JPH04352529A - Transmission power control system - Google Patents

Transmission power control system

Info

Publication number
JPH04352529A
JPH04352529A JP3126381A JP12638191A JPH04352529A JP H04352529 A JPH04352529 A JP H04352529A JP 3126381 A JP3126381 A JP 3126381A JP 12638191 A JP12638191 A JP 12638191A JP H04352529 A JPH04352529 A JP H04352529A
Authority
JP
Japan
Prior art keywords
output
signal
error pulse
control signal
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3126381A
Other languages
Japanese (ja)
Other versions
JP2819860B2 (en
Inventor
Masami Arai
荒井 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3126381A priority Critical patent/JP2819860B2/en
Publication of JPH04352529A publication Critical patent/JPH04352529A/en
Application granted granted Critical
Publication of JP2819860B2 publication Critical patent/JP2819860B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmitters (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transceivers (AREA)

Abstract

PURPOSE:To change a transmission output without affecting the line quality of an adjacent carrier signal by controlling the transmission output at a control signal generation circuit to simultaneously monitor an AGC voltage and the error pulse signal of an adjacent channel. CONSTITUTION:A control signal generation circuit 101 of a multi-carrier signal reception station II simultaneously monitors the AGC voltage of a variable gain amplifier for each channel and the error pulse signal through a demodulator 213. Based on this monitored result, the circuit 101 outputs a control signal and transmits it through a transmitter 215 and a transmission/reception sharing equipment 206 to a transmission station I, and the transmission output is controlled through a variable attenuator 202 or the like for each channel of the transmission station. Thus, the transmission output can be changed without affecting the line quality of the adjacent carrier signal.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はマルチキャリア伝送する
マイクロ波通信装置の送信電力制御方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission power control system for a microwave communication device that performs multicarrier transmission.

【0002】0002

【従来の技術】従来の送信電力送制御方式は図2に示す
ように、送信局側には、例えば3個のマルチキャリアを
発生する変調器201、キャリアレベル制御用の可変減
衰器202、合成器203、送信周波数変換器204、
送信電力増幅器205、送受共用器206、受信局側か
ら送られて来た制御信号用送信波を受信する受信機20
8、対応する可変減衰器202をそれぞれ制御する利得
制御回路207が備えられている。受信局側には、送受
共用器206、受信周波数変換器209、キャリア信号
の分波器216、3個のキャリア信号分波用の帯域通過
ろ波器210、可変利得増幅器211、検波器212、
復調器213、可変利得復帰211制御用のAGC電圧
217を受けて送信局側の対応する可変減衰器202を
制御する制御信号発生回路214、この制御信号を送信
局に送る送信機215が備えられている。ここで送信電
力制御方式としては、受信局の可変利得増幅器211の
AGC電圧217を各キャリア毎に監視することにより
、送信局の送信出力を制御していた。例えば、AGC電
圧から可変利得増幅器の利得を求め、その利得から逆算
し受信入力電界を推定し、その受信入力電界が定められ
たしきい値以上の場合には、送信局の送信出力を下げる
方向に制御し、逆に受信入力電界がしきい値以下の場合
には、送信局の送信出力を上げる方向に制御して送信電
力を制御していた。
2. Description of the Related Art In a conventional transmission power transmission control system, as shown in FIG. transmitter 203, transmission frequency converter 204,
A transmission power amplifier 205, a duplexer 206, and a receiver 20 that receives control signal transmission waves sent from the receiving station side.
8. Gain control circuits 207 are provided to control the corresponding variable attenuators 202, respectively. On the receiving station side, a duplexer 206, a receiving frequency converter 209, a carrier signal demultiplexer 216, a bandpass filter 210 for demultiplexing three carrier signals, a variable gain amplifier 211, a detector 212,
A control signal generation circuit 214 receives a demodulator 213, an AGC voltage 217 for controlling variable gain restoration 211 and controls a corresponding variable attenuator 202 on the transmitting station side, and a transmitter 215 sends this control signal to the transmitting station. ing. Here, as a transmission power control method, the transmission output of the transmitting station is controlled by monitoring the AGC voltage 217 of the variable gain amplifier 211 of the receiving station for each carrier. For example, the gain of the variable gain amplifier is determined from the AGC voltage, the received input electric field is estimated by calculating backward from the gain, and if the received input electric field is greater than a predetermined threshold, the direction is to lower the transmitting output of the transmitting station. Conversely, when the received input electric field is below a threshold value, the transmission power is controlled by increasing the transmission output of the transmitting station.

【0003】0003

【発明が解決しようとする課題】この従来の送信電力制
御方式では、各キャリア毎に送信出力を制御しているの
で、例えば、1キャリアのみが選択性フェージング等に
より受信入力電界が低下した場合に、対向局の1キャリ
アのみが送信出力を上げる方向に制御される。この時、
送信電力増幅器で発生する歪み等は隣接するキャリアに
隣接チャンネル干渉として影響を与える。つまり、受信
入力電界が定められたしきい値以上であるにもかかわら
ず、隣接キャリアの送信出力が上昇したことにより、帯
域内の不要波である干渉波レベルが上昇し、希望波対不
要波比が劣化して回線品質を劣化させる欠点がある。
[Problems to be Solved by the Invention] In this conventional transmission power control system, the transmission output is controlled for each carrier, so if the received input electric field of only one carrier decreases due to selective fading, etc. , only one carrier of the opposite station is controlled to increase the transmission output. At this time,
Distortion and the like generated in the transmission power amplifier affect adjacent carriers as adjacent channel interference. In other words, even though the received input electric field is above a predetermined threshold, the transmit power of the adjacent carrier has increased, causing the level of interference waves (unwanted waves in the band) to rise, causing the desired wave to There is a drawback that the ratio deteriorates and the line quality deteriorates.

【0004】0004

【課題を解決するための手段】本発明の送信電力制御方
式は、マルチキャリア信号を伝送する無線通信回線の受
信局が受信周波数変換器出力をキャリア数と同数に分岐
する帯域通過ろ波器を含む分波器と、この分波器出力を
増幅し復調器に対して適正なレベルに制御する可変利得
増幅器と、この可変利得増幅器の出力信号を入力してエ
ラーパルス信号を含む復調信号を出力する復調器と、前
記可変利得増幅器のAGC電圧および前記復調器から出
力されるエラーパルス信号を入力して対向する送信局の
送信出力を制御する制御信号を出力する制御信号発生回
路と、この制御信号発生回路出力を前記送信局へ伝送す
る送信機とを有し、前記送信局が前記送信機出力を受信
する受信機と、この受信機により復調された制御信号に
より各キャリア信号の変調器出力に接続された可変減衰
器の減衰量を制御する利得制御回路とを有する。
[Means for Solving the Problems] The transmission power control method of the present invention is such that a receiving station of a wireless communication line that transmits a multicarrier signal uses a bandpass filter that branches the output of a receiving frequency converter into the same number of carriers. A variable gain amplifier that amplifies the output of this splitter and controls it to an appropriate level for the demodulator, and inputs the output signal of this variable gain amplifier to output a demodulated signal including an error pulse signal. a control signal generation circuit that inputs the AGC voltage of the variable gain amplifier and the error pulse signal output from the demodulator and outputs a control signal for controlling the transmission output of the opposing transmitting station; a transmitter that transmits the output of the signal generation circuit to the transmitting station; the transmitting station has a receiver that receives the output of the transmitter; and a modulator output of each carrier signal according to the control signal demodulated by the receiver. and a gain control circuit that controls the amount of attenuation of the variable attenuator connected to the variable attenuator.

【0005】[0005]

【実施例】次に本発明について図面を参照して説明する
。図1は本発明の一実施例のブロック図、図3は図1中
の制御信号発生回路の具体例の回路図、図4は本実施例
のマルチキャリア信号の説明図である。図1において、
図2と同一の符号は同一の機能と構成を示している。す
なわち、本実施例では復調器213からエラーパルス信
号100を制御信号発生回路101に入力して制御信号
を得ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings. FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 3 is a circuit diagram of a specific example of the control signal generation circuit in FIG. 1, and FIG. 4 is an explanatory diagram of a multicarrier signal of this embodiment. In Figure 1,
The same symbols as in FIG. 2 indicate the same functions and configurations. That is, in this embodiment, the error pulse signal 100 is input from the demodulator 213 to the control signal generation circuit 101 to obtain the control signal.

【0006】次に本実施例の動作を説明する。3個のマ
ルチキャリア伝送された信号は受信周波数変換器209
で中間周波に変換され、分波器216にて分波された後
、帯域通過ろ波器210にて各キャリア毎に帯域制限さ
れる。帯域制限された信号は、復調器213で正常に復
調されるように可変利得増幅器211にて増幅される。 又復調器213内には、伝送信号の誤り率を監視する機
能を有しており、伝送信号に誤りがある場合に誤りがあ
ったことを示すエラーパルス信号100を出力する。制
御信号発生回路101は可変利得増幅器21のAGC電
圧217から各キャリア毎の受信入力レベルがしきい値
以上か否かを判別する機能と、復調器213のエラーパ
ルス信号100から各キャリア毎の誤り率がしきい値以
下か否かを判別する2つの機能を有している。
Next, the operation of this embodiment will be explained. The three multi-carrier transmitted signals are received by a receiving frequency converter 209
The signal is converted into an intermediate frequency by a demultiplexer 216, and then band-limited for each carrier by a bandpass filter 210. The band-limited signal is amplified by the variable gain amplifier 211 so that it can be normally demodulated by the demodulator 213. Furthermore, the demodulator 213 has a function of monitoring the error rate of the transmission signal, and if there is an error in the transmission signal, it outputs an error pulse signal 100 indicating that there is an error. The control signal generation circuit 101 has a function of determining whether the received input level of each carrier is equal to or higher than a threshold value from the AGC voltage 217 of the variable gain amplifier 21, and detecting an error of each carrier from the error pulse signal 100 of the demodulator 213. It has two functions to determine whether the rate is below a threshold value.

【0007】次に制御信号発生回路100の動作を図3
により説明する。AGC電圧1,AGC電圧2,AGC
電圧3は各マルチキャリア毎のAGC電圧であり、対応
するマルチキャリア信号をそれぞれSIG1,SIG2
,SIG3とする。エラーパルス信号はSIG2,SI
G3の復調器から出力されるエラーパルス信号であり、
SIG1,SIG2,SIG3の周波数関係は図4(a
)に示されるようにSIG2,SIG3はSIG1に隣
接するマルチキャリア信号である。伝送路にフェージン
グが発生していない状態の時はSIG1,SIG2,S
IG3ともに受信入力は標準受信入力レベルになってい
る。したがってAGC電圧1〜3はしきい値以上であり
識別器301はすべて論理レベルとしてHレベルを出力
する。又エラーパルス信号2,3はカウンタ302で一
定時間積算され、ラッチ回路303にて保持される。こ
の出力は識別器304でしきい値以下と判別され識別器
304の出力は論理レベルとしてHレベルを出力する。 この条件における制御信号発生回路101の出力は論理
レベルとしてLレベルとなり、送信局では可変減衰器2
02の減衰量を大きくして送信出力を下げる方向に制御
が働く。
Next, the operation of the control signal generation circuit 100 is shown in FIG.
This is explained by: AGC voltage 1, AGC voltage 2, AGC
Voltage 3 is the AGC voltage for each multicarrier, and the corresponding multicarrier signals are SIG1 and SIG2, respectively.
, SIG3. Error pulse signal is SIG2, SI
This is an error pulse signal output from the demodulator of G3,
The frequency relationship of SIG1, SIG2, and SIG3 is shown in Figure 4 (a
), SIG2 and SIG3 are multicarrier signals adjacent to SIG1. When no fading occurs on the transmission path, SIG1, SIG2, S
The reception input of both IG3 is at the standard reception input level. Therefore, AGC voltages 1 to 3 are above the threshold value, and the discriminator 301 outputs H level as a logic level. Further, the error pulse signals 2 and 3 are integrated by a counter 302 for a certain period of time, and are held by a latch circuit 303. This output is determined by the discriminator 304 to be less than the threshold value, and the output of the discriminator 304 outputs an H level as a logic level. The output of the control signal generation circuit 101 under this condition becomes L level as a logic level, and at the transmitting station, the variable attenuator 2
Control operates in the direction of increasing the attenuation amount of 02 and lowering the transmission output.

【0008】次に伝送路にフラットフェージングが発生
している場合を説明する。AGC電圧1〜3がしきい値
以下となった時に識別器301は論理レベルとしてLレ
ベルを出力し、制御信号発生回路101の出力は論理レ
ベルとしてHレベルとなり、送信局では可変減衰器20
2の減衰量を小さくして送信出力を上げる方向に制御が
働く。
Next, a case where flat fading occurs in a transmission path will be explained. When the AGC voltages 1 to 3 are below the threshold, the discriminator 301 outputs L level as the logic level, the output of the control signal generation circuit 101 becomes H level as the logic level, and the variable attenuator 20 is output at the transmitting station.
Control works in the direction of decreasing the attenuation amount of 2 and increasing the transmission output.

【0009】次に伝送路にフラットフェージングとセレ
クティブフェージングが同時に発生した場合を説明する
。図4(b)に示すように、従来例では受信信号のSI
G1がセレクティブフェージングの発生により送信レベ
ルを上げ、SIG2,3に干渉して不要波を混入させて
いる。したがってAGC電圧1〜3はしきい値以下であ
るが、SIG2,3の誤り率はしきい値以上の状態であ
る。このときSIG1の送信出力を上げる方向に働くの
で、SIG3の希望波対不要波比が劣化しSIG3の回
線品質が劣化する。本発明の制御信号発生回路101で
は、エラーパルス信号3がしきい値以下となった場合に
、出力を論理レベルとしてLレベルとし、送信出力を下
げる方向に制御するので、隣接キャリアの品質を劣化さ
せることがなくなる。
Next, a case where flat fading and selective fading occur simultaneously on a transmission path will be explained. As shown in FIG. 4(b), in the conventional example, the SI of the received signal
G1 raises the transmission level due to the occurrence of selective fading, interferes with SIG2 and SIG3, and mixes unnecessary waves. Therefore, although AGC voltages 1 to 3 are below the thresholds, the error rates of SIGs 2 and 3 are above the thresholds. At this time, since it works in the direction of increasing the transmission output of SIG1, the ratio of desired waves to unnecessary waves of SIG3 deteriorates, and the line quality of SIG3 deteriorates. In the control signal generation circuit 101 of the present invention, when the error pulse signal 3 becomes below the threshold value, the output is set to the L level as a logic level and the transmission output is controlled in the direction of lowering, thereby degrading the quality of the adjacent carrier. You won't have to do anything.

【0010】0010

【発明の効果】以上説明したように本発明は、制御信号
発生回路がAGC電圧と隣接チャネルのエラーパルス信
号とを同時に監視して送信出力を制御しているので、隣
接キャリア信号の回線品質に影響を与えることなく送信
出力を変化させることが可能となる効果を有する。
As explained above, in the present invention, since the control signal generation circuit simultaneously monitors the AGC voltage and the error pulse signal of the adjacent channel to control the transmission output, the line quality of the adjacent carrier signal is improved. This has the effect of making it possible to change the transmission output without affecting it.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例のブロック図である。FIG. 1 is a block diagram of one embodiment of the present invention.

【図2】従来の送信電力制御方式のブロック図である。FIG. 2 is a block diagram of a conventional transmission power control method.

【図3】図1の実施例の要部の回路図である。FIG. 3 is a circuit diagram of main parts of the embodiment of FIG. 1;

【図4】本実施例のキャリア信号の説明図である。FIG. 4 is an explanatory diagram of a carrier signal in this embodiment.

【符号の説明】[Explanation of symbols]

100    エラーパルス信号 101    制御信号発生回路 201    変調器 202    可変減衰器 203    合成器 204    送信周波数変換器 205    送信電力増幅器 206    送受共用器 207    利得制御回路 208    受信機 209    受信周波数変換器 210    帯域通過ろ波器 211    可変利得増幅器 212    検波器 213    復調器 215    送信機 216    分波器 217    AGC電圧 301    識別器 302    カウンタ 303    ラッチ回路 304    識別器 100 Error pulse signal 101 Control signal generation circuit 201 Modulator 202 Variable attenuator 203 Synthesizer 204 Transmission frequency converter 205 Transmission power amplifier 206     Sending/receiving device 207 Gain control circuit 208 Receiver 209 Reception frequency converter 210 Bandpass filter 211 Variable gain amplifier 212 Detector 213 Demodulator 215 Transmitter 216 Duplexer 217 AGC voltage 301 Discriminator 302 Counter 303 Latch circuit 304 Discriminator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  マルチキャリア信号を伝送する無線通
信回線の受信局が受信周波数変換器出力をキャリア数と
同数に分岐する帯域通過ろ波器を含む分波器と、この分
波器出力を増幅し復調器に対して適正なレベルに制御す
る可変利得増幅器と、この可変利得増幅器の出力信号を
入力してエラーパルス信号を含む復調信号を出力する復
調器と、前記可変利得増幅器のAGC電圧および前記復
調器から出力されるエラーパルス信号を入力して対向す
る送信局の送信出力を制御する制御信号を出力する制御
信号発生回路と、この制御信号発生回路出力を前記送信
局へ伝送する送信機とを有し、前記送信局が前記送信機
出力を受信する受信機と、この受信機により復調された
制御信号により各キャリア信号の変調器出力に接続され
た可変減衰器の減衰量を制御する利得制御回路とを有す
ることを特徴とする送信電力制御方式。
Claim 1: A receiving station of a wireless communication line that transmits a multicarrier signal comprises a duplexer including a bandpass filter that branches the output of a received frequency converter into the same number of carriers, and amplifies the output of the duplexer. a variable gain amplifier that controls the demodulator to an appropriate level; a demodulator that receives the output signal of the variable gain amplifier and outputs a demodulated signal including an error pulse signal; a control signal generation circuit that receives an error pulse signal output from the demodulator and outputs a control signal for controlling the transmission output of an opposing transmitting station; and a transmitter that transmits the output of the control signal generating circuit to the transmitting station. a receiver for receiving the transmitter output; and a control signal demodulated by the receiver to control the amount of attenuation of a variable attenuator connected to the modulator output of each carrier signal. A transmission power control method comprising a gain control circuit.
【請求項2】  前記制御信号発生回路が各無線通信回
線の前記AGC電圧が所定のしきい値より高いか低いか
を判定する第1の識別器と、自無線通信回線以外の前記
エラーパルス信号を積算して保持する手段と、前記エラ
ーパルス信号の保持出力信号を入力して所定のしきい値
より高いか低いかを判定する第2の識別器と、前記第1
および第2の識別器の出力信号を入力して論理判定する
手段とを有することを特徴とする請求項1記載の送信電
力制御方式。
2. The control signal generation circuit includes a first discriminator that determines whether the AGC voltage of each wireless communication line is higher or lower than a predetermined threshold; and the error pulse signal of a wireless communication line other than the own wireless communication line. means for integrating and holding the error pulse signal; a second discriminator that inputs the hold output signal of the error pulse signal and determines whether it is higher or lower than a predetermined threshold;
2. The transmission power control method according to claim 1, further comprising means for inputting the output signal of the second discriminator and making a logic determination.
JP3126381A 1991-05-30 1991-05-30 Transmission power control method Expired - Lifetime JP2819860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3126381A JP2819860B2 (en) 1991-05-30 1991-05-30 Transmission power control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3126381A JP2819860B2 (en) 1991-05-30 1991-05-30 Transmission power control method

Publications (2)

Publication Number Publication Date
JPH04352529A true JPH04352529A (en) 1992-12-07
JP2819860B2 JP2819860B2 (en) 1998-11-05

Family

ID=14933750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3126381A Expired - Lifetime JP2819860B2 (en) 1991-05-30 1991-05-30 Transmission power control method

Country Status (1)

Country Link
JP (1) JP2819860B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10126361A (en) * 1996-10-23 1998-05-15 Nec Corp Communication system
WO2004006476A1 (en) * 2002-07-04 2004-01-15 Fujitsu Limited Radio receiver
WO2004068754A1 (en) * 2003-01-30 2004-08-12 Fujitsu Limited Multi-carrier reception apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10126361A (en) * 1996-10-23 1998-05-15 Nec Corp Communication system
US6144648A (en) * 1996-10-23 2000-11-07 Nec Corporation Communication system for making carrier synchronous
WO2004006476A1 (en) * 2002-07-04 2004-01-15 Fujitsu Limited Radio receiver
WO2004068754A1 (en) * 2003-01-30 2004-08-12 Fujitsu Limited Multi-carrier reception apparatus

Also Published As

Publication number Publication date
JP2819860B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
US5987060A (en) System and method of radio communications with an up-down digital signal link
US7209722B2 (en) Method of measuring receiver sensitivity, and transceiver
JP2001358606A (en) Time-division multiplexing type radio equipment
JP3000960B2 (en) Transmission power control method for mobile satellite communication system
JP2004529577A5 (en)
JPH04352529A (en) Transmission power control system
JP2581200B2 (en) Transmission output control method
JPH05268178A (en) Transmission power control system
JPH07336291A (en) Transmission output controller in mobile communication
JP3508061B2 (en) Non line-of-sight communication system
JP2965821B2 (en) Wireless relay device
JP2590736B2 (en) Transmission output control method
JP2613972B2 (en) Wireless communication system
JP3055052B2 (en) Automatic frequency adjustment method for wireless communication equipment
JPH0371731A (en) Multi-carrier controller
JPS5932231A (en) Receiver
JP2002217844A (en) Radio transmission and reception system
JP2659275B2 (en) Wireless communication system
JP2946899B2 (en) Transmission power control method
JPH03265314A (en) Transmission power control system
JP2855652B2 (en) Transmission device
JPS601931A (en) Receiver for scpc communication
JPH03117037A (en) Transmitter/receiver for satellite communication
JPH11122132A (en) Radio equipment
JPS58138135A (en) Radio communication system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980728