JPH04351825A - Breaker for wiring - Google Patents

Breaker for wiring

Info

Publication number
JPH04351825A
JPH04351825A JP12170591A JP12170591A JPH04351825A JP H04351825 A JPH04351825 A JP H04351825A JP 12170591 A JP12170591 A JP 12170591A JP 12170591 A JP12170591 A JP 12170591A JP H04351825 A JPH04351825 A JP H04351825A
Authority
JP
Japan
Prior art keywords
resistance element
circuit
side terminal
overcurrent
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12170591A
Other languages
Japanese (ja)
Inventor
Shuzo Tanigaki
谷垣 修造
Masako Tanaka
雅子 田中
Masamichi Kuramoto
政道 倉元
Koji Imai
今井 康志
Yoshio Nakajima
義雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP12170591A priority Critical patent/JPH04351825A/en
Publication of JPH04351825A publication Critical patent/JPH04351825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Breakers (AREA)

Abstract

PURPOSE:To reduce the size of a breaker for wiring while maintaining large current breaker ability. CONSTITUTION:A PTC resistance device 1 is inserted into am electric pass in an insulating container 13 in series, and is thus connected thereto, namely, it is inserted either between a thermal device 12 and a load side terminal 15 (a), or between a contact 11 of a switching mechanism and the thermal device 12 (b), or between a power source side terminal 13 and the contact (c). Overcurrent at the time of short-circuit accident is thus suppressed, while current breaker value at the time of breaking through the switching mechanism is thus reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、過負荷、短絡事故等の
際に自動的に電路を遮断する機能を有する配線用遮断器
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molded case circuit breaker having the function of automatically interrupting an electric circuit in the event of an overload, short circuit, or the like.

【0002】0002

【従来の技術】交流600[V]以下、直流500[V
]以下の電気系統では、通常、電源側と負荷側との間に
配線遮断器(Molded  Case  Circu
it  Breaker:以下、MCCBと略す)が設
けられ、過負荷や短絡事故が起こった場合にこのMCC
Bで過電流を遮断することで、系統を焼損事故から保護
している。
[Prior art] AC 600 [V] or less, DC 500 [V]
] In the following electrical systems, a molded case circuit breaker is usually installed between the power supply side and the load side.
It Breaker (hereinafter abbreviated as MCCB) is installed, and if an overload or short circuit accident occurs, this MCCB
By interrupting the overcurrent at B, the system is protected from burnout accidents.

【0003】この種のMCCBは、一般に、電路の開閉
遮断を行う開閉機構と、過電流や短絡電流に応動して電
路の開閉遮断を行わせる過電流引外し装置と、外部接続
導体を接続する電源側および負荷側端子とを絶縁容器内
に一体に組み立ててなる。
[0003] This type of MCCB generally connects an external connection conductor with a switching mechanism that switches on and off the electrical circuit, an overcurrent tripping device that switches on and off the electrical circuit in response to overcurrent or short-circuit current. The power supply side and load side terminals are assembled together in an insulating container.

【0004】ここに、電路とは、電源側端子と負荷側端
子との間の電線路であり、開閉機構とは、手動又は引外
し装置により接点を開閉する機構であり、過電流引外し
装置とは、熱動素子(例えばバイメタル)、電磁式又は
変流器等により過電流を検出して接点を開く装置である
[0004] Here, the electric circuit is an electric line between the power supply side terminal and the load side terminal, and the opening/closing mechanism is a mechanism that opens and closes the contacts manually or by a tripping device, and the overcurrent tripping device is a device that detects an overcurrent and opens a contact using a thermal element (eg, bimetal), electromagnetic type, or current transformer.

【0005】図8は、三相460[V]/100[A]
/25[kA]の定格を有する従来の一般的なMCCB
の外観構造図であり、図9はその回路構成図である。
FIG. 8 shows a three-phase 460[V]/100[A]
Conventional general MCCB with a rating of /25 [kA]
FIG. 9 is a diagram of its circuit configuration.

【0006】これらの図において、30はMCCB、3
1は開閉機構の接点、32は熱動素子、33は絶縁容器
、34は電源側端子、35は負荷側端子である。
[0006] In these figures, 30 is MCCB, 3
1 is a contact of the opening/closing mechanism, 32 is a thermal element, 33 is an insulating container, 34 is a power supply side terminal, and 35 is a load side terminal.

【0007】このようなMCCB30は、例えば、一般
家庭での低電圧ブレーカとして、あるいは、工場やプラ
ントで数多く設けられる電動機および他の電源系統の保
護用として使用される。
[0007] Such an MCCB 30 is used, for example, as a low voltage breaker in a general household, or for protection of electric motors and other power supply systems installed in large numbers in factories and plants.

【0008】[0008]

【発明が解決しようとする課題】ところで、従来のMC
CB30では、短絡事故等の際、過電流が熱動素子32
を流れてからこれを検出するまで3〜4[ms]程度の
機械的遅れがあり、その後開閉機構の接点31が開き始
め、10乃至20[ms]後に最終的に電流を遮断する
。この間、短絡電流は限流されないので、短絡遮断電流
値は、低電圧における回路条件下でも数[kA]から数
十[kA]にも達する。したがって、MCCB30には
短絡電流遮断時に生じる過大なアークエネルギーを遮断
できる能力が要求される。特に工場やプラント等では、
一般家庭に比べて電源の容量が大きく(電源インピーダ
ンスが小さく)、非常に大きな短絡電流が流れるため、
MCCB30の材質、構造を強化し、容器体積も大型化
せざるを得ない。
[Problem to be solved by the invention] By the way, the conventional MC
In CB30, in the event of a short circuit accident, overcurrent will
There is a mechanical delay of about 3 to 4 [ms] from when the current flows until it is detected, and then the contact 31 of the opening/closing mechanism begins to open, and the current is finally cut off after 10 to 20 [ms]. During this time, the short circuit current is not limited, so the short circuit breaking current value reaches several [kA] to several tens [kA] even under low voltage circuit conditions. Therefore, the MCCB 30 is required to have the ability to interrupt excessive arc energy that occurs when short-circuit current is interrupted. Especially in factories and plants,
The capacity of the power supply is larger (lower power supply impedance) than in a typical household, and a very large short-circuit current flows.
It is necessary to strengthen the material and structure of MCCB30 and increase the volume of the container.

【0009】そのため、従来は、MCCBの製品価格が
高くなり、また、MCCBを大量に組み込んで使用する
コントロールセンター等では、一つのコントロール盤ユ
ニットでのMCCBの占める容積が4分の1以上に及ぶ
という問題があった。
[0009] Conventionally, therefore, the product price of MCCBs has been high, and in control centers and the like where a large number of MCCBs are installed and used, the volume occupied by MCCBs in one control panel unit is more than one-fourth. There was a problem.

【0010】本発明はかかる問題点に鑑みてなされたも
のであり、その目的とするところは、大電流の遮断能力
を有するとともに、小型化、低コスト化が図れるMCC
Bを提供することにある。
The present invention has been made in view of the above problems, and its purpose is to provide an MCC which has a large current interrupting ability and which can be made smaller and lower in cost.
The goal is to provide B.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
の本発明の構成は、電路の開閉遮断を行う開閉機構と、
過電流や短絡電流に応動して電路の開閉遮断を行わせる
過電流引外し装置と、外部接続導体を接続する電源側お
よび負荷側端子とを絶縁容器内に一体に組み立ててなる
配線用遮断器において、前記絶縁容器内の電路にPTC
(Positive  Temperature  C
oefficient)抵抗素子を直列に挿入接続し、
前記過電流や短絡電流の遮断時に遮断電流値を低減させ
るようにした。  また、前記絶縁容器の外部で前記電
源側又は負荷側端子のいずれか一方に、薄板状若しくは
棒状に形成したPTC抵抗素子を接続した。
[Means for Solving the Problems] The structure of the present invention for achieving the above object includes an opening/closing mechanism for opening/closing an electric circuit;
A molded circuit breaker consisting of an overcurrent tripping device that opens and closes the electrical circuit in response to overcurrent or short-circuit current, and power supply side and load side terminals that connect external connection conductors, assembled in an insulating container. In this case, a PTC is applied to the electric circuit in the insulating container.
(Positive Temperature C
oefficient) resistance elements are inserted and connected in series,
The cut-off current value is reduced when the overcurrent or short-circuit current is cut off. Further, a PTC resistance element formed in a thin plate shape or a rod shape was connected to either the power supply side terminal or the load side terminal outside the insulating container.

【0012】0012

【作用】本発明のMCCBは、電路に正常電流が流れる
通常状態では従来のMCCBと同様に何等動作しないが
、短絡事故等により電路に過電流が流れると、そのジュ
ール熱によりPTC抵抗素子の抵抗値が上昇して電流を
流しにくくする。この時に生じる熱等により開閉機構を
作動させて過電流を遮断する。
[Operation] The MCCB of the present invention does not operate in the same way as conventional MCCBs under normal conditions in which a normal current flows through the electrical circuit, but when an overcurrent flows through the electrical circuit due to a short circuit accident, the Joule heat causes resistance of the PTC resistance element. The value increases, making it difficult for current to flow. The heat generated at this time activates the opening/closing mechanism to cut off the overcurrent.

【0013】したがって、MCCB自体の動作責務をP
TC抵抗素子で分担することになり、電流遮断値が低減
するので、PTC抵抗素子を設けない場合に比べてMC
CBの構造を簡略にし、且つ、容積を小さくすることが
できる。
[0013] Therefore, the operational responsibility of MCCB itself is
Since the current is shared by the TC resistance element and the current cutoff value is reduced, the MC
The structure of the CB can be simplified and the volume can be reduced.

【0014】なお、PTC抵抗素子を薄板状若しくは棒
状に形成することで、絶縁容器の表面部への外付けが容
易になり、その取付スペースも節約される。
[0014] By forming the PTC resistance element in the form of a thin plate or rod, it is easy to attach it externally to the surface of the insulating container, and the mounting space is also saved.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0016】(第一実施例)図1は本発明の第一実施例
に係るMCCBの回路構成図である。この図を参照する
と、本実施例のMCCB10は、絶縁容器13内の電源
側端子14と負荷側端子15とを結ぶ電線路に、PTC
(Positive  Temperature  C
oefficient)抵抗素子1を直列に挿入接続し
たものである。
(First Embodiment) FIG. 1 is a circuit diagram of an MCCB according to a first embodiment of the present invention. Referring to this figure, the MCCB 10 of this embodiment has a PTC in the electric line connecting the power supply side terminal 14 and the load side terminal 15 in the insulating container 13.
(Positive Temperature C
(effective) resistance elements 1 are inserted and connected in series.

【0017】挿入接続する箇所は、図1(a)のように
熱動素子12と負荷側端子14との間、同(b)のよう
に開閉機構の接点11と熱動素子12との間、同(c)
のように電源側端子13と開閉機構の接点11との間の
いずれかとする。なお、各箇所に同時に挿入接続しても
良い。
The insertion and connection points are between the thermal element 12 and the load side terminal 14 as shown in FIG. 1(a), and between the contact 11 of the opening/closing mechanism and the thermal element 12 as shown in FIG. 1(b). , same (c)
It is assumed that the contact point 11 of the opening/closing mechanism is located between the power supply side terminal 13 and the contact point 11 of the opening/closing mechanism. Note that it may be inserted and connected to each location at the same time.

【0018】このPTC抵抗素子1は、低電流のときは
低抵抗値であるが、電流の増加によりその抵抗値が急激
に増加する素子で、例えば、(V1−xCrx)2O3
(但し、0≦x≦0.015)を1100℃以上で仮焼
し、この仮焼物に焼結助剤としてFeを混合し、更にこ
の混合物を1535℃以上の熱で焼成することで得られ
るもの(本発明者らによる特願平2−198453号)
を用いる。
This PTC resistance element 1 has a low resistance value when the current is low, but its resistance value rapidly increases as the current increases.For example, (V1-xCrx)2O3
(However, 0≦x≦0.015) is calcined at 1100°C or higher, Fe is mixed as a sintering aid into this calcined material, and this mixture is further fired at 1535°C or higher. (Patent application No. 198453, filed by the present inventors)
Use.

【0019】図2はこのPTC抵抗素子1単体における
電気抵抗の温度依存特性図であり、100℃以上の温度
になると、抵抗値が急激に増加し、大電流通電時の温度
上昇による限流効果(PTC効果)が得られる様子を示
している。
FIG. 2 is a temperature dependence characteristic diagram of the electrical resistance of this PTC resistance element 1 alone. When the temperature reaches 100° C. or higher, the resistance value increases rapidly, and the current limiting effect due to the temperature increase when a large current is applied. (PTC effect) is shown.

【0020】図3は、短絡試験時のPTC抵抗素子1の
みでの短絡電流、電圧、抵抗変化を示した図である。図
3を参照すると、印加電圧は経過時間が約5[ms]で
ピーク値となるが、PTC抵抗素子1の比抵抗は約2.
5[ms]後から急激に増加する。これに伴い正常時の
電流に対する短絡電流の相対値も経過時間2.5[ms
]の時点での11をピークに急激に減少する。PTC抵
抗素子1を挿入接続しないで短絡試験を行った場合は、
短絡電流の相対値が170を超えることが確認されてい
るので、このPTC抵抗素子1により大きな電流抑制効
果が得られることがわかる。
FIG. 3 is a diagram showing short-circuit current, voltage, and resistance changes only in PTC resistance element 1 during a short-circuit test. Referring to FIG. 3, the applied voltage reaches its peak value after an elapsed time of approximately 5 [ms], but the specific resistance of the PTC resistance element 1 is approximately 2.0 ms.
It increases rapidly after 5 [ms]. Accordingly, the relative value of the short-circuit current to the normal current also increases with the elapsed time of 2.5 [ms].
] and then rapidly decreased from a peak of 11. If a short circuit test is performed without inserting and connecting PTC resistance element 1,
Since it has been confirmed that the relative value of the short circuit current exceeds 170, it can be seen that this PTC resistance element 1 can provide a large current suppressing effect.

【0021】このPTC抵抗素子1を図1(a)(b)
(c)のように絶縁容器13内に組み込んだ本実施例の
MCCB10は、正常時には従来のMCCBと同様に何
ら動作しないが、短絡事故等により過電流が流れた場合
には、PTCに抵抗素子1の抵抗値が急激に増加して電
流を流しにくくする。この時に生じる熱あるいは熱動素
子12の熱で開閉機構の接点11を作動させ、過電流を
遮断する。したがって、開閉機構での電流遮断値を低減
することができ、MCCBの各構成部品の規格を下げる
ことができる。また、それに伴って絶縁容器13の容積
も小さくすることができる。
This PTC resistance element 1 is shown in FIGS.
The MCCB 10 of this embodiment, which is incorporated into the insulating container 13 as shown in (c), does not operate at all like the conventional MCCB during normal operation, but when an overcurrent flows due to a short circuit accident, etc., a resistive element is connected to the PTC. The resistance value of 1 increases rapidly, making it difficult for current to flow. The heat generated at this time or the heat of the thermal element 12 operates the contacts 11 of the opening/closing mechanism to cut off the overcurrent. Therefore, the current cutoff value in the opening/closing mechanism can be reduced, and the specifications of each component of the MCCB can be lowered. Further, the volume of the insulating container 13 can also be reduced accordingly.

【0022】図4は三相460[V]/100[A]/
25[kA]の定格を有する本実施例のMCCB10の
外観構造図である。図4を参照すると、図8に示した同
一定格のMCCB30に比べてその外形寸法、容積を著
しく小さくすることができる。しかも、PTC抵抗素子
が安価であり、他の構成部品の価格も安くなるので、全
体の製造コストも著しく低下する。
FIG. 4 shows a three-phase 460[V]/100[A]/
It is an external structure diagram of MCCB10 of this example which has a rating of 25 [kA]. Referring to FIG. 4, the external dimensions and volume can be significantly reduced compared to the MCCB 30 of the same rating shown in FIG. Moreover, since the PTC resistance element is inexpensive and the prices of other components are also lower, the overall manufacturing cost is significantly reduced.

【0023】(第二実施例)図5は本発明の第二実施例
に係るMCCBの回路構成図である。
(Second Embodiment) FIG. 5 is a circuit diagram of an MCCB according to a second embodiment of the present invention.

【0024】図5を参照すると、第二実施例のMCCB
20は、開閉機構の接点21と熱動素子22と図示を省
略した引外し装置等とを収容するとともに電源側端子2
4と負荷側端子25とを備えたMCCB本体23を備え
、前記電源側端子24と前記負荷側端子25の少なくと
も一方に、PTC抵抗素子2の一端部を接続するととも
に、該PTC抵抗素子2の他端部を前記電源側配線ある
いは負荷側配線と接続可能に形成して成る。PTC抵抗
素子2は、例えば前記第一実施例と同様のものを使用す
る。
Referring to FIG. 5, the MCCB of the second embodiment
20 houses the contacts 21 of the opening/closing mechanism, the thermal element 22, a tripping device (not shown), etc., and also houses the power supply side terminal 2.
4 and a load side terminal 25, one end of the PTC resistance element 2 is connected to at least one of the power supply side terminal 24 and the load side terminal 25, and The other end portion is formed so as to be connectable to the power supply side wiring or the load side wiring. As the PTC resistance element 2, for example, the same one as in the first embodiment is used.

【0025】このようにすれば、前記第一実施例と同様
に、MCCB本体23の外形寸法、容積を小さくでき、
製造コストを低下させるという効果を奏する。
[0025] In this way, as in the first embodiment, the external dimensions and volume of the MCCB main body 23 can be reduced;
This has the effect of reducing manufacturing costs.

【0026】図6(a)(b)は、本実施例によるPT
C抵抗素子の取付構造の一例を示す構成斜視図である。
FIGS. 6(a) and 6(b) show the PT according to this embodiment.
FIG. 2 is a configuration perspective view showing an example of a mounting structure for a C resistance element.

【0027】これらの図を参照すると、例えば断面円形
の棒状PTC抵抗素子2’を形成し、その両端部に各々
配線用端子3a,3bを設けるとともに、MCCB本体
(絶縁容器)23の背面部あるいは他の表面部に該PT
C抵抗素子2’を保持するための保持部材4a,4bを
設け、配線用端子3a,3bの一方を配線部材5を介し
て前記電源側端子24あるいは負荷側端子25に接続し
ている。
Referring to these figures, for example, a bar-shaped PTC resistance element 2' having a circular cross section is formed, wiring terminals 3a and 3b are provided at both ends thereof, and wiring terminals 3a and 3b are provided at both ends of the rod-shaped PTC resistance element 2'. The PT on other surfaces
Holding members 4a and 4b are provided for holding the C resistance element 2', and one of the wiring terminals 3a and 3b is connected to the power supply side terminal 24 or the load side terminal 25 via the wiring member 5.

【0028】図6(a)はPTC抵抗素子2’の一方の
配線用端子3bを電源側端子24に接続した図であり、
他方の配線用端子3aは新たな電源側端子となる。一方
、図6(b)はPTC抵抗素子2’の一方の端子3aを
負荷側端子25に接続した図であり、他方の配線用端子
3bは新たな負荷側端子となる。
FIG. 6(a) is a diagram in which one wiring terminal 3b of the PTC resistance element 2' is connected to the power supply side terminal 24.
The other wiring terminal 3a becomes a new power supply side terminal. On the other hand, FIG. 6(b) is a diagram in which one terminal 3a of the PTC resistance element 2' is connected to the load side terminal 25, and the other wiring terminal 3b becomes a new load side terminal.

【0029】なお、棒状のPTC抵抗素子2’は、例え
ばラバープレスにより一体成形した後に所定温度で焼成
される。
The rod-shaped PTC resistance element 2' is integrally molded using, for example, a rubber press, and then fired at a predetermined temperature.

【0030】図7(a)(b)は、他の取付構造例を示
す構成斜視図である。
FIGS. 7(a) and 7(b) are perspective views showing other examples of mounting structures.

【0031】これらの図を参照すると、例えば薄板状の
PTC抵抗素子2’’を形成し、その両端部に各々配線
用端子3’a,3’bを設けるとともに、その一方を直
接前記電源側端子24あるいは負荷側端子25に接続し
ている。
Referring to these figures, for example, a thin plate-like PTC resistance element 2'' is formed, wiring terminals 3'a and 3'b are provided at both ends thereof, and one of them is directly connected to the power supply side. It is connected to the terminal 24 or the load side terminal 25.

【0032】図7(a)はPTC抵抗素子2’’の一方
の配線用端子3’bを電源側端子24に接続した図であ
り、他方の配線用端子3’aは新たな電源側端子となる
。一方、図7(b)はPTC抵抗素子2’’の一方の端
子3’aを負荷側端子25に接続した図であり、他方の
配線用端子3’bは新たな負荷側端子となる。
FIG. 7(a) is a diagram in which one wiring terminal 3'b of the PTC resistance element 2'' is connected to the power supply side terminal 24, and the other wiring terminal 3'a is connected to a new power supply side terminal. becomes. On the other hand, FIG. 7(b) is a diagram in which one terminal 3'a of the PTC resistance element 2'' is connected to the load side terminal 25, and the other wiring terminal 3'b becomes a new load side terminal.

【0033】薄板状のPTC抵抗素子2’’は、例えば
、ディスク状に焼成した素子を板状に切り出すことで所
定形状に形成した。前記棒状のPTC抵抗素子2’のよ
うに一体成形しても良いが、そうすると成形ムラが生じ
るので注意を要する。
The thin plate-shaped PTC resistance element 2'' was formed into a predetermined shape by, for example, cutting out a plate-shaped element from a fired disk-shaped element. Although it may be integrally molded like the rod-shaped PTC resistance element 2', care must be taken since molding unevenness will occur if this is done.

【0034】なお、棒状PTC抵抗素子2’と薄板状P
TC抵抗素子2’’とを比較すると、前者は加工が容易
でその工程が少なく、低コストで組み立てられる利点が
あるが、別途取付スペースを必要とする。後者はいわゆ
る一体成形法ではなく切り出し法によればその分工程数
が増え、コスト高となるが、図7(a)(b)から明ら
かなように、大幅な省スペースを実現することができる
Note that the rod-shaped PTC resistance element 2' and the thin plate-shaped P
When compared with the TC resistance element 2'', the former has the advantage of being easy to process, requires few steps, and can be assembled at low cost, but requires additional installation space. In the latter case, if the cutting method is used instead of the so-called integral molding method, the number of steps will increase accordingly and the cost will be higher, but as is clear from Figures 7(a) and (b), it is possible to realize a significant space saving. .

【0035】本実施例で用いたPTC抵抗素子は棒状の
もので8[mm:φ]×50[mm:L]、薄板状のも
ので20[mm:W]×25[mm:D]×50[mm
:L]であるが、この寸法は、電流容量その他の条件に
より変えることができる。
[0035] The PTC resistance element used in this example is a rod-shaped one with a size of 8 [mm: φ] x 50 [mm: L], and a thin plate-shaped one with a size of 20 [mm: W] x 25 [mm: D] x 50 [mm
:L], but this dimension can be changed depending on the current capacity and other conditions.

【0036】[0036]

【発明の効果】以上詳述したように、本発明では、MC
CB内の電路に直列、即ち、開閉機構の接点と電源側端
子間、接点と熱動素子間、熱動素子と負荷側端子間のい
ずれかにPTC抵抗素子を挿入接続し、あるいはMCC
B本体にPTC抵抗素子を外付けするようにしたので、
正常時には電気系統に何ら影響を与えない一方、短絡事
故等が発生したときは過電流が直ちに抑制され、MCC
Bの電流遮断能力(責務)を大幅に低減できるという効
果がある。これにより、MCCBの構造を簡略にし、そ
の容積を著しく小さくすることができる。具体的には、
同一定格の従来のMCCBを8段組しか組み込めなかっ
たコントロール盤のスペースに12段組の多重積みが可
能となり、省資源(材料)、省スペースが図れるように
なった。PTC抵抗素子を外付けする場合は、その形状
を例えば薄板状に変えることで、より一層の省スペース
を図ることができる。
[Effects of the Invention] As detailed above, in the present invention, MC
Insert and connect a PTC resistance element in series with the electric circuit in the CB, that is, between the contacts of the switching mechanism and the power supply terminal, between the contacts and the thermal element, or between the thermal element and the load terminal, or
Since I attached a PTC resistance element externally to the B main body,
Under normal conditions, it has no effect on the electrical system, but when a short circuit accident occurs, the overcurrent is immediately suppressed, and the MCC
This has the effect of significantly reducing the current interrupting ability (responsibility) of B. Thereby, the structure of the MCCB can be simplified and its volume can be significantly reduced. in particular,
Conventional MCCBs with the same rating could only be installed in 8-tier control panel spaces, but now 12-tiers can be stacked in multiple stacks, saving resources (materials) and space. When externally attaching a PTC resistance element, the shape can be changed to, for example, a thin plate shape to further save space.

【0037】また、過電流がPTC抵抗素子で抑制され
るので、コントロール盤から負荷回路へ配線される導体
を細くすることができ、MCCBや負荷回路等の点検保
守が安全且つ容易に行えるようになった。
Furthermore, since overcurrent is suppressed by the PTC resistance element, the conductor wired from the control panel to the load circuit can be made thinner, and inspection and maintenance of the MCCB, load circuit, etc. can be performed safely and easily. became.

【0038】また、短絡時の遮断に要する時間が従来の
ものより短く、5[ms]以下に設定することができる
ようになった。
[0038] Furthermore, the time required to shut off the circuit in the event of a short circuit is shorter than that of the conventional system, and can now be set to 5 [ms] or less.

【0039】更に、PTC抵抗素子自体が安価であり、
MCCBの構成部品も安価にできるので、商品全体の製
造コストを大幅に低減することができる。
Furthermore, the PTC resistance element itself is inexpensive;
Since the component parts of the MCCB can also be made inexpensive, the manufacturing cost of the entire product can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第一実施例に係る配線用遮断器の回路
構成図であり、(a)(b)(c)は、PTC抵抗素子
を負荷側端子と熱動素子間、熱動素子と接点間、接点と
電源側端子との間に各々挿入接続したものである。
FIG. 1 is a circuit diagram of a molded circuit breaker according to a first embodiment of the present invention, and (a), (b), and (c) show a PTC resistance element between a load side terminal and a thermal element. These are inserted and connected between the element and the contact, and between the contact and the power supply side terminal.

【図2】本発明で用いたPTC抵抗素子単体の電気抵抗
の温度依存特性図である。
FIG. 2 is a temperature-dependent characteristic diagram of the electrical resistance of a single PTC resistance element used in the present invention.

【図3】本発明で用いたPTC抵抗素子の短絡試験時に
おける電圧、電流、比抵抗の変化図である。
FIG. 3 is a diagram of changes in voltage, current, and specific resistance during a short circuit test of the PTC resistance element used in the present invention.

【図4】本発明の第一実施例による配線用遮断器の外観
構造図であり、三相460[V]/100[A]/25
[kA]の定格の場合の寸法を示したものである。
FIG. 4 is an external structural diagram of the molded circuit breaker according to the first embodiment of the present invention, and is a three-phase 460[V]/100[A]/25
The dimensions are shown for a rating of [kA].

【図5】本発明の第二実施例に係る配線用遮断器の回路
構成図であり、(a)はPTC抵抗素子を負荷側端子に
外付けしたもの、(b)は電源側端子に外付けしたもの
である。
FIG. 5 is a circuit configuration diagram of a molded circuit breaker according to a second embodiment of the present invention, in which (a) a PTC resistance element is externally attached to the load side terminal, and (b) is an externally attached PTC resistance element to the power supply side terminal. It is attached.

【図6】本発明の第二実施例によるPTC抵抗素子の取
付構造例を示した構成斜視図であり、(a)は棒状PT
C抵抗素子を電源側端子に接続したもの、(b)は負荷
側端子に接続したものである。
FIG. 6 is a configuration perspective view showing an example of the mounting structure of the PTC resistance element according to the second embodiment of the present invention;
The C resistance element is connected to the power supply side terminal, and (b) is connected to the load side terminal.

【図7】  本発明の第二実施例によるPTC抵抗素子
の他の取付構造例を示した構成斜視図であり、(a)は
薄板状PTC抵抗素子を電源側端子に接続したもの、(
b)は負荷側端子に接続したものである。
FIG. 7 is a configuration perspective view showing another example of the mounting structure of the PTC resistance element according to the second embodiment of the present invention, in which (a) a thin plate-like PTC resistance element is connected to a power supply side terminal;
b) is connected to the load side terminal.

【図8】従来の配線用遮断器の外観構造図であり、三相
460[V]/100[A]/25[kA]の定格の場
合の寸法を示したものである。
FIG. 8 is an external structural diagram of a conventional molded circuit breaker, showing dimensions in the case of a three-phase rating of 460 [V]/100 [A]/25 [kA].

【図9】従来の配線用遮断器の回路構成図である。FIG. 9 is a circuit diagram of a conventional molded circuit breaker.

【符号の説明】[Explanation of symbols]

1,2,2’,2’’…PTC抵抗素子、11,21,
31…開閉機構の接点、13,23,33…絶縁容器、
14,24,34…電源側端子、15,25,35…負
荷側端子、3a,3b,3’a,3’b…配線用端子、
4a,4b…保持部材、5…配線部材。
1, 2, 2', 2''...PTC resistance element, 11, 21,
31... Contact of opening/closing mechanism, 13, 23, 33... Insulating container,
14, 24, 34... Power supply side terminal, 15, 25, 35... Load side terminal, 3a, 3b, 3'a, 3'b... Wiring terminal,
4a, 4b...holding member, 5...wiring member.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  電路の開閉遮断を行う開閉機構と、過
電流や短絡電流に応動して電路の開閉遮断を行わせる過
電流引外し装置と、外部接続導体を接続する電源側およ
び負荷側端子とを絶縁容器内に一体に組み立ててなる配
線用遮断器において、前記絶縁容器内の電路にPTC抵
抗素子を直列に挿入接続し、前記過電流や短絡電流の遮
断時に遮断電流値を低減させるようにしたことを特徴と
する配線用遮断器。
Claim 1: An opening/closing mechanism that opens and breaks an electric circuit, an overcurrent tripping device that opens and closes an electric circuit in response to overcurrent or short-circuit current, and power supply side and load side terminals that connect external connection conductors. and a molded circuit breaker integrally assembled in an insulating container, in which a PTC resistance element is inserted and connected in series to the electrical path in the insulating container to reduce the breaking current value when interrupting the overcurrent or short-circuit current. A hardwired circuit breaker characterized by:
【請求項2】  電路の開閉遮断を行う開閉機構と、過
電流や短絡電流に応動して電路の開閉遮断を行わせる過
電流引外し装置と、外部接続導体を接続する電源側およ
び負荷側端子とを絶縁容器内に一体に組み立ててなる配
線用遮断器において、前記絶縁容器の外部で前記電源側
又は負荷側端子のいずれか一方に、PTC抵抗素子を接
続したことを特徴とする配線用遮断器。
[Claim 2] An opening/closing mechanism for opening and closing an electric circuit, an overcurrent tripping device for opening and closing an electric circuit in response to overcurrent or short-circuit current, and power supply side and load side terminals for connecting external connection conductors. and a wiring breaker integrally assembled in an insulating container, characterized in that a PTC resistance element is connected to either the power supply side terminal or the load side terminal outside the insulating container. vessel.
【請求項3】  前記PTC抵抗素子を薄板状若しくは
棒状に形成したことを特徴とする請求項2記載の配線用
遮断器。
3. The molded circuit breaker according to claim 2, wherein the PTC resistance element is formed into a thin plate shape or a rod shape.
JP12170591A 1991-05-28 1991-05-28 Breaker for wiring Pending JPH04351825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12170591A JPH04351825A (en) 1991-05-28 1991-05-28 Breaker for wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12170591A JPH04351825A (en) 1991-05-28 1991-05-28 Breaker for wiring

Publications (1)

Publication Number Publication Date
JPH04351825A true JPH04351825A (en) 1992-12-07

Family

ID=14817845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12170591A Pending JPH04351825A (en) 1991-05-28 1991-05-28 Breaker for wiring

Country Status (1)

Country Link
JP (1) JPH04351825A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2716754A1 (en) * 1994-01-31 1995-09-01 Gen Electric Current limiter with calibration module.
US5666254A (en) * 1995-09-14 1997-09-09 Raychem Corporation Voltage sensing overcurrent protection circuit
US5689395A (en) * 1995-09-14 1997-11-18 Raychem Corporation Overcurrent protection circuit
US5737160A (en) * 1995-09-14 1998-04-07 Raychem Corporation Electrical switches comprising arrangement of mechanical switches and PCT device
US5864458A (en) * 1995-09-14 1999-01-26 Raychem Corporation Overcurrent protection circuits comprising combinations of PTC devices and switches
JP2012138173A (en) * 2010-12-24 2012-07-19 Hitachi Industrial Equipment Systems Co Ltd Circuit breaker

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2716754A1 (en) * 1994-01-31 1995-09-01 Gen Electric Current limiter with calibration module.
US5666254A (en) * 1995-09-14 1997-09-09 Raychem Corporation Voltage sensing overcurrent protection circuit
US5689395A (en) * 1995-09-14 1997-11-18 Raychem Corporation Overcurrent protection circuit
US5737160A (en) * 1995-09-14 1998-04-07 Raychem Corporation Electrical switches comprising arrangement of mechanical switches and PCT device
US5864458A (en) * 1995-09-14 1999-01-26 Raychem Corporation Overcurrent protection circuits comprising combinations of PTC devices and switches
JP2012138173A (en) * 2010-12-24 2012-07-19 Hitachi Industrial Equipment Systems Co Ltd Circuit breaker

Similar Documents

Publication Publication Date Title
US6738246B1 (en) Electrical circuit breaker for protecting against overcurrents
US5530613A (en) Current limiting circuit controller
EP0295131A2 (en) An improved electric circuit breaker
JPH11512557A (en) Electric switch
JP2001515652A (en) Circuit breaker with improved arc breaking performance
US5428195A (en) Current limiter unit for molded case circuit breakers
JPH04351825A (en) Breaker for wiring
US20070109704A1 (en) Switching protective device comprising fuses
US6313723B1 (en) Remote controllable circuit breakers with positive temperature coefficient resistivity (PTC) elements
US5617281A (en) Low cost circuit controller
US5268661A (en) Current throttle technique
CA1130435A (en) Protector circuit for solenoid operator
US3781607A (en) Device for removably mounting electrical component
US20020196120A1 (en) Non-energy limiting class 2 transformer with positive temperature protection
US3454831A (en) Quick-opening,low cost,current limiting circuit breaker
JP2000067710A (en) Circuit breaker
US6619990B2 (en) Short-circuit current limiter
JP3301531B2 (en) Circuit protection device against overcurrent
JPH056723A (en) Switch current reducing circuit for disconnector
JPH10271667A (en) Current limiter and breaker for wiring
JPH1125839A (en) Current-suppressing circuit breaker unit
JPS6114488A (en) Overload protecting apparatus for compressor
KR200146435Y1 (en) Circuit breaker
CN118020124A (en) Protection switching device and method
JPS58157023A (en) Wiring breaker