JPH0435074B2 - - Google Patents

Info

Publication number
JPH0435074B2
JPH0435074B2 JP59104743A JP10474384A JPH0435074B2 JP H0435074 B2 JPH0435074 B2 JP H0435074B2 JP 59104743 A JP59104743 A JP 59104743A JP 10474384 A JP10474384 A JP 10474384A JP H0435074 B2 JPH0435074 B2 JP H0435074B2
Authority
JP
Japan
Prior art keywords
image forming
toner
voltage
area
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59104743A
Other languages
Japanese (ja)
Other versions
JPS60249171A (en
Inventor
Satoru Haneda
Hisafumi Shoji
Seiichiro Hiratsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP59104743A priority Critical patent/JPS60249171A/en
Publication of JPS60249171A publication Critical patent/JPS60249171A/en
Publication of JPH0435074B2 publication Critical patent/JPH0435074B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/065Arrangements for controlling the potential of the developing electrode

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing For Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子写真複写機静電記録装置におけ
る画像形成方法に関し、特に、回動する像形成体
の表面を一様電位に帯電し、該帯電面に例えばレ
ーザビームスキヤナや静電記録ヘツド等の手段に
より低電位スポツト乃至は逆極性電位スポツトの
分布した潜像域を形成し、現像スリーブに交流電
圧と前記一様電位と同極性の直流電圧とを重畳し
たバイアス電圧の印加を行つて、該現像スリーブ
が像形成体に接近した現像域で現像スリーブ上の
像形成体面に接触しない層厚に形成した現像剤層
から前記一様電位と同極性に帯電したトナーを飛
翔させて前記潜像域のスポツトに付着させる現像
を行う画像形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an image forming method in an electrophotographic copying machine electrostatic recording device, and in particular, the present invention relates to an image forming method in an electrophotographic copying machine electrostatic recording device, and in particular, the present invention relates to an image forming method in which the surface of a rotating image forming body is charged to a uniform potential, A latent image area in which low potential spots or potential spots of opposite polarity are distributed is formed on the charged surface by means such as a laser beam scanner or an electrostatic recording head, and the developing sleeve is applied with an alternating current voltage and the same polarity as the uniform potential. By applying a bias voltage superimposed with a DC voltage of The present invention relates to an image forming method that performs development in which toner charged to the same polarity as the potential is caused to fly and adhere to spots in the latent image area.

〔従来技術〕[Prior art]

上述のような画像形成方法の代表的なものとし
て、表面に光導電体層を有する像形成体を用い、
像形成体の一様帯電面にレーザビームスキヤナに
よりスポツト露光を行つて低電位ドツト構成の静
電潜像を形成し、その低電位ドツト部分に像形成
体の帯電と同極性に帯電したトナーを付着させる
方法が挙げられる。このような方法は、背景部電
位に対して像部分電位が高い静電潜像にそれとは
逆極性に帯電したトナーを現像スリーブの現像剤
層から飛翔させて付着させる画像形成方法に比較
すると、トナーを像形成体の帯電からの電気的反
撥力に抗して像形成体に付着させ、しかもかぶり
を生じさせないために、現像スリーブに印加する
バイアス電圧の直流成分は像形成体の一様帯電電
位すなわち潜像の背景電位に近いものとし、交流
成分も振幅を大きくしたりすることが要求され
る。そのため、現像スリーブへのバイアス電圧の
印加が像形成体の帯電されていない非帯電領域が
現像域を通過している間に行われたりすると、徒
らにトナーを像形成体に付着させて余分のトナー
を消費したり、クリーニング装置等の負担を大き
くしたり、トナー等を飛散させ汚れの発生を増大
させたりする。
As a typical image forming method as described above, an image forming body having a photoconductor layer on the surface is used,
A laser beam scanner performs spot exposure on the uniformly charged surface of the image forming body to form an electrostatic latent image consisting of low potential dots, and toner charged to the same polarity as the image forming body is deposited on the low potential dots. One example is a method of attaching. This method is compared to an image forming method in which toner charged with the opposite polarity is caused to fly from the developer layer of the developing sleeve and adhere to an electrostatic latent image whose image portion potential is higher than the background potential. In order to cause the toner to adhere to the image forming body against the electrical repulsion from the charging of the image forming body and to prevent fogging, the DC component of the bias voltage applied to the developing sleeve is applied to the uniform charging of the image forming body. It is required that the potential be close to the background potential of the latent image, and that the amplitude of the alternating current component be increased. Therefore, if a bias voltage is applied to the developing sleeve while an uncharged area of the image forming body is passing through the developing area, toner may be unnecessarily attached to the image forming body and excess toner may be generated. This may consume a lot of toner, increase the burden on cleaning equipment, etc., and cause toner to scatter, increasing the occurrence of dirt.

像部分電位の方が高い静電潜像に逆極性に帯電
したトナーを付着させる画像形成方法において
は、電力の節約やトナーの飛散防止等のために、
像形成体の非帯電領域が現像域を通過する間は現
像スリーブへのバイアス電圧の印加を止めるよう
にしたものがUSP3893418号公報や特開昭56−
14266号公報により知られている。
In image forming methods in which toner charged with opposite polarity is attached to an electrostatic latent image whose image partial potential is higher, in order to save power and prevent toner from scattering,
USP 3,893,418 and Japanese Patent Application Laid-Open No. 1983-1989 disclose a system in which the application of bias voltage to the developing sleeve is stopped while the uncharged area of the image forming body passes through the developing area.
It is known from Publication No. 14266.

しかし、像形成体の帯電と同極性に帯電したト
ナーを静電潜像に付着させる画像形成方法におい
ては、像形成体の非帯電領域が現像域を通過する
間だけ現像スリーブへのバイアス電圧の印加を止
めるようにしても、それだけではトナーの飛散や
徒費を防止することは不充分である。
However, in an image forming method in which toner charged to the same polarity as the image forming member is attached to an electrostatic latent image, the bias voltage to the developing sleeve is applied only while the uncharged area of the image forming member passes through the development area. Even if the application is stopped, it is insufficient to prevent toner scattering and wasted costs.

〔発明の目的〕[Purpose of the invention]

本発明は、像形成体の非帯電領域が現像域を通
過する間だけバイアス電圧の印加を止めるように
してもトナーの飛散や徒費が防止できない原因
が、飛翔中のトナーがそのままバイアス電圧の印
加を止められることにより浮遊したり、像形成体
の帯電領域と非帯電領域の境で電位が大きく変化
したりすること等により、バイアス電圧印加の影
響が非帯電領域の通過するときにも及び易いこと
にあると究明し、トナーの飛散や徒費を効果的に
防止するバイアス電圧の印加方法を見出した結果
なされたものであり、トナーが飛散したり徒費さ
れたりすることの少ない、像形成体の帯電と同極
性に帯電したトナーを現像スリーブ上の現像剤層
から飛翔させて像形成体帯電面の低電位スポツト
乃至は逆極性電位スポツトの分布から成る静電潜
像に付着させる画像形成方法を提供するものであ
る。
The present invention solves the problem that toner scattering and wasted costs cannot be prevented even if the application of the bias voltage is stopped only while the uncharged area of the image forming body passes through the development area. The influence of bias voltage application extends even when passing through an uncharged area, such as when the image forming body floats when the application is stopped, or because the potential changes greatly at the boundary between the charged and uncharged areas of the image forming body. This was done as a result of discovering a method of applying bias voltage that effectively prevents toner scattering and wasted waste. An image in which toner charged to the same polarity as that of the forming member is caused to fly from the developer layer on the developing sleeve and adhere to an electrostatic latent image consisting of a distribution of low potential spots or opposite polarity potential spots on the charging surface of the image forming member. A forming method is provided.

〔発明の構成〕[Structure of the invention]

本発明は、回動する像形成体の表面を一様電位
に帯電し、該帯電面に低電位スポツト乃至は逆極
性電位スポツトの分布した潜像域を形成し、現像
スリーブに交流電圧と前記一様電位と同極性の直
流電圧とを重畳したバイアス電圧の印加を行つ
て、該現像スリーブが像形成体に接近した現像域
で現像スリーブ上の像形成体面に接触しない層厚
に形成した現像剤層から前記一様電位と同極性に
帯電したトナーを飛翔させて前記潜像域のスポツ
トに付着させ現像する画像形成方法において、前
記現像域を像形成体の前記潜像域が通過した後そ
れに続く前記一様電位の帯電面が通過している間
に、前記バイアス電圧を前記一様電位と同極性の
最大電圧が減少するように変化させることを特徴
とする画像形成方法にあり、この構成によつて上
記目的を達成したものである。
The present invention charges the surface of a rotating image forming member to a uniform potential, forms a latent image area in which low potential spots or opposite polarity potential spots are distributed on the charged surface, and applies an alternating current voltage to the developing sleeve. By applying a bias voltage in which a uniform potential and a DC voltage of the same polarity are superimposed, the developing sleeve is formed in a layer thickness that does not come into contact with the surface of the image forming body on the developing sleeve in the developing area close to the image forming body. In an image forming method in which toner charged to the same polarity as the uniform potential is caused to fly from an agent layer and adhere to spots in the latent image area for development, after the latent image area of the image forming body passes through the development area. The image forming method is characterized in that the bias voltage is changed so that a maximum voltage of the same polarity as the uniform potential decreases while the charged surface of the uniform potential passes through the image forming method. The above objective is achieved through the configuration.

〔実施例〕〔Example〕

以下、本発明を図示例によつて説明する。 The present invention will be explained below using illustrated examples.

第1図は本発明の方法を実施する記録装置の例
を示す概要構成図、第2図は現像装置の例を示す
部分図、第3図乃至第6図はそれぞれ現像スリー
ブに印加するバイアス電圧の例を示すグラフ、第
7図乃至第9図はそれぞれ第3図乃至第5図に示
したバイアス電圧を印加するバイアス電源の構成
例を示す回路図である。
FIG. 1 is a schematic configuration diagram showing an example of a recording apparatus that implements the method of the present invention, FIG. 2 is a partial diagram showing an example of a developing device, and FIGS. 3 to 6 are bias voltages applied to the developing sleeve, respectively. Graphs showing examples of the above, and FIGS. 7 to 9 are circuit diagrams showing examples of configurations of bias power supplies that apply the bias voltages shown in FIGS. 3 to 5, respectively.

第1図の記録装置は、原稿撮像素子や他の機器
から入力された信号、あるいはデータ記憶部のデ
ータ等から得られる画像データを信号処理装置
1で処理することにより、2値(すなわち白黒)
化された画素データより構成される画像信号(以
下、2値画像と云う)を得、この2値画像の画素
データによりレーザ、音響光学変調装置、レンズ
装置、回転多面鏡等から成るレーザビームスキヤ
ナ2を画素毎にON,OFF制御して、矢印方向に
回転し帯電器4により一様に帯電されている像形
成体3の光導電体層表面にレーザスポツトによる
像露光を行い、そのスポツト露光部分に詳細を第
2図に示したような現像装置5により電界下で像
形成体3の帯電と同極性に帯電しているトナーを
付着させてトナー像を形成するものである。そし
て、形成されたトナー像は、像形成体3の回転と
同期して像形成体3の表面に接するように送り込
まれて来る記録紙Pに転写器6によつて転写さ
れ、トナー像を転写された記録紙P′は、分離器7
によつて像形成体3の表面から分離され、次いで
ローラ定着装置8によつてトナー像を定着されて
記録装置外に排出される。一方、トナー像を転写
した像形成体3の表面は、除電器9によつて除電
された後クリーニング装置10によつて残留トナ
ーを除かれて一回の画像形成プロセスを終了す
る。
The recording device shown in FIG. 1 uses a signal processing device 1 to process image data obtained from a signal input from a document image sensor or other equipment, or from data in a data storage unit, so that binary (i.e., black and white)
An image signal composed of converted pixel data (hereinafter referred to as a binary image) is obtained, and the pixel data of this binary image is used to control a laser beam scanner consisting of a laser, an acousto-optic modulator, a lens device, a rotating polygon mirror, etc. The YANA 2 is controlled ON and OFF for each pixel, rotates in the direction of the arrow, and performs image exposure with a laser spot on the surface of the photoconductor layer of the image forming body 3, which is uniformly charged by the charger 4. A toner image is formed by attaching toner charged to the same polarity as that of the image forming member 3 under an electric field using a developing device 5 as shown in detail in FIG. 2 on the exposed portion. Then, the formed toner image is transferred by a transfer device 6 onto a recording paper P that is fed so as to be in contact with the surface of the image forming body 3 in synchronization with the rotation of the image forming body 3, and the toner image is transferred. The recorded paper P′ is transferred to the separator 7
The toner image is separated from the surface of the image forming body 3 by a roller fixing device 8, and then the toner image is fixed by a roller fixing device 8 and discharged from the recording apparatus. On the other hand, the surface of the image forming body 3 to which the toner image has been transferred is neutralized by a static eliminator 9, and then residual toner is removed by a cleaning device 10 to complete one image forming process.

第2図の現像装置5は、アルミニウムやステン
レス鋼のような非磁性材料から成る現像スリーブ
51にバイアス電源11によつてバイアス電圧を
印加されて、基体部を接地されている像形成体3
との間の現像域Aに電界を生ぜしめられる。この
現像スリーブ51の内部には表面に複数のN,S
磁極を有する磁石体52が設けられている。そし
て、現像スリーブ51が静止または左回転し、磁
石体52が右回転または静止することにより、磁
石体52の磁力によつて現像剤溜り53から現像
スリーブ51の表面に吸着された現像剤が上記一
方の回転または両方の回転によつて反時計方向に
移動するようになる。このように搬送される現像
剤は、層厚規制ブレード54によつて像形成体3
の表面に接触しない範囲の層厚に規制され、現像
域Aにおいて電界の作用によりトナーが現像剤層
から飛翔して像形成体3の静電潜像を現像する。
なお、現像に現像剤層の不同の影響が現われにく
い点で磁石体52が回転するものが好ましい。
In the developing device 5 shown in FIG. 2, a bias voltage is applied by a bias power supply 11 to a developing sleeve 51 made of a non-magnetic material such as aluminum or stainless steel, and an image forming member 3 whose base portion is grounded
An electric field is generated in the development area A between the two. Inside this developing sleeve 51, there are a plurality of N and S on the surface.
A magnet body 52 having magnetic poles is provided. Then, as the developing sleeve 51 stands still or rotates counterclockwise and the magnet body 52 rotates clockwise or stands still, the developer attracted from the developer reservoir 53 to the surface of the developing sleeve 51 by the magnetic force of the magnet body 52 is transferred to the surface of the developing sleeve 51. One or both rotations result in counterclockwise movement. The developer transported in this manner is directed to the image forming body 3 by the layer thickness regulating blade 54.
The toner is regulated to a layer thickness within a range that does not contact the surface of the image forming member 3, and in the development area A, toner flies from the developer layer due to the action of an electric field and develops the electrostatic latent image on the image forming member 3.
Note that it is preferable that the magnet body 52 rotates in that the influence of unevenness of the developer layer is less likely to appear in the development.

現像域Aを通過した残りの現像剤層はクリーニ
ングブレード55によつて現像スリーブ51の表
面から除かれて現像剤溜り53に還元される。現
像剤溜り53の現像剤は、トナーとキヤリヤが混
合した所謂二成分現像剤であり、攪拌翼56によ
つて攪拌されてトナーが像形成体1の帯電と同極
性に帯電するものである。トナーは、現像によつ
て消費されるから、トナーホツパー57からトナ
ー補給ローラ58によつて現像剤溜り53に補給
される。
The remaining developer layer that has passed through the developing area A is removed from the surface of the developing sleeve 51 by the cleaning blade 55 and returned to the developer reservoir 53. The developer in the developer reservoir 53 is a so-called two-component developer containing a mixture of toner and carrier, and is agitated by an agitating blade 56 so that the toner is charged to the same polarity as that of the image forming member 1. Since the toner is consumed during development, it is replenished from the toner hopper 57 to the developer reservoir 53 by the toner replenishment roller 58.

像形成体3の帯電と同極性に帯電したトナーを
現像域Aにおいて現像スリーブ51上の現像剤層
から飛翔させて静電潜像を現像するために、現像
スリーブ51には像形成体3の背景部電位と同極
性の直流電圧と交流電圧の重畳したバイアス電圧
を印加する。バイアス電源11は、このバイアス
電圧の印加を第3図乃至第6図に示したように行
い、それによつて、トナーの飛散や徒費を防止す
るようにしている。
In order to develop an electrostatic latent image by causing toner charged to the same polarity as that of the image forming member 3 to fly from the developer layer on the developing sleeve 51 in the developing area A, the developing sleeve 51 is provided with the toner of the image forming member 3. A bias voltage in which a DC voltage and an AC voltage having the same polarity as the background potential are superimposed is applied. The bias power supply 11 applies this bias voltage as shown in FIGS. 3 to 6, thereby preventing toner scattering and wasted costs.

第3図乃至第6図において、Tiは像形成体3
の像露光が行われて静電潜像を形成された画像形
成領域が現像域Aを通過する時間帯、Tvは像形
成体3の像露光が終了して帯電だけがされている
非画像帯電領域が現像域Aを通過する時間帯、
Toは帯電器4による帯電も終了した像形成体3
の非帯電領域が現像域Aを通過する時間帯を示
す。そして、第3図は、時間帯Tiにおいては交
流電圧に像形成体3の帯電電位Viよりは若干低
い直流電圧VDCを重畳したバイアス電圧を現像ス
リーブ31に印加し、時間帯Tvに入るとそのバ
イアス電圧を整流した形の像形成体3の帯電と逆
極性の電位のみを示すパルス状電圧に変換し、そ
の後に時間帯Tv内で印加を停止する例を示し、
第4図は、時間帯Tvに入るとバイアス電圧の交
流成分の振幅を0に減衰変換し、その後に直流成
分VDCを0乃至は像形成体3の帯電と逆極性を示
すレベルにまで変化させるようにした点が第3図
と異なる例を示し、第5図は、時間帯Tvに入る
とまずバイアス電圧の直流成分VDCを0乃至は像
形成体3の帯電と逆極性を示すレベルにまで変換
し、その後に交流成分の振幅を0に減衰させるよ
うにした点が第3図あるいは第4図と異なる例を
示し、第6図は、交流成分の振幅を0に減衰させ
る時点を時間帯Toに入つてからとした点が第5
図と異なる例を示す。
In FIGS. 3 to 6, Ti is the image forming member 3.
Tv is the time period during which the image forming area on which the electrostatic latent image has been formed through image exposure passes through the development area A, and Tv is the non-image charging period when the image forming body 3 is only charged after the image exposure has been completed. The time period during which the area passes through the development area A,
To is the image forming body 3 that has finished being charged by the charger 4.
This shows the time period during which the uncharged area passes through the development area A. FIG. 3 shows that during time period Ti, a bias voltage obtained by superimposing a direct current voltage V DC , which is slightly lower than the charged potential Vi of the image forming body 3, on an alternating current voltage is applied to the developing sleeve 31, and when time period Tv begins, a bias voltage is applied to the developing sleeve 31. An example is shown in which the bias voltage is converted into a pulsed voltage showing only a potential of opposite polarity to the charging of the image forming body 3 in a rectified form, and then the application is stopped within the time period Tv,
FIG. 4 shows that when entering the time period Tv, the amplitude of the AC component of the bias voltage is attenuated to 0, and then the DC component V DC is changed from 0 to a level showing the opposite polarity to the charging of the image forming member 3. Fig. 5 shows an example that differs from Fig. 3 in that when the time period Tv is entered, the DC component V DC of the bias voltage is first set to 0 or a level indicating the opposite polarity to the charging of the image forming body 3. This shows an example that differs from Fig. 3 or 4 in that the amplitude of the AC component is converted to 0 and then the amplitude of the AC component is attenuated to 0. The fifth point is after entering the time zone To.
An example different from the figure is shown.

この第3図の例はバイアス電源11に第7図に
示したような回路を用いることによつて実施で
き、第4図の例はバイアス電源11に第8図に示
したような回路あるいはさらに第9図に示したよ
うな回路を組合せた回路によつて実施でき、第5
図及び第6図の例はバイアス電源11に第9図の
回路と第8図の回路を組合せた回路を用いること
によつて実施できる。すなわち、第7図の回路に
おいて、整流回路のスイツチ12をオンすること
により、それまで現像スリーブ31に印加してい
た直流電圧と交流電圧の重畳から成るバイアスを
第3図に見るようにパルス状のバイアス電圧に変
換できるし、第8図の回路において、2次コイル
の短絡接点13を直流電源側にスライドさせるこ
とにより、バイアス電圧の交流成分を第4図や第
5図あるいは第6図に見るように振幅0に減衰さ
せることができるし、第9図の回路において、可
変抵抗器の移動接点14を上から下または下から
上にスライドさせることにより、バイアス電圧の
直流成分を第5図、第6図あるいは第4図に見る
ように変化させることができる。なお、交流成分
を減衰させるのは、上述の例に限らず、発振回路
側で行うようにしてもよいことは勿論である。ま
た、直流成分を0に変化させる場合は、第9図の
直流電源回路の一方の逆電位回路部分が不要とな
ることは勿論であり、あるいはスイツチによつて
2次コイルの直流電源への接続側を直流電源への
接続から接地に切換えるようにしてもよい。
The example of FIG. 3 can be implemented by using a circuit as shown in FIG. 7 for the bias power supply 11, and the example of FIG. 4 can be implemented by using a circuit as shown in FIG. It can be implemented by a circuit that combines the circuits shown in FIG.
The examples shown in FIGS. 9 and 6 can be implemented by using a circuit that is a combination of the circuit shown in FIG. 9 and the circuit shown in FIG. 8 for the bias power supply 11. That is, in the circuit shown in FIG. 7, by turning on the switch 12 of the rectifier circuit, the bias consisting of the superposition of the DC voltage and AC voltage, which had been applied to the developing sleeve 31, is changed into a pulsed form as shown in FIG. By sliding the short circuit contact 13 of the secondary coil toward the DC power source in the circuit shown in Figure 8, the AC component of the bias voltage can be converted to the bias voltage of Figures 4, 5, or 6. As shown in the diagram, the amplitude can be attenuated to 0, and by sliding the moving contact 14 of the variable resistor from top to bottom or from bottom to top in the circuit shown in FIG. , can be changed as shown in FIG. 6 or FIG. Note that attenuation of the alternating current component is not limited to the above-mentioned example, and it goes without saying that the attenuation of the alternating current component may be performed on the oscillation circuit side. In addition, when changing the DC component to 0, it goes without saying that one reverse potential circuit part of the DC power supply circuit shown in Fig. 9 is not required, or the secondary coil is connected to the DC power supply by a switch. The side may be switched from being connected to a DC power supply to being grounded.

現像スリーブ31へのバイアス電圧の印加を第
3図乃至第6図に示したように行うことによつ
て、トナーを反撥するように帯電している像形成
体3の非画像帯電領域が現像域Aを通過している
間に確実に現像域Aの電界の現像剤層からトナー
を飛翔させ像形成体3に付着させようとする力が
弱まり、そのために像形成体3の非画像帯電領域
の反撥力によつてトナーが現像剤層に戻されるよ
うになるから、トナーが画像形成領域以外に付着
して徒費されたり、飛散したりすることが防止さ
れる。なお、トナーを現像剤層から飛翔させるの
は電界の交流成分の働きが大きいから、時間帯
Tvに入るとまずバイアス電圧の交流成分を変化
させるようにした第3図あるいは第4図の例がよ
り好ましく、第5図と第6図の例では早く交流成
分を減衰させるようにした第5図の例の方が好ま
しい。また、第3図乃至第6図のようにバイアス
電圧を変化させるのは、毎回の画像形成毎に行つ
てもよいし、連続して画像形成を行う場合は、途
中の画像形成においては現像時のバイアス電圧を
維持して最終の画像形成における時間帯Tvにお
いてバイアス電圧を変化させるようにしてもよ
い。
By applying a bias voltage to the developing sleeve 31 as shown in FIGS. 3 to 6, the non-image charged area of the image forming body 3 that is charged to repel toner becomes a developing area. While passing through A, the force of the electric field in the developing area A to cause the toner to fly from the developer layer and adhere to the image forming member 3 is weakened, and as a result, the toner in the non-image charged area of the image forming member 3 is weakened. Since the toner is returned to the developer layer by the repulsive force, toner is prevented from adhering to areas other than the image forming area and being wasted or being scattered. Note that the alternating current component of the electric field has a large effect on causing the toner to fly from the developer layer, so it depends on the time of day.
It is more preferable to use the example shown in Fig. 3 or 4, in which the alternating current component of the bias voltage is first changed when entering the TV, and in the examples shown in Figs. 5 and 6, the alternating current component is quickly attenuated. The illustrated example is preferred. In addition, changing the bias voltage as shown in FIGS. 3 to 6 may be done each time image formation is performed, or when image formation is performed continuously, during image formation during development. Alternatively, the bias voltage may be maintained and changed during the time period Tv in the final image formation.

現像時のバイアス電圧の交流電圧成分と直流電
圧成分は、鮮明でかぶりのないトナー像が得られ
るように決定される。このようなバイアス電圧の
決定が容易に行われるためには、現像剤溜り53
の二成分現像剤がキヤリヤに抵抗率が108Ωcm以
上、特に1013Ωcm以上の絶縁性磁性キヤリヤ粒子
を用いたものであることが好ましい。このような
キヤリヤ粒子としては、磁性体粒子の表面に樹脂
被膜を形成したキヤリヤ粒子や磁性体粒子を分散
含有した樹脂粒子から成るキヤリヤ粒子が用いら
れる。なお、絶縁性粒子の抵抗率は、粒子を0.5
cm2の断面積を有する容器に入れて1mm程度の厚さ
にタツピングした後、詰められた粒子上に1Kg/
cm2の荷重を掛け、荷重と底面電極との間に
1000V/cmの電界が生ずる電圧を印加したときの
電流値を読み取つて求められる値である。また、
現像が解像力よく鮮明に行われるためには、二成
分現像剤のトナー粒子の平均粒径が20μm以下、
特に1〜10μmであることが好ましく、キヤリヤ
粒子の平均粒径も5〜50μmであることが好まし
い。これら粒子の平均粒径は重量平均粒径で、コ
ールタカウンタ(コールタ社製)やオムニコンア
ルフア(ボシユロム社製)で測定される。このト
ナー粒子の平均粒径が小さくなり過ぎると、トナ
ー粒子1個の摩擦による帯電量が小さくなると相
対的にフアンデルワールス力が大きくなつて、凝
集し易くなつたり、分離飛翔しにくくなつたりす
るし、反対に平均粒径が大きくなり過ぎると、重
畳に対する帯電量が減少して飛翔制御がしにくく
なつたり、解像力が低下するようになる。また、
キヤリヤ粒子の平均粒径が小さくなり過ぎると、
磁石体52の磁力によつて吸着される力が弱くな
るのに対して電気的なクーロン力がフアンデルワ
ールス力が強くなり、そのためにキヤリヤ粒子が
トナー粒子と共に像形成体3の表面に移行し易く
なるし、反対に平均粒径が大きくなり過ぎると現
像スリーブ51上に形成される現像剤層が粗雑に
なつて、現像剤層を薄く均一に形成することが難
しくなると共に、現像剤層におけるトナー粒子の
付着状態も一様でなくなり、現像スリーブ51に
印加する電圧のブレークダウンや放電も起り易く
なる結果、トナー粒子の移行飛翔制御が難しくな
る。
The alternating current voltage component and direct current voltage component of the bias voltage during development are determined so that a clear and fog-free toner image can be obtained. In order to easily determine such a bias voltage, it is necessary to
The two-component developer preferably uses insulating magnetic carrier particles having a resistivity of 10 8 Ωcm or more, particularly 10 13 Ωcm or more. As such carrier particles, carrier particles having a resin coating formed on the surface of magnetic particles or carrier particles made of resin particles containing magnetic particles dispersed therein are used. In addition, the resistivity of the insulating particles is 0.5
After putting it in a container with a cross-sectional area of cm 2 and tapping it to a thickness of about 1 mm, 1 kg/kg was poured onto the packed particles.
Apply a load of cm2 , and connect the load to the bottom electrode.
This value is obtained by reading the current value when applying a voltage that produces an electric field of 1000 V/cm. Also,
In order for development to be carried out clearly and with good resolution, the average particle diameter of the toner particles in the two-component developer must be 20 μm or less.
In particular, it is preferably 1 to 10 μm, and the average particle size of the carrier particles is also preferably 5 to 50 μm. The average particle size of these particles is a weight average particle size, and is measured with a Coulter Counter (manufactured by Coulter) or Omnicon Alpha (manufactured by Boshilom). If the average particle size of the toner particles becomes too small, the van der Waals force becomes relatively large as the amount of charge due to friction of a single toner particle becomes small, making it easier to aggregate or difficult to separate and fly. On the other hand, if the average particle diameter becomes too large, the amount of charge for superimposition decreases, making it difficult to control flight and reducing resolution. Also,
If the average particle size of the carrier particles becomes too small,
While the adsorption force due to the magnetic force of the magnet body 52 becomes weaker, the electric Coulomb force becomes stronger due to the Van der Waals force, so that the carrier particles migrate to the surface of the image forming member 3 together with the toner particles. On the other hand, if the average particle size becomes too large, the developer layer formed on the developing sleeve 51 will become coarse, making it difficult to form a thin and uniform developer layer, and also causing problems in the developer layer. The state of adhesion of toner particles is no longer uniform, and breakdown and discharge of the voltage applied to the developing sleeve 51 are likely to occur, making it difficult to control the flight of toner particles.

さらに、現像スリーブ51にバイアス電圧を印
加してトナーの飛翔制御が効果的に行われるため
には、像形成体3と現像スリーブ51の間隙を数
10〜2000μmの範囲とし、従つて層厚規制ブレー
ド54によつて規制する現像剤層の層厚をそれよ
り薄くするのが好ましい。この現像域の間隙を狭
くし過ぎると、現像剤層の厚さを極めて薄くしな
ければならず、それでは均一な層厚が得られなく
なり、したがつて現像域に安定したトナー粒子を
供給することができなくなるばかりでなく、現像
スリーブ51と像形成体3の間で放電し易くなつ
て現像剤を損傷したり、トナー粒子を飛散させた
りし易くなる。これに対して、現像域の間隙を広
くし過ぎると振動電界によるトナーの飛翔制御が
困難になる。
Furthermore, in order to effectively control toner flight by applying a bias voltage to the developing sleeve 51, it is necessary to increase the gap between the image forming body 3 and the developing sleeve 51 by several times.
It is preferable that the thickness of the developer layer is in the range of 10 to 2000 μm, and therefore the thickness of the developer layer regulated by the layer thickness regulating blade 54 is smaller than this. If the gap in this development zone is made too narrow, the thickness of the developer layer must be made very thin, which makes it impossible to obtain a uniform layer thickness and therefore to supply a stable supply of toner particles to the development zone. Not only is this impossible, but also electric discharge is likely to occur between the developing sleeve 51 and the image forming body 3, damaging the developer and causing toner particles to scatter. On the other hand, if the gap between the developing areas is made too wide, it becomes difficult to control the flying of toner using the oscillating electric field.

以上述べたような好ましい条件で現像を行い、
そして現像時に現像スリーブ51に印加していた
バイアス電圧を第3図乃至第6図に示したように
変化させて画像形成を終了するようにすると、か
ぶりのない鮮明な記録画像が得られて、しかもト
ナーの徒費や飛散も少ないと言う結果を得ること
ができる。なお、現像スリーブ51や磁石体52
の回転の停止は、像形成体3の画像形成領域が現
像域Aを通過した以後のどの時点で行つてもよい
が、時間帯Tvにおけるバイアス電圧が変化した
以後の段階で行うことが現像剤層に回収されるト
ナーが極部的に多くならないので好ましい。
Developing is carried out under the preferable conditions described above,
If the bias voltage applied to the developing sleeve 51 during development is changed as shown in FIGS. 3 to 6 to complete image formation, a clear recorded image without fogging can be obtained. Moreover, it is possible to obtain the result that toner consumption and scattering are reduced. Note that the developing sleeve 51 and the magnet body 52
The rotation of the developer may be stopped at any time after the image forming area of the image forming body 3 has passed through the development area A, but it is best to stop the rotation of the developer after the bias voltage in the time period Tv changes. This is preferable because the amount of toner collected in the layer does not increase locally.

次に本発明のより具体的な実施例について述べ
る。
Next, more specific embodiments of the present invention will be described.

実施例 1 第1図及び第2図の装置を用いた。Example 1 The apparatus shown in FIGS. 1 and 2 was used.

像形成体3は表面にセレン感光体層を有し、矢
印方向に120mm/secの表面速度で回転して、帯電
器4により500Vに帯電される。レーザビームス
キヤナ2は50Vのドツト構成の静電潜像を形成す
る。現像域Aの像形成体3と現像スリーブ51の
間隙700μm、現像スリーブ51の外径30mm、左
方向回転数65rpm、磁石体52は磁束密度900ガ
ウスのN,S磁極8極を周方向に等間隙に有し、
矢印方向に700rpmで回転する。現像剤溜り53
の現像剤は、重量平均粒径が30μm程度の樹脂中
に磁性体粉末を分散含有した比抵抗が1016の絶縁
性キヤリヤと、重量平均粒径が14μmで正に
20μC/g程度に帯電する絶縁性非磁性トナーの
混合した二成分現像剤とし、現像スリーブ51上
に形成される現像剤層の層厚を層厚規制ブレード
54によつて約500μmに規制した。像形成体3
の回転と同時にバイアス電源11より現像スリー
ブ51に−150Vの直流電圧を印加する。そして、
バイアス電源11は、像形成体3の静電潜像を形
成された画像形成領域が現像装置5に達する以前
の非画像帯電領域内で、現像スリーブ51に印加
するバイアス電圧を2kV、2kHzの交流電圧と
400Vの直流電圧の重畳電圧に切換える。それと
同時に、現像スリーブ51と磁石体52を回転す
る。画像形成領域が現像域Aを通過して非画像帯
電領域が現像域Aを通過している間にバイアス電
源11は、バイアス電圧の交流成分を減少させた
後直流成分を−150Vに変化させる。現像スリー
ブ51と磁石体52の回転はバイアス電圧の直流
電圧成分が−150Vに変えられた時点で停止する。
そして、バイアス電源11は、非帯電領域が現像
域Aを通過し、像形成体の回転が止まつた時点で
バイアス電圧を0にする。すなわち、バイアス電
源11は第4図に示したようなバイアス電圧の制
御を行う。
The image forming body 3 has a selenium photoreceptor layer on its surface, rotates in the direction of the arrow at a surface speed of 120 mm/sec, and is charged to 500 V by the charger 4. The laser beam scanner 2 forms an electrostatic latent image in the form of 50V dots. The gap between the image forming body 3 and the developing sleeve 51 in the developing area A is 700 μm, the outer diameter of the developing sleeve 51 is 30 mm, and the rotation speed in the left direction is 65 rpm. in the gap,
Rotates at 700rpm in the direction of the arrow. Developer reservoir 53
The developer consists of an insulating carrier with a resistivity of 10 16 , which is made by dispersing magnetic powder in a resin with a weight average particle size of about 30 μm, and a positive carrier with a weight average particle size of 14 μm.
A two-component developer mixed with insulating non-magnetic toner charged at about 20 μC/g was used, and the layer thickness of the developer layer formed on the developing sleeve 51 was regulated to about 500 μm by a layer thickness regulating blade 54. Image forming body 3
Simultaneously with the rotation of the developing sleeve 51, a DC voltage of -150V is applied from the bias power supply 11 to the developing sleeve 51. and,
The bias power supply 11 applies a bias voltage of 2 kV, 2 kHz AC to the developing sleeve 51 in a non-image charging area before the image forming area on which the electrostatic latent image of the image forming body 3 is formed reaches the developing device 5. voltage and
Switch to superimposed voltage of 400V DC voltage. At the same time, the developing sleeve 51 and the magnet body 52 are rotated. While the image forming area passes through the development area A and the non-image charged area passes through the development area A, the bias power supply 11 reduces the AC component of the bias voltage and then changes the DC component to -150V. The rotation of the developing sleeve 51 and the magnet body 52 is stopped when the DC voltage component of the bias voltage is changed to -150V.
Then, the bias power supply 11 sets the bias voltage to 0 when the uncharged area passes through the development area A and the image forming body stops rotating. That is, the bias power supply 11 controls the bias voltage as shown in FIG.

以上の条件で現像し、得られたトナー像を普通
紙から成る記録紙Pに転写して、表面温度140℃
のローラ定着装置8によつて定着した。
Developed under the above conditions, the resulting toner image was transferred to recording paper P made of plain paper, and the surface temperature was 140°C.
The image was fixed by a roller fixing device 8.

これによつて得られた記録画像は、濃度が高く
てかぶりのないきわめて鮮明なものであつた。そ
して、5万枚の記録紙に画像記録を行つたが、最
初から最後まで安定して変らない記録画像を得る
ことができ、現像装置5と像形成体3の間隙から
トナーが飛散することもなく、クリーニング装置
10に回収されるトナーの量も少なかつた。
The recorded image thus obtained was extremely clear with high density and no fog. After recording images on 50,000 sheets of recording paper, we were able to obtain recorded images that remained stable from beginning to end, and there was no toner scattering from the gap between the developing device 5 and the image forming body 3. Therefore, the amount of toner collected by the cleaning device 10 was also small.

これに対し、像形成体3の非帯電領域が現像域
Aを通過するようになつてから、バイアス電源1
1がバイアス電圧の直流成分の反転と交流成分の
0への減衰を行つた場合は、クリーニング装置1
0に回収されるトナーの量が著しく多くなつたば
かりでなく、現像装置5からのトナーの飛散が多
くなつて、1万枚の記録紙を得るのが限度であつ
た。
On the other hand, after the uncharged area of the image forming body 3 passes through the development area A, the bias power supply 1
1 inverts the DC component of the bias voltage and attenuates the AC component to 0, the cleaning device 1
Not only did the amount of toner collected at zero increase significantly, but also the amount of toner scattering from the developing device 5 increased, making it impossible to obtain 10,000 sheets of recording paper.

なお、現像時現像スリーブ51に印加するバイ
アス電圧の交流成分としては、周波数100〜10000
Hz、好ましくは1000〜5000Hz、実効値振幅200〜
5000Vで、像形成体3との間に実効値で300〜
5000V/mmの電界強さを生ぜしめるようなものが
好ましく用いられ、波形は、正弦波に限らず、矩
形波や三角波であつてもよい。又、現像剤は、二
成分現像剤を用いるのが好ましいが
USP3893418、特開昭55−18656号公報により知
られている一成分現像剤を用いてもよい。
Note that the AC component of the bias voltage applied to the developing sleeve 51 during development has a frequency of 100 to 10,000.
Hz, preferably 1000~5000Hz, effective amplitude 200~
At 5000V, there is an effective value of 300~ between the image forming body 3 and
A type that produces an electric field strength of 5000 V/mm is preferably used, and the waveform is not limited to a sine wave, but may be a rectangular wave or a triangular wave. In addition, it is preferable to use a two-component developer as the developer.
A one-component developer known from USP 3893418 and Japanese Patent Application Laid-Open No. 18656/1984 may be used.

〔発明の効果〕〔Effect of the invention〕

本発明の画像形成方法によれば、トナーを飛散
させたり徒費したりすることなく、像形成体の帯
電と同極性に帯電したトナーでかぶりのない鮮明
なトナー像を形成することができる。
According to the image forming method of the present invention, a clear toner image without fogging can be formed using toner charged to the same polarity as that of the image forming member, without scattering the toner or wasting the toner.

本発明は、レーザビームスキヤナを用いる記録
装置に限らず、多針電極等を用いる記録装置等に
も適用し得る。また、本発明は、感光層上に絶縁
層を有する像形成体を用いた画像形成方法にも適
用しうる。さらに、本発明は、複数個の現像装置
を有するカラー画像記録装置及び像形成体上でト
ナー像を重ね合わせるカラー画像記録装置(特願
昭58−184381、同58−183152、同58−187000号)
にも適用しうる。
The present invention is applicable not only to recording devices that use laser beam scanners but also to recording devices that use multi-needle electrodes and the like. Further, the present invention can also be applied to an image forming method using an image forming body having an insulating layer on a photosensitive layer. Further, the present invention provides a color image recording device having a plurality of developing devices and a color image recording device that superimposes toner images on an image forming body (Japanese Patent Application Nos. 58-184381, 58-183152, and 58-187000). )
It can also be applied to

なお、実施例に関して、現像終了時の交流バイ
アスの減衰について記載したが、現像開始時の交
流バイアスの印加を図3〜6と逆のプロセスによ
つて行うことにより、トナーの飛散や消費が減少
すると言う好ましい結果をうることができること
はいうまでもない。
In addition, although the attenuation of the AC bias at the end of development has been described in connection with the example, scattering and consumption of toner can be reduced by applying the AC bias at the start of development in a process reverse to that shown in Figures 3 to 6. Needless to say, it is possible to obtain favorable results.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する記録装置の例
を示す概要構成図、第2図は現像装置の例を示す
部分図、第3図乃至第6図はそれぞれ現像スリー
ブに印加するバイアス電圧の例を示すグラフ、第
7図乃至第9図は第3図乃至第6図に示したバイ
アス電圧を印加するバイアス電源の構成例を示す
回路図である。 2……レーザビームスキヤナ、3……像形成
体、4……帯電器、5……現像装置、51……現
像スリーブ、52……磁石体、53……現像剤溜
り、54……層厚規制ブレード、A……現像域、
11……バイアス電源、Ti……画像形成領域通
過時間帯、Tv……非画像帯電領域通過時間帯、
To……非帯電領域通過時間帯。
FIG. 1 is a schematic configuration diagram showing an example of a recording apparatus that implements the method of the present invention, FIG. 2 is a partial diagram showing an example of a developing device, and FIGS. 3 to 6 are bias voltages applied to the developing sleeve, respectively. FIGS. 7 to 9 are circuit diagrams showing examples of configurations of bias power supplies that apply the bias voltages shown in FIGS. 3 to 6. 2... Laser beam scanner, 3... Image forming body, 4... Charger, 5... Developing device, 51... Developing sleeve, 52... Magnet, 53... Developer reservoir, 54... Layer Thickness regulation blade, A...Development area,
11...Bias power supply, Ti...image forming area passing time period, Tv...non-image charging area passing time period,
To... Time period when passing through an uncharged area.

Claims (1)

【特許請求の範囲】 1 回動する像形成体の表面を一様電位に帯電
し、該帯電面に低電位スポツト乃至は逆極性電位
スポツトの分布した潜像域を形成し、現像スリー
ブに交流電圧と前記一様電位と同極性の直流電圧
とを重畳したバイアス電圧の印加を行つて、該現
像スリーブが像形成体に接近した現像域で現像ス
リーブ上の像形成体面に接触しない層厚に形成し
た現像剤層から前記一様電位と同極性に帯電した
トナーを飛翔させて前記潜像域のスポツトに付着
させ現像する画像形成方法において、前記現像域
を像形成体の前記潜像域が通過した後それに続く
前記一様電位の帯電面が通過している間に、前記
バイアス電圧を前記一様電位と同極性の最大電圧
が減少するように変化させることを特徴とする画
像形成方法。 2 前記バイアス電圧の変化が整流によつて前記
一様電位と同極性の電圧部分を遮断することによ
り行われる特許請求の範囲第1項記載の画像形成
方法。 3 前記バイアス電圧の変化が前記交流電圧の振
幅を減衰させることにより行われる特許請求の範
囲第1項記載の画像形成方法。 4 前記バイアス電圧の変化が前記直流電圧を低
電位乃至は逆極性電位に変化させることにより行
われる特許請求の範囲第1項記載の画像形成方
法。
[Claims] 1. The surface of the rotating image forming body is charged to a uniform potential, a latent image area in which low potential spots or reverse polarity potential spots are distributed is formed on the charged surface, and an alternating current is applied to the developing sleeve. By applying a bias voltage that is a superimposed voltage and a DC voltage having the same polarity as the uniform potential, the layer thickness is increased so that the developing sleeve does not come into contact with the surface of the image forming body on the developing sleeve in the developing area close to the image forming body. In an image forming method in which toner charged to the same polarity as the uniform potential is caused to fly from a formed developer layer and adhere to spots in the latent image area for development, the latent image area of the image forming body is formed in the developing area. An image forming method characterized in that the bias voltage is changed so that a maximum voltage having the same polarity as the uniform potential decreases while the charged surface having the uniform potential passes through the charged surface. 2. The image forming method according to claim 1, wherein the change in the bias voltage is performed by blocking a voltage portion having the same polarity as the uniform potential by rectification. 3. The image forming method according to claim 1, wherein the change in the bias voltage is performed by attenuating the amplitude of the alternating current voltage. 4. The image forming method according to claim 1, wherein the change in the bias voltage is performed by changing the DC voltage to a low potential or a reverse polarity potential.
JP59104743A 1984-05-25 1984-05-25 Image forming method Granted JPS60249171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59104743A JPS60249171A (en) 1984-05-25 1984-05-25 Image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59104743A JPS60249171A (en) 1984-05-25 1984-05-25 Image forming method

Publications (2)

Publication Number Publication Date
JPS60249171A JPS60249171A (en) 1985-12-09
JPH0435074B2 true JPH0435074B2 (en) 1992-06-09

Family

ID=14388973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59104743A Granted JPS60249171A (en) 1984-05-25 1984-05-25 Image forming method

Country Status (1)

Country Link
JP (1) JPS60249171A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6470777A (en) * 1987-09-10 1989-03-16 Canon Kk Image forming device
JP2006091754A (en) * 2004-09-27 2006-04-06 Fuji Xerox Co Ltd Development apparatus and image forming apparatus using it
JP5195065B2 (en) * 2008-06-20 2013-05-08 コニカミノルタビジネステクノロジーズ株式会社 Image forming apparatus
US9804523B2 (en) * 2015-04-28 2017-10-31 Canon Kabushiki Kaisha Image forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513658A (en) * 1978-07-13 1980-01-30 Matsushita Electric Ind Co Ltd Frequency generator
JPS5545059A (en) * 1978-09-28 1980-03-29 Ricoh Co Ltd Reversal bias developing method
JPS5837657A (en) * 1982-07-21 1983-03-04 Canon Inc Developing method and its apparatus
JPS5880653A (en) * 1981-11-06 1983-05-14 Canon Inc Image forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513658A (en) * 1978-07-13 1980-01-30 Matsushita Electric Ind Co Ltd Frequency generator
JPS5545059A (en) * 1978-09-28 1980-03-29 Ricoh Co Ltd Reversal bias developing method
JPS5880653A (en) * 1981-11-06 1983-05-14 Canon Inc Image forming method
JPS5837657A (en) * 1982-07-21 1983-03-04 Canon Inc Developing method and its apparatus

Also Published As

Publication number Publication date
JPS60249171A (en) 1985-12-09

Similar Documents

Publication Publication Date Title
US4797335A (en) Developing method for electrostatic images using composite component developer under non-contacting conditions
US4624559A (en) Developing method for electrostatic latent image
JPH06100848B2 (en) Development method
JPH0648404B2 (en) Development device
JPH0435074B2 (en)
JPH0359436B2 (en)
JPH0528379B2 (en)
JPS60125863A (en) Developing device
JPH0364073B2 (en)
JPH0822185A (en) Developing device
JPH0619284A (en) Developing method, developing device and electrophotographic device
JP3103998B2 (en) Developing device
JPH0464064B2 (en)
JPH05346736A (en) Developing device
JPH0364074B2 (en)
JPH0376752B2 (en)
JPS6113269A (en) Developing device
JPH0844177A (en) Developing device
JP3542458B2 (en) Image forming apparatus and process cartridge used therein
JPH0611972A (en) Development device
JPH08220853A (en) Developing device
JPH0695242B2 (en) Image forming method
JPH0862971A (en) Image forming device
JPH047509B2 (en)
JPH07140789A (en) Image forming device