easy because the solid is spherically symmetric. Therefore, it is easy to apply it to reactors actually used in the chemical industry.

3 前記回転デイスク法のように、大きなデイス
クを容器内に置く必要が無いので、装置を小型
化でき、結果的に高温高圧側に大きく限界を広
げることができる。例えば、回転デイスク法で
は100℃、1気圧までしか使用できなかつたが、
上記反応試験装置は400℃、400気圧まで使用可
能にすることが容易である。
3. Unlike the above-mentioned rotating disk method, there is no need to place a large disk inside the container, so the device can be downsized, and as a result, the limits can be greatly expanded to the high temperature and high pressure side. For example, the rotating disk method could only be used up to 100℃ and 1 atm;
The above reaction test device can easily be used up to 400°C and 400 atm.

4 固体表面における液体の流速が一定であるた
め、流速を変えることにより、反応速度との関
係を正確に測定できる。
4. Since the flow rate of the liquid on the solid surface is constant, the relationship with the reaction rate can be accurately measured by changing the flow rate.

などの効果を期待することができる。You can expect the following effects.

さらに、これらのデータをもとに、固体表面に
おける反応の律速段階(Rate−limiting step)
が一体何であるのかが解明できる。反応を律速し
ている機構がこのようにして判明すると、その点
のみを改良することによつて、反応時間の飛躍的
減少、反応効率の増加等をはかることができる。
Furthermore, based on these data, we determined the rate-limiting step of the reaction on the solid surface.
We can clarify what exactly it is. Once the rate-limiting mechanism of the reaction is clarified in this way, it is possible to drastically reduce the reaction time, increase the reaction efficiency, etc. by improving only that point.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る反応試験装置の実施例を
示す断面図、第2図a〜cは従来の反応容器の概
要を示す構成図である。 1……筒状容器、2……圧力室、8……プロペ
ラ、14……パイプ、16……固体の球、18…
…流路。
FIG. 1 is a sectional view showing an embodiment of a reaction test apparatus according to the present invention, and FIGS. 2 a to 2 c are structural diagrams showing an outline of a conventional reaction vessel. 1... Cylindrical container, 2... Pressure chamber, 8... Propeller, 14... Pipe, 16... Solid ball, 18...
...Flow path.

Claims (1)

【特許請求の範囲】[Claims] 1 耐熱性及び耐圧性を有する筒状容器内の圧力
室に、細長いパイプを配設し、上記パイプの一端
に圧力室内の液体に対してパイプ内への軸流を発
生させるプロペラを設けると共に、該パイプの他
端側に球状に形成した反応させるべき固体を内装
可能とし、且つ上記パイプはプロペラによつてパ
イプ内の固体装着位置に栓流を発生させるに十分
な長さに設定し、パイプと圧力室の内壁との間
に、パイプ内を通過した液体をパイプの基端側に
還流させるための流路を形成したことを特徴とす
る固体・液体間の反応試験装置。
1. A long and thin pipe is arranged in a pressure chamber in a cylindrical container having heat resistance and pressure resistance, and a propeller is provided at one end of the pipe to generate an axial flow into the pipe for the liquid in the pressure chamber, and A spherical solid to be reacted can be installed at the other end of the pipe, and the pipe is set to a length sufficient to generate a plug flow at the position where the solid is attached in the pipe by a propeller. A reaction test device between a solid and a liquid, characterized in that a flow path is formed between the inner wall of the pressure chamber and the inner wall of the pressure chamber for refluxing the liquid that has passed through the pipe to the base end side of the pipe.
JP6894587A 1987-03-25 1987-03-25 Apparatus for testing reaction of solid to liquid Granted JPS63236536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6894587A JPS63236536A (en) 1987-03-25 1987-03-25 Apparatus for testing reaction of solid to liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6894587A JPS63236536A (en) 1987-03-25 1987-03-25 Apparatus for testing reaction of solid to liquid

Publications (2)

Publication Number Publication Date
JPS63236536A JPS63236536A (en) 1988-10-03
JPH0436736B2 true JPH0436736B2 (en) 1992-06-17

Family

ID=13388312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6894587A Granted JPS63236536A (en) 1987-03-25 1987-03-25 Apparatus for testing reaction of solid to liquid

Country Status (1)

Country Link
JP (1) JPS63236536A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116543A1 (en) * 2009-03-30 2010-10-14 鎌田 三郎 Apparatus for generating hydrogen gas using a reaction between metallic sodium and water
US9403699B2 (en) 2009-12-25 2016-08-02 Morinaga Milk Industry Co., Ltd. Electrolysis water-making apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108246380A (en) * 2018-03-05 2018-07-06 詹淇钧 A kind of chemistry teaching experimental system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116543A1 (en) * 2009-03-30 2010-10-14 鎌田 三郎 Apparatus for generating hydrogen gas using a reaction between metallic sodium and water
JP4574717B2 (en) * 2009-03-30 2010-11-04 雅英 市川 Apparatus for generating hydrogen gas by reaction of metallic sodium and water and method for producing hydrogen gas
US9403699B2 (en) 2009-12-25 2016-08-02 Morinaga Milk Industry Co., Ltd. Electrolysis water-making apparatus

Also Published As

Publication number Publication date
JPS63236536A (en) 1988-10-03

Similar Documents

Publication Publication Date Title
US5461648A (en) Supercritical water oxidation reactor with a corrosion-resistant lining
US2951689A (en) Magnetic stirring bar
JP6986082B2 (en) Reactor for hydrothermal oxidation treatment of organic matter in reaction medium
Boomer et al. Rotating disk apparatus for reaction rate studies in corrosive liquid environments
JP2010279896A (en) Stirring device
JPS63238101A (en) Apparatus for polymerization reaction
US5939251A (en) Apparatus and method for simplifying the processes in creating a sealed space on slides to conduct molecular biological reactions therein
US20030218014A1 (en) Closure mechanism for chemical reaction kettle
US20020085446A1 (en) Reactor vessel array
JPH0436736B2 (en)
KR970005379A (en) High speed stirring method and device
CN111741807A (en) Orbiting chamber vibratory mixing apparatus and related methods
Bakker et al. Properly choose mechanical agitators for viscous liquids
Inga et al. Effect of catalyst loading on gasliquid mass transfer in a slurry reactor: A statistical experimental approach
Mowena et al. Liquid‐solid mass transfer behavior of a new stirred‐tank reactor with a packed bed fixed to its wall
CN106663483B (en) Nuclear-plant and protective gas device
US3223492A (en) Pressure vessel
RU178404U1 (en) Mixer reactor for carrying out processes in heterogeneous environments
JPS634079A (en) Stirrer
FR2300613A1 (en) Preventing sediment residue formation in thermal appts - uses fluidising solid particles in fluid flow of reduced velocity
JP3652544B2 (en) High speed stirring method and high speed stirring apparatus
RU2263073C1 (en) Reactor
US20220226786A1 (en) Magnetically Driven Liquid Dispersion Devices
CN218411303U (en) Anticorrosive monitoring devices of ultrasonic wave mud level meter
CA1142879A (en) Method for enhancing chemical reactions

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term