JPH04357937A - Nuclear magnetic resonance device - Google Patents

Nuclear magnetic resonance device

Info

Publication number
JPH04357937A
JPH04357937A JP3141228A JP14122891A JPH04357937A JP H04357937 A JPH04357937 A JP H04357937A JP 3141228 A JP3141228 A JP 3141228A JP 14122891 A JP14122891 A JP 14122891A JP H04357937 A JPH04357937 A JP H04357937A
Authority
JP
Japan
Prior art keywords
signal
magnetic resonance
noise
nuclear magnetic
low frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3141228A
Other languages
Japanese (ja)
Other versions
JPH0771552B2 (en
Inventor
Yoshio Machida
好男 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3141228A priority Critical patent/JPH0771552B2/en
Publication of JPH04357937A publication Critical patent/JPH04357937A/en
Publication of JPH0771552B2 publication Critical patent/JPH0771552B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To prevent the artifact by detecting a magnetic resonance signal by two reference waves whose resonance frequencies are different from each other by 90 deg. and separating it into two signals, executing Fourier-transformation to the detected signal, eliminating a noise by correcting the signal on a Fourier space, and reconstituting its signal. CONSTITUTION:A tuner 3 selects an electromagnetic wave of a specific frequency from the electromagnetic wave generated in a transmitting system 4, and applies an excitating pulse to a transmitting/receiving coil 2 so as to tune with a specific nuclear specifies in a body 1 to be examined. This received nuclear magnetic resonance signal passes through an amplifier 5 and is inputted to phase detectors 6A, 6B, subjected to phase detection by a reference wave different from each other by 90 deg., outputted from a reference signal generator 7 and separated into two signals of a real number part and an imaginary number part. Subsequently, each separated signal passes through low-pass filters 9A, 9B, and A/D converters 10A, 10B and is digitized, and inputted to a noise correction processor 11. The noise correction processor 11 eliminates the noise of a low frequency component. This corrected signal is reconstituted with an imaging processor 12.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は、核磁気共鳴現象を利用
して、被液体中に存在する特定の原子核のスピン密度ま
たは緩和時間の分布を反映した画像を再構成する核磁気
共鳴装置に関するものである。
[Field of Industrial Application] The present invention relates to a nuclear magnetic resonance apparatus that utilizes nuclear magnetic resonance phenomena to reconstruct an image that reflects the spin density or relaxation time distribution of a specific atomic nucleus existing in a liquid. It is something.

【0003】0003

【従来の技術】核磁気共鳴装置において、被検体内の特
定の原子核のスピン密度、緩和特定数等を反映した画像
を得る際に、まず核磁気共鳴信号が検出される。この信
号をF(t)とかくと、F(t)は基本的には次の数1
で表わすことができる。
2. Description of the Related Art In a nuclear magnetic resonance apparatus, a nuclear magnetic resonance signal is first detected when obtaining an image reflecting the spin density, specific relaxation number, etc. of a specific atomic nucleus within a subject. If we write this signal as F(t), F(t) is basically the following number 1
It can be expressed as

【0004】0004

【数1】[Math 1]

【0005】ここで、p(ω),信号の周波数スペクト
ル(実数値関数) ω,角周波数 t,時間 しかしながら、実際に観測される信号F′(t)は、前
記F(t)に低周波のオフセットβ(t)が加わったも
のであり、次の数2及び数3で表わすことができる。
Here, p(ω), frequency spectrum of the signal (real value function) ω, angular frequency t, time However, the actually observed signal F'(t) has a low frequency in the F(t). , and can be expressed by the following Equations 2 and 3.

【0006】[0006]

【数2】[Math 2]

【0007】ここで、[0007]Here,

【0008】[0008]

【数3】[Math 3]

【0009】ただし、δは小さな正数 Δ(ω)はオフセット成分(実数値関数)したがって、
たとえば図2に示すような実数部及び図3に示すような
虚数部を有する信号F′(t)をフーリエ変換すると、
本来、図1に示すような、ノイズのない周波数スペクト
ルP(ω)(プロジェクションデータとも称する。)を
得たいのであるが、低周波のオフセットβ(t)が加わ
っているので、図4に示すように、周波数スペクトルP
′(ω)は、その中心部に凹凸を有する異常波形となる
。このような異常波形のプロジェクションデータをその
まま用いて、画像再構成をすると、図5に示すように、
画像中心を通る放射状のアーチファクトAf が画像に
生じてしまう。
[0009] However, δ is a small positive number Δ(ω) is an offset component (real value function) Therefore,
For example, when a signal F'(t) having a real part as shown in FIG. 2 and an imaginary part as shown in FIG. 3 is Fourier transformed,
Originally, we wanted to obtain a noise-free frequency spectrum P(ω) (also called projection data) as shown in Figure 1, but since a low frequency offset β(t) is added, we need to obtain the noise-free frequency spectrum P(ω) as shown in Figure 4. So, the frequency spectrum P
'(ω) becomes an abnormal waveform with unevenness at its center. When image reconstruction is performed using the projection data of such an abnormal waveform as it is, as shown in Fig. 5,
A radial artifact Af passing through the center of the image occurs in the image.

【0010】0010

【発明が解決しようとする課題】このようなアーチファ
クトAf の原因である低周波のオフセットが加わる原
因としては、ハードウェアの特性の時間的変動、あるい
は、電子計算機で処理する場合はデータの離散化の必要
があるが、その時のAD変換に際しての精度の悪さが考
えられる。しかしながら、この様な検出された信号F′
(t)がもつ低周波のオフセットノイズβ(t)を純粋
にハードウェア的に完全に取り除く事は非常に困難であ
る。
[Problem to be Solved by the Invention] The cause of the addition of low-frequency offsets that causes such artifacts Af is temporal fluctuations in hardware characteristics, or discretization of data when processed by a computer. However, the accuracy of AD conversion at that time may be poor. However, such a detected signal F′
It is extremely difficult to completely remove the low frequency offset noise β(t) of (t) purely using hardware.

【0011】この発明は前記事情に鑑みてなされたもの
であり、低周波成分のノイズによるアーチファクトのな
い画像を表示することのできる核磁気共鳴装置を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a nuclear magnetic resonance apparatus that can display images free of artifacts caused by noise of low frequency components.

【0012】 [発明の構成]0012 [Structure of the invention]

【0013】[0013]

【課題を解決するための手段】前記目的を達成するため
のこの発明の概要は、磁気共鳴現象により誘起される磁
気共鳴信号を、その共鳴周波数の位相が互いに90°異
なる2つの参照波で検波して、2信号に分離する検波手
段と、検波された信号をフーリエ変換し、前記信号をフ
ーリエ空間上において補間処理により低周波成分のノイ
ズを除去する補正手段と、補正手段により低周波成分の
ノイズを除去された信号を再構成する再構成手段とを有
することを特徴とするものである。
[Means for Solving the Problems] A summary of the present invention for achieving the above object is to detect a magnetic resonance signal induced by a magnetic resonance phenomenon using two reference waves whose resonant frequencies have phases different by 90 degrees from each other. a detection means for separating the detected signal into two signals; a correction means for performing Fourier transform on the detected signal and removing low frequency component noise by interpolating the signal in Fourier space; The present invention is characterized by comprising a reconstruction means for reconstructing the signal from which noise has been removed.

【0014】[0014]

【作用】検出された核磁気共鳴信号に低周波オフセット
ノイズが含まれていても、データ処理の過程で自動的に
除去することができる。
[Operation] Even if the detected nuclear magnetic resonance signal contains low frequency offset noise, it can be automatically removed during the data processing process.

【0015】[0015]

【実施例】先ず、この発明の原理について説明する。[Embodiment] First, the principle of this invention will be explained.

【0016】検出された核磁気共鳴信号F′(t)に基
づき画像再構成をする処理手順には、たとえば、少なく
とも、(1) 核磁気共鳴信号F′(t)をフーリエ変
換してプロジェクションデータを得、被検体の周囲の各
方向についての各プロジェクションデータをたとえばコ
ンボリューション法によりフィルター処理して、フィル
タをかけたプロジェクションデータを得ること、及び(
2)核磁気共鳴信号F′(t)をフィルター処理した後
、フーリエ変換することによりフィルタをかけたプロジ
ェクションデータを得ることのいずれかを要する。
The processing procedure for reconstructing an image based on the detected nuclear magnetic resonance signal F'(t) includes, for example, at least (1) Fourier transformation of the nuclear magnetic resonance signal F'(t) to obtain projection data; and filtering each projection data for each direction around the subject by, for example, a convolution method to obtain filtered projection data, and (
2) After filtering the nuclear magnetic resonance signal F'(t), it is necessary to obtain filtered projection data by Fourier transformation.

【0017】この発明においては、前記(1) の処理
手順を採用する場合、フーリエ変換後のプロジェクショ
ンデータ中の低周波成分によるノイズを除去するもので
あり、前記(2) の処理手順を採用する場合、フーリ
エ変換前の核磁気共鳴信号F′(t)中の低周波成分に
よるノイズを除去するものである。そして、前記(2)
 の処理手順の場合、核磁気共鳴信号F′(t)から直
ちに低周波成分によるノイズを除去することができない
ので、フーリエ変換により得られる周波数スペクトル中
の凹凸部分を与える核磁気共鳴信号F′(t)中の所定
信号のみを選んで、これをフーリエ変換し、図6に示す
ように、周波数スペクトル中の凹凸部分の両側にある離
散値データより補正量Δcを求め、この補正量Δcを逆
フーリエ変換して得た量β(t)を核磁気共鳴信号F′
(t)から差し引くと、低周波成分のオフセットのない
核磁気共鳴信号F(t)が求められることとなる。この
ことを、数4で表現すると、次のようになる。すなわち
In the present invention, when the processing procedure (1) above is adopted, noise due to low frequency components in the projection data after Fourier transformation is removed, and the processing procedure (2) above is adopted. In this case, noise due to low frequency components in the nuclear magnetic resonance signal F'(t) before Fourier transformation is removed. And (2) above
In the case of the processing procedure, it is not possible to immediately remove noise due to low frequency components from the nuclear magnetic resonance signal F'(t), so the nuclear magnetic resonance signal F'(t), which gives uneven parts in the frequency spectrum obtained by Fourier transform, is Select only the predetermined signal in t), perform Fourier transform on it, find the correction amount Δc from the discrete value data on both sides of the uneven part in the frequency spectrum, and inversely convert this correction amount Δc. The quantity β(t) obtained by Fourier transformation is converted into nuclear magnetic resonance signal F'
By subtracting it from (t), a nuclear magnetic resonance signal F(t) without offset of low frequency components is obtained. This can be expressed using equation 4 as follows. That is,

【0018】[0018]

【数4】[Math 4]

【0019】ただし、kは回転角ω=0付近の整数であ
る。
However, k is an integer near the rotation angle ω=0.

【0020】次いで、数5で表わすと、[0020] Next, when expressed by number 5,

【0021】[0021]

【数5】[Math 5]

【0022】ただし、Nは離散的フーリエ変換のポイン
ト数である。
[0022] However, N is the number of points in the discrete Fourier transform.

【0023】次に、前記原理を具体化したこの発明の一
実施例について図面を参照しながら説明する。
Next, an embodiment of the present invention embodying the above principle will be described with reference to the drawings.

【0024】図7において、被検体1は、静磁場HO 
内に配置されると共に、静磁場HO と直交する磁場を
誘起するように捲回された送受信コイル2間に配置され
る。 同調器3は、送信系4で発生する電磁波から特定周波数
の電磁波を選択し、被検体1中の特定核種たとえばH′
に同調するように励起パルスを送受信コイル2に印加す
る。増幅器5は、送受信コイル2で受信した核磁気共鳴
信号を増幅し、2個の位相検波器6A,6Bに出力する
。参照信号発生器7は、位相器7A及び90°位相変換
器7Bを有し、核磁気共鳴信号と同じ周波数を有すると
共に互いに位相が90°異なる2種の参照波を発生し、
参照信号それぞれが位相検波器6A,6Bに出力するよ
うに構成されている。2個の位相検波器6A,6Bそれ
ぞれは、核磁気共鳴信号を参照波で位相検波してアナロ
グの2信号F′(t)(実数部と虚数部)に分離する。 分離された2信号F′(t)は、増幅器8A,8Bで増
幅され、ローパスフィルタ9A,9Bで高周波成分を除
去した後、A/D変換器10A,10Bでデジタル化さ
れてノイズ補正処理器11に入力される。ノイズ補正処
理器11は、前記デジタル化(離散値化)した信号F′
(t)からフィルタをかけたプロジェクションデータを
得る際に低周波成分による影響を除去する演算装置であ
り、信号F′(t)の処理手順がこの発明の原理説明の
ところで示した(1) の手順であるときは、図8のフ
ローに従って低周波成分による影響を除去し、また、信
号F′(t)の処理手順がこの発明の原理説明のところ
で示した(2) の手順であるときは、図9のフローに
従って低周波成分による影響を除去する。すなわち、図
8に示すように、信号F′(t)をフーリエ変換し、得
られるプロジェクションデータP′(ω)中の凹凸を与
えるデータの両側のデータ(図6中で示すP′nとP′
n+4 )により線型補間をすることにより補正量Δc
を求め、次いで前記プロジェクションデータP′(ω)
中の凹凸を与えるデータから前記補正量Δcを差し引い
てプロジェクションデータP(ω)の補正をし、この後
、補正後のプロジェクションデータP(ω)をたとえば
コンボリューション法等によりフィルター処理し、フィ
ルタをかけたプロジェクションデータを得る。また、前
記(2) の手順の場合、図9に示すように、信号F′
(t)のうち、信号F′(t)をフーリエ変換した後の
プロジェクションデータP′(ω)に凹凸を与えるデー
タ及びその両側のデータ(図6におけるPn乃至Pn+
4 )に対応する信号F′(t)を選択し、これをフー
リエ変換してP′n乃至P′n+4 を求める。次いで
、P′nとP′n+4 とで線型補間することにより補
正量Δcを求め、この補正量Δcを用いて前記数5に従
って信号F′(t)の補正をすることにより低周波成分
のノイズのない信号F(t)を求める。このF(t)を
フィルター処理し、フィルターをかけたF(t)をフー
リエ積分することによりフィルターをかけたプロジェク
ションデータを得る。
In FIG. 7, the subject 1 is exposed to a static magnetic field HO
The transmitter/receiver coil 2 is arranged between the transmitting and receiving coils 2 which are wound so as to induce a magnetic field orthogonal to the static magnetic field HO. The tuner 3 selects an electromagnetic wave of a specific frequency from the electromagnetic waves generated by the transmitting system 4, and selects an electromagnetic wave of a specific frequency from the electromagnetic waves generated in the transmitting system 4, and
An excitation pulse is applied to the transmitter/receiver coil 2 in synchronization with the transmitter/receiver coil 2. The amplifier 5 amplifies the nuclear magnetic resonance signal received by the transmitter/receiver coil 2 and outputs it to two phase detectors 6A and 6B. The reference signal generator 7 has a phase shifter 7A and a 90° phase converter 7B, and generates two types of reference waves having the same frequency as the nuclear magnetic resonance signal and having phases different from each other by 90°,
Each of the reference signals is configured to be output to phase detectors 6A and 6B. The two phase detectors 6A and 6B each phase-detect the nuclear magnetic resonance signal using a reference wave and separate it into two analog signals F'(t) (real part and imaginary part). The separated two signals F'(t) are amplified by amplifiers 8A and 8B, high-frequency components are removed by low-pass filters 9A and 9B, and then digitized by A/D converters 10A and 10B and sent to a noise correction processor. 11. The noise correction processor 11 receives the digitized (discrete value) signal F'.
It is an arithmetic device that removes the influence of low frequency components when obtaining filtered projection data from (t), and the processing procedure for signal F'(t) is the same as (1) shown in the explanation of the principle of this invention. If the procedure is as follows, the influence of low frequency components is removed according to the flow in FIG. , the influence of low frequency components is removed according to the flow of FIG. That is, as shown in FIG. 8, the signal F'(t) is Fourier transformed, and the data on both sides of the data giving unevenness in the projection data P'(ω) obtained (P'n and P shown in FIG. ′
n+4) by performing linear interpolation, the correction amount Δc
, and then the projection data P'(ω)
The projection data P(ω) is corrected by subtracting the correction amount Δc from the data giving the unevenness in the inside, and then the corrected projection data P(ω) is filtered by, for example, a convolution method. Obtain the projected projection data. In addition, in the case of the procedure (2) above, as shown in FIG.
(t), the data that gives unevenness to the projection data P'(ω) after Fourier transforming the signal F'(t), and the data on both sides thereof (Pn to Pn+ in FIG.
4) is selected and subjected to Fourier transform to obtain P'n to P'n+4. Next, a correction amount Δc is obtained by performing linear interpolation between P′n and P′n+4, and the signal F′(t) is corrected using the correction amount Δc according to equation 5, thereby reducing noise in the low frequency component. Find the signal F(t) without. This F(t) is filtered and the filtered F(t) is Fourier integrated to obtain filtered projection data.

【0025】画像化処理装置12は、ノイズ補正処理器
11内で前記のいずれかの手順に従って求められた、フ
ィルターをかけたプロジェクションデータを入力し、こ
のデータに基づき画像再構成を行ない、特定原子核たと
えばH′のスピン密度、緩和時間等を反映した画像につ
いての映像信号を出力するように構成されている。
The image processing device 12 inputs the filtered projection data obtained in the noise correction processor 11 according to any of the procedures described above, reconstructs an image based on this data, and reconstructs a specific atomic nucleus. For example, it is configured to output a video signal for an image reflecting the spin density, relaxation time, etc. of H'.

【0026】以上に詳述した構成によると、画像再構成
に必要なフィルタをかけたプロジェクションデータから
低周波のオフセット成分によるノイズを除去しているの
で、アーチファクトのない画像を再構成することができ
る。
[0026] According to the configuration described in detail above, noise due to low frequency offset components is removed from the projection data that has been filtered, which is necessary for image reconstruction, so it is possible to reconstruct an image free of artifacts. .

【0027】以上、この発明の一実施例について詳述し
たが、この発明は前記実施例に限定されるものではなく
、この発明の要旨の範囲内で適宜に変形して実施するこ
とができるのはいうまでもない。
Although one embodiment of the present invention has been described above in detail, the present invention is not limited to the above embodiment, and can be implemented with appropriate modifications within the scope of the gist of the invention. Needless to say.

【0028】この発明は、バックプロジェクション法以
外の種々の画像再構成法たとえば逐次近似法、フーリエ
変換法等を採用する核磁気共鳴装置に適用することがで
きる。
The present invention can be applied to nuclear magnetic resonance apparatuses that employ various image reconstruction methods other than the back projection method, such as the successive approximation method and the Fourier transform method.

【0029】[0029]

【発明の効果】この発明によると、検出された核磁気共
鳴信号中に低周波オフセットが含まれていても、この低
周波オフセットによるノイズをデータ処理の過程で自動
的に除去し、アーチファクトのない良好な画像を表示す
ることのできる核磁気共鳴装置を提供することができる
According to the present invention, even if a detected nuclear magnetic resonance signal contains a low frequency offset, the noise due to this low frequency offset is automatically removed during the data processing process, thereby eliminating artifacts. A nuclear magnetic resonance apparatus that can display good images can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】理想的な核磁気共鳴信号の周波数スペクトルP
(ω)を示す説明図
[Figure 1] Frequency spectrum P of an ideal nuclear magnetic resonance signal
Explanatory diagram showing (ω)

【図2】実測された核磁気共鳴信号を位相検波して得た
実数部の信号を示す説明図
[Figure 2] Explanatory diagram showing the real part signal obtained by phase detection of the actually measured nuclear magnetic resonance signal

【図3】実測された核磁気共鳴信号を位相検波して得た
虚数部の信号を示す説明図
[Figure 3] Explanatory diagram showing the imaginary part signal obtained by phase detection of the actually measured nuclear magnetic resonance signal

【図4】位相検波後の信号をフーリエ変換して得た周波
数スペクトルP′(ω)を示す説明図
[Figure 4] Explanatory diagram showing the frequency spectrum P'(ω) obtained by Fourier transforming the signal after phase detection

【図5】アーチファクトを有する画像を示す説明図[Fig. 5] Explanatory diagram showing an image with artifacts

【図
6】線型補間による補正量Δcの算出を示す説明図
[Fig. 6] Explanatory diagram showing calculation of correction amount Δc by linear interpolation

【図
7】本発明の一実施例を示すブロック図
[Fig. 7] Block diagram showing one embodiment of the present invention

【図8】ノイズ
補正の処理手順を示すフロー図
[Figure 8] Flow diagram showing the processing procedure of noise correction

【図9】ノイズ補正の処
理手順を示すフロー図
[Figure 9] Flow diagram showing the processing procedure of noise correction

【符号の説明】[Explanation of symbols]

1  被検体 2  送受信コイル 3  同調器 4  送信系 5  増幅器 6A,6B  位相検波器 7A  位相器 7B  90°位相変換器 8A,8B  増幅器 9A,9B  ローパスフィルタ 10A,10B  A/D変換器 11  ノイズ補正処理器 12  画像化処理装置 1. Subject 2 Transmitting/receiving coil 3 Tuner 4 Transmission system 5 Amplifier 6A, 6B Phase detector 7A phase shifter 7B 90° phase converter 8A, 8B amplifier 9A, 9B Low pass filter 10A, 10B A/D converter 11 Noise correction processor 12 Imaging processing device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  磁気共鳴現象により誘起される磁気共
鳴信号を、その共鳴周波数の位相が互いに90°異なる
2つの参照波で検波して、2信号に分離する検波信号と
、検波された信号をフーリエ変換し、前記信号をフーリ
エ空間上において補間処理により低周波成分のノイズを
除去する補正手段と、補正手段により低周波成分のノイ
ズを除去された信号を再構成する再構成手段とを有する
ことを特徴とする核磁気共鳴イメージング装置。
1. A detection signal that detects a magnetic resonance signal induced by a magnetic resonance phenomenon with two reference waves whose resonance frequencies have phases different from each other by 90 degrees, and separates the detected signal into two signals. A correction means for Fourier transforming the signal and removing low frequency component noise by interpolation processing on the signal in Fourier space, and a reconstruction means for reconstructing the signal from which the low frequency component noise has been removed by the correction means. A nuclear magnetic resonance imaging device featuring:
JP3141228A 1991-05-17 1991-05-17 Nuclear magnetic resonance apparatus Expired - Lifetime JPH0771552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3141228A JPH0771552B2 (en) 1991-05-17 1991-05-17 Nuclear magnetic resonance apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3141228A JPH0771552B2 (en) 1991-05-17 1991-05-17 Nuclear magnetic resonance apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57149776A Division JPS5938637A (en) 1982-08-28 1982-08-28 Nuclear magnetic resonance apparatus

Publications (2)

Publication Number Publication Date
JPH04357937A true JPH04357937A (en) 1992-12-10
JPH0771552B2 JPH0771552B2 (en) 1995-08-02

Family

ID=15287097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3141228A Expired - Lifetime JPH0771552B2 (en) 1991-05-17 1991-05-17 Nuclear magnetic resonance apparatus

Country Status (1)

Country Link
JP (1) JPH0771552B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1739445A1 (en) * 2005-06-27 2007-01-03 Jeol Ltd. Magnetic resonance involving digital quadrature detection with reference signals of variable frequency

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112556A (en) * 1979-02-22 1980-08-30 Jeol Ltd Correction method of level in fourier spectrum unit
JPS5938637A (en) * 1982-08-28 1984-03-02 Toshiba Corp Nuclear magnetic resonance apparatus
JPH0380497A (en) * 1989-08-23 1991-04-05 New Japan Radio Co Ltd Method for writing data in rom

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112556A (en) * 1979-02-22 1980-08-30 Jeol Ltd Correction method of level in fourier spectrum unit
JPS5938637A (en) * 1982-08-28 1984-03-02 Toshiba Corp Nuclear magnetic resonance apparatus
JPH0380497A (en) * 1989-08-23 1991-04-05 New Japan Radio Co Ltd Method for writing data in rom

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1739445A1 (en) * 2005-06-27 2007-01-03 Jeol Ltd. Magnetic resonance involving digital quadrature detection with reference signals of variable frequency
JP2007003458A (en) * 2005-06-27 2007-01-11 Jeol Ltd Digital orthogonal lock-in detecting method and device
US7405568B2 (en) 2005-06-27 2008-07-29 Jeol Ltd. Method and apparatus for digital quadrature lock-in detection in magnetic resonance

Also Published As

Publication number Publication date
JPH0771552B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
US7642777B1 (en) Fast automatic linear off-resonance correction method for spiral imaging
JPH0380497B2 (en)
JP2006524083A (en) MR image reconstruction method
WO2002048731A2 (en) Accelerated magnetic resonance imaging
JP2008253546A (en) Mri apparatus
KR101330638B1 (en) Method for generating a magnetic resonance imaging and apparatus for generating a magnetic resonance imaging thereof
US10359492B2 (en) Magnetic resonance imaging apparatus with eddy current correction using magnetic resonance signals in which influence of metabolite is suppressed
JPH0228713A (en) Device and method for acquiring signal
JPS649859B2 (en)
JP3499939B2 (en) Signal processing device for magnetic resonance imaging and magnetic resonance imaging device using the same
JP2641426B2 (en) Anharmonic nuclear magnetic resonance spin echo imaging system
JPH04357937A (en) Nuclear magnetic resonance device
US4902974A (en) Phase correcting method in a magnetic resonance imaging system and device for realizing the same
JPH06105824A (en) Apparatus and method for processing magnetic resonance signal
JP3274891B2 (en) Nuclear magnetic resonance inspection system
JP3478924B2 (en) Automatic phase corrector for nuclear magnetic resonance spectra
JPH0422575B2 (en)
JP2503821B2 (en) NMR signal processing method and apparatus
JP3111419B2 (en) Nuclear magnetic resonance inspection system
JP2650973B2 (en) Tomographic imaging device
JP2555233B2 (en) Nuclear magnetic resonance equipment
Yan et al. Image reconstruction from Fourier domain data sampled along a zig‐zag trajectory
JPH0295346A (en) Mr device
JPH05261086A (en) Nuclear magnetic resonance imaging system
JPH01242057A (en) Magnetic resonance imaging apparatus