JPH04340447A - Method and device for inspecting surface by retro-reflection screen - Google Patents

Method and device for inspecting surface by retro-reflection screen

Info

Publication number
JPH04340447A
JPH04340447A JP3111991A JP11199191A JPH04340447A JP H04340447 A JPH04340447 A JP H04340447A JP 3111991 A JP3111991 A JP 3111991A JP 11199191 A JP11199191 A JP 11199191A JP H04340447 A JPH04340447 A JP H04340447A
Authority
JP
Japan
Prior art keywords
light source
light
image
camera
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3111991A
Other languages
Japanese (ja)
Inventor
Yoshiichi Mori
森 芳一
Junji Haga
潤二 芳賀
Shigeto Adachi
成人 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3111991A priority Critical patent/JPH04340447A/en
Publication of JPH04340447A publication Critical patent/JPH04340447A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a capability for detecting a pseudo image at a defective portion to be improved by allowing a luminous position of a light source to be moved to a plurality of locations and an image which is captured by a camera to be subjected to addition by an image-processing device for each movement of the luminous position. CONSTITUTION:Light sources 3a, 3b,... and 3n are placed at relative positions where light of the light sources hits against an object 5 to be inspected, is reflected, and then travels toward a retro-reflection screen 1. The light sources 3a-3n are successively lit up by a light source switcher 6, one light at a time. A timing of lighting is synchronized to a timing signal generator 12 and a timing signal simultaneously allows an image pickup timing of a camera 2 to be synchronized. When the light source 3a-3n are lit successively, the luminous positions are moved. Therefore, an image which is captured by the camera 2 for each luminescence of light sources 3a-3n is subjected to addition by an image processing device 8 and a traveling pseudo image becomes ambiguous when it is observed by a monitor 9. However. since the defective image is fixed, the image is highlighted, thus preventing the pseudo image from being regarded as the defective portion by mistake.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,自動車外板,プラスチ
ック面などの表面検査方法に関し,詳しくは,逆反射ス
クリーンを用いて検査対象物表面の欠陥部分を明暗画像
として強調することで,欠陥部分を発見する表面検査方
法に関する。
[Industrial Application Field] The present invention relates to a surface inspection method for automobile exterior panels, plastic surfaces, etc., and more specifically, the present invention relates to a method for inspecting surfaces such as automobile exterior panels and plastic surfaces. This invention relates to a surface inspection method for detecting parts.

【0002】0002

【従来の技術】逆反射スクリーンを利用した表面検査方
法として,特開昭62−502358号に示されるもの
があり,その要旨は次の通りである。この検査方法に用
いる検査装置は,図8に示すように逆反射スクリーン3
0,カメラ31,光源32の基本要素により構成される
。検査対象物33の表面を,逆反射スクリーン30と光
源32の間に置き,光源32の光が検査対象物33の表
面に当り,反射して逆反射スクリーン30に向かうよう
な相対的位置に配置する。検査対象物33で反射し逆反
射スクリーン30に入ってきた光は,入射光軸とほぼ同
じ方向に反射し,再び検査対象物33の表面で反射して
,光源32のやや上方に配置されたカメラ31に捕えら
れる。これによって検査対象物33の表面の凹凸変化が
光学的に強調された画像をカメラ31に捕えることがで
き,平滑であるべき表面の欠陥場所を容易に発見するこ
とができる。
2. Description of the Related Art A surface inspection method using a retroreflective screen is disclosed in Japanese Patent Laid-Open No. 62-502358, the gist of which is as follows. The inspection device used in this inspection method consists of a retroreflective screen 3 as shown in Figure 8.
0, camera 31, and light source 32. The surface of the object to be inspected 33 is placed between the retroreflective screen 30 and the light source 32, and placed in a relative position such that the light from the light source 32 hits the surface of the object to be inspected 33 and is reflected toward the retroreflective screen 30. do. The light reflected by the inspection object 33 and entering the retroreflection screen 30 is reflected in almost the same direction as the incident optical axis, and is reflected again from the surface of the inspection object 33, and is placed slightly above the light source 32. Captured by camera 31. This allows the camera 31 to capture an image in which changes in unevenness on the surface of the inspection object 33 are optically emphasized, making it possible to easily find defective locations on the surface, which should be smooth.

【0003】この検出原理を図9及び図10を用いて説
明する。図9は検査対象物33の表面に欠陥のない場合
を示し,図10は欠陥のある場合を示している。逆反射
スクリーン30は,その表面にビーズ状の反射球34が
密接されており,各反射球34は入射光に対し図示する
ような指向性の反射パターンを有している。図9に示す
ように,表面に欠陥がない場合,光源方向から来た光は
,検査対象物33の表面で逆反射スクリーン30の方向
に反射する。光源近傍の光源よりやや上に設置されたカ
メラは,図中のカメラビューイング方向から,検査対象
物33表面に向いており,逆反射スクリーン30からの
反射光が,検査対象物33で再反射する光を捕えている
。いま検査対象物33表面のA,B,Cの各点をカメラ
から見るとき,欠陥のない平面では,逆反射スクリーン
30の各反射球34の角度αで反射される同じ強さの光
を見ていることになり,カメラは濃淡変化のない中間的
な明るさをもった面として捕える。一方,図9のように
検査対象物33の表面に欠陥がある場合,欠陥のないA
点では前記と同様に逆反射スクリーン30の反射球の角
度αからの光を捕えるが,B点(カメラ側から見て下り
坂)では,反射角γの強い光を捕え,またC点(カメラ
側から見て上り坂)では,角度βの弱い光を捕えること
になる。従って,B点の下り坂では明るく,C点の上り
坂では暗く見えることになる。逆反射スクリーン30の
反射球34の反射パターンの指向性の幅は,約±1度と
鋭いため,欠陥の微妙な傾きでも,明暗の変化量が激し
く,欠陥の凹凸が強調されて観測されることになる。
The principle of this detection will be explained using FIGS. 9 and 10. FIG. 9 shows a case where there is no defect on the surface of the inspection object 33, and FIG. 10 shows a case where there is a defect. The retroreflective screen 30 has bead-shaped reflective spheres 34 closely attached to its surface, and each reflective sphere 34 has a directional reflection pattern for incident light as shown. As shown in FIG. 9, when there is no defect on the surface, the light coming from the direction of the light source is reflected in the direction of the retroreflection screen 30 on the surface of the inspection object 33. The camera installed near the light source and slightly above the light source faces the surface of the inspection object 33 from the camera viewing direction in the figure, and the reflected light from the retroreflective screen 30 is re-reflected by the inspection object 33. It captures the light. Now, when we look at points A, B, and C on the surface of the inspection object 33 from the camera, on a flat surface with no defects, we see the same intensity of light reflected at the angle α of each reflection sphere 34 of the retroreflection screen 30. Therefore, the camera captures it as a surface with intermediate brightness without any change in shading. On the other hand, if there is a defect on the surface of the inspection object 33 as shown in FIG.
At point B (downhill when viewed from the camera side), light from the angle α of the reflective sphere of the retroreflection screen 30 is captured as before, but at point C (downhill when viewed from the camera side), light with a strong reflection angle γ is captured, and at point C (camera When viewed from the side (uphill), weak light at angle β will be captured. Therefore, it will appear bright on a downhill slope at point B, and dark on an uphill slope at point C. The width of the directivity of the reflection pattern of the reflective spheres 34 of the retroreflective screen 30 is as sharp as about ±1 degree, so even if the defect is slightly tilted, the amount of change in brightness is large and the unevenness of the defect is observed to be emphasized. It turns out.

【0004】0004

【発明が解決しようとする課題】上記の従来例装置にお
いて,光源32からの光が直接,欠陥部分に当たる光路
を考えると,欠陥部分が凹部である場合には,その凹部
からの反射光が逆反射スクリーン30から反射されて検
査対象物33に戻り,再反射した光をカメラ31が捕え
るとき,凹部が凹面鏡的な役割りをする結果,欠陥部の
明暗像の先に,欠陥凹部の影響による明るい疑似像が生
じる。また,欠陥部分が凸部であるときは,凸部が凸面
鏡的な役割をするため,同じ位置に暗い疑似像が生じる
。疑似像は欠陥のない場所に,あたかもそこに欠陥があ
るがごときに現れるので,欠陥検査上において,疑似像
が生じる位置にも欠陥が有るように誤認することになる
[Problem to be Solved by the Invention] In the conventional device described above, considering the optical path in which the light from the light source 32 directly hits the defective part, if the defective part is a recess, the light reflected from the recess will be reversed. When the camera 31 captures the light that is reflected from the reflective screen 30 and returned to the inspection object 33, the concave portion acts like a concave mirror, and as a result, a bright and dark image of the defective portion appears, due to the influence of the defective concave portion. A bright false image occurs. Further, when the defective portion is a convex portion, the convex portion acts like a convex mirror, and a dark false image is generated at the same position. A false image appears in a place where there is no defect, as if there were a defect there, so that during defect inspection, the position where the false image occurs is mistakenly recognized as having a defect.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明は,表面にビーズ状の反射球を密設した逆反射
スクリーンと,光源と,検査対象物とを,前記光源から
の光が前記検査対象物に当り反射して,前記逆反射スク
リーンに向かうような相対的位置に配置し,検査対象物
の表面を光源で照射したときの反射光を逆反射スクリー
ンで検査対象物に戻し,検査対象物の表面で再反射した
光を,光源の近傍に配置したカメラで捕えることにより
,検査対象物表面の欠陥部分の凹凸変化を,明暗変化に
強調された画像として得る逆反射スクリーンによる表面
検査方法において,前記光源の発光位置を複数位置とし
,光源の発生位置毎に前記カメラが捕える画像を,画像
処理装置によって加算処理することを特徴とする逆反射
スクリーンによる表面検査方法である。また,上記表面
検査方法を実現させるための検査装置は,上記光源の発
光位置をカメラ近傍の複数位置に移動させる発光位置移
動手段と,上記カメラが光源の発生位置毎に捕える画像
を加算処理する画像処理手段とを具備したことを特徴と
するものである。
[Means for Solving the Problems] The present invention aims to solve the above problems by connecting a retroreflective screen having bead-shaped reflective balls tightly arranged on its surface, a light source, and an object to be inspected with light from the light source. is placed at a relative position such that the light hits the object to be inspected and is reflected and faces the retroreflective screen, and the reflected light when the surface of the object to be inspected is irradiated with a light source is returned to the object to be inspected by the retroreflector screen. By capturing the light re-reflected on the surface of the object to be inspected with a camera placed near the light source, a retroreflective screen is used to obtain an image that emphasizes changes in brightness and darkness of the unevenness of the defective area on the surface of the object to be inspected. A surface inspection method using a retroreflective screen, characterized in that the light source has a plurality of light emission positions, and images captured by the camera for each light source generation position are summed by an image processing device. Further, the inspection device for realizing the above surface inspection method includes a light emitting position moving means for moving the light emitting position of the light source to multiple positions near the camera, and an addition process for images captured by the camera at each light source generation position. The apparatus is characterized in that it includes an image processing means.

【0006】[0006]

【作用】上記表面検査方法によれば,検査対象物の表面
欠陥により生ずる欠陥像に付随して現れる疑似像は,光
源の発生位置を移動させると,疑似像の現れる位置が移
動する。一方,欠陥像の方は,光源の発光位置を変えて
も常に欠陥のある位置に残る。それは,疑似像はカメラ
と光源の位置が同一でないことによる光路のずれによっ
て現れる虚像であり,欠陥像は光源の発光位置にかかわ
らず欠陥のある位置に現れる実像であるからである。
[Operation] According to the surface inspection method described above, the position where the pseudo image appears accompanying the defect image caused by the surface defect of the object to be inspected moves when the generation position of the light source is moved. On the other hand, the defect image always remains at the defective position even if the light emitting position of the light source is changed. This is because a false image is a virtual image that appears due to a deviation in the optical path due to the camera and light source not being in the same position, and a defective image is a real image that appears at a defective position regardless of the light emitting position of the light source.

【0007】従って,光源の発光位置を複数位置にわた
り移動させ,その都度カメラが捕える画像を画像処理装
置により加算していくと,出現位置の変る疑似像は次第
に薄れ,逆に位置の変らない欠陥像は強調されて現れる
ので,光源の発光位置の移動を数多くする程,その積算
によって疑似像と欠陥像との明暗比は大きくなり,疑似
像の検出能を向上させることができる。また,上記表面
検査方法を実現するための検査装置は,光源を移動方向
に複数個列設して順次点灯させる発光装置,あるいは,
1個の光源を移動方向に段階的に摺動させる発光装置な
どの光源移動手段と,光源の発光位置を移動させる毎に
カメラが捕える画像を加算処理する画像処理手段とによ
り構成される。
[0007] Therefore, if the light emitting position of the light source is moved over multiple positions and the image captured by the camera is added up by the image processing device each time, the false image whose appearance position changes will gradually fade, and conversely, the false image whose appearance position will not change will fade. Since the image appears emphasized, the more the light emitting position of the light source is moved, the greater the contrast ratio between the false image and the defective image becomes, and the detection ability of the false image can be improved. In addition, the inspection device for realizing the above-mentioned surface inspection method is a light emitting device in which a plurality of light sources are arranged in a row in the moving direction and are turned on sequentially, or
It is composed of a light source moving means such as a light emitting device that slides one light source step by step in the movement direction, and an image processing means that adds and processes images captured by a camera each time the light emitting position of the light source is moved.

【0008】[0008]

【実施例】図1に,本発明の逆反射スクリーンによる表
面検査方法を実行する装置の一実施例を示す。逆反射ス
クリーン1に対し,反対位置にカメラ2と光源3a ,
3b …3n を配し,その間に検査対象物5を置く。 このとき光源3a 〜3n の光が検査対象物5に当り
,反射して逆反射スクリーン1に向かうような相対的位
置にそれぞれを配置する。光源3a 〜3n は,光源
切換器6によって1灯ずつ順次点灯されるもので,順次
点灯の切換えタイミングは,タイミング信号発生器12
に同期して作動し,タイミング信号は同時にカメラ2の
撮像タイミングをも同期させるよう作動する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of an apparatus for carrying out the surface inspection method using a retroreflective screen according to the present invention. A camera 2 and a light source 3a are located opposite to the retroreflective screen 1.
3b...3n are arranged, and the inspection object 5 is placed between them. At this time, the light sources 3a to 3n are arranged at relative positions such that the light from the light sources 3a to 3n hits the object 5 to be inspected and is reflected toward the retroreflective screen 1. The light sources 3a to 3n are sequentially turned on one by one by a light source switch 6, and the switching timing for sequential lighting is determined by a timing signal generator 12.
The timing signal simultaneously operates to synchronize the imaging timing of the camera 2.

【0009】まず,光源3a を点灯して検査対象物5
を照射すると,検査対象物5で反射した光は逆反射スク
リーン1に向かい,その光は逆反射スクリーン1の表面
に密設された反射球7で反射されて再び検査対象物5に
戻り再反射するので,その再反射光をカメラ2で捕える
。 このときのカメラ2が捕える検査対象物5からの再反射
光は,図2に示すような光路となる。逆反射スクリーン
1の反射球7は,入射光線に対し図示するような指向性
をもった反射パターンであるので,カメラ2が捕える画
像は,検査対象物5の表面に欠陥がないときは,明暗変
化のない中間的な明るさをもった面として捕える。検査
対象物5の表面に凹の欠陥があるときには,図2に示す
ように,欠陥のないA点の再反射光が反射球7の角度α
での反射光であるのを基準にすると,欠陥部分のC点(
カメラ側から見て下り坂)では,反射球7の角度γの強
い光を受けてA点より明るくなり,同じく欠陥部分のB
点(カメラ側から見て上り坂)では,反射球7の角度β
の弱い光を受けてA点より暗くなるので,欠陥部分が検
出しやすくなる。このとき光源3からの光を欠陥部分が
凹面鏡的な役割をして反射する集中光は,図2に示すよ
うに逆反射スクリーン1のX点の反射球7で反射され,
カメラ2から見ると検査対象物5のY点にA点より明る
い画像として現れ,あたかもY点にも欠陥があるがごと
き疑似像を出現させる。以上の状態をカメラ2で捕えた
画像は,図3に示すようになり,中央部に明暗変化した
欠陥像Dと,その上方に疑似像Qが表示される。このと
き,欠陥部分が凹部でなく凸部であったときは,欠陥部
分は凸面鏡的な役割りをするので,図4に示すように疑
似像Q´は,光が戻ってこないので丸形の暗部として現
れる。
First, the light source 3a is turned on and the object to be inspected 5 is exposed.
When irradiated with , the light reflected by the inspection object 5 heads toward the retroreflection screen 1, and the light is reflected by the reflection sphere 7 closely mounted on the surface of the retroreflection screen 1 and returns to the inspection object 5 and is re-reflected. Therefore, the re-reflected light is captured by camera 2. The re-reflected light from the inspection object 5 captured by the camera 2 at this time has an optical path as shown in FIG. Since the reflective sphere 7 of the retroreflective screen 1 has a reflective pattern with the directionality shown in the figure for the incident light beam, the image captured by the camera 2 will be bright and dark if there is no defect on the surface of the inspection object 5. Capture it as a surface with intermediate brightness that does not change. When there is a concave defect on the surface of the inspection object 5, as shown in FIG.
Based on the reflected light at the defective part, point C (
On the downhill slope (as seen from the camera side), it receives strong light from the reflecting sphere 7 at an angle γ and becomes brighter than point A, which is also the defective part B.
At the point (uphill as seen from the camera side), the angle β of the reflecting sphere 7
The defective part becomes easier to detect because it receives weaker light and becomes darker than point A. At this time, the concentrated light from the light source 3 is reflected by the defective part acting like a concave mirror, and as shown in FIG.
When viewed from the camera 2, a brighter image appears at the Y point of the inspection object 5 than at the A point, creating a false image as if there is also a defect at the Y point. The image captured by the camera 2 of the above state is as shown in FIG. 3, with a defect image D whose brightness changes in the center and a pseudo image Q displayed above it. At this time, if the defective part is a convex part instead of a concave part, the defective part acts like a convex mirror, so the pseudo image Q' is round, as the light does not return, as shown in Figure 4. It appears as a dark side.

【0010】この疑似像QおよびQ´は,欠陥のない位
置にあたかも欠陥があるがごときに現れるので,疑似像
Q,Q´の位置にも欠陥が有ると誤認してしまう恐れが
多分にある。検査上において,この疑似像Q,Q´は不
要な存在であるので,これを消去することが要求される
。この疑似像Q,Q´の消去のための方法および手段が
,光源の発光位置移動である。図1に示したように,光
源3は複数個(n個)のランプを移動方向に列設してあ
るので,光源3a から光源3n までを順次点灯させ
ると,光源3の発光位置を移動させたことになるので,
光源3a 〜3n の発光毎にカメラ2が捕える画像を
画像処理装置8で加算処理し,モニター9で見ると,図
5に示すように,画像上で発生位置の移動する疑似像Q
,Q´は薄れ,逆に欠陥像D,D´は位置不動であるの
で,その画像は強調される。従って,光源3a から光
源3n まで発光位置を移動させた回数分の画像を加算
処理すると,欠陥像D,D´と疑似像Q,Q´の明暗比
は,光源の発光位置移動を多くする程大きくなり,疑似
像Q,Q´を欠陥部として見誤ることがなくなる。
[0010] Since these pseudo images Q and Q' appear as if there were a defect at a position where there is no defect, there is a high possibility that the position of the pseudo images Q and Q' may be mistakenly recognized as having a defect as well. . Since these pseudo images Q and Q' are unnecessary during inspection, it is required to eliminate them. The method and means for erasing the pseudo images Q and Q' is to move the light emitting position of the light source. As shown in Fig. 1, the light source 3 has a plurality of (n) lamps arranged in a row in the moving direction, so if the light sources 3a to 3n are turned on in sequence, the light emitting position of the light source 3 will be moved. Therefore,
Images captured by the camera 2 each time the light sources 3a to 3n emit light are summed by the image processing device 8, and when viewed on the monitor 9, a pseudo image Q whose generation position moves on the image is shown in FIG.
, Q' are faded, and conversely, since the defect images D and D' remain unchanged, their images are emphasized. Therefore, when images corresponding to the number of times the light emitting position is moved from the light source 3a to the light source 3n are added, the brightness ratio of the defective images D, D' and the pseudo images Q, Q' will change as the light emitting position of the light source is moved more. This makes it possible to prevent false images Q and Q' from being mistaken as defective parts.

【0011】この光源3の発光位置移動手段は上記した
ように複数個の光源3a 〜3n を順次点灯する方法
でなく,図6に示すように1個の光源3を移動方向に段
階的に移動させる摺動板11に取付けて,駆動装置10
によって移動させることもできる。また,図7に示すよ
うに,光源3の前面に液晶シャッタ15を設置し,これ
を制御装置13によって,移動方向に順次シャット・オ
フする方法にても,光源3の移動をなすことができる。 図6,図7に示したいずれの方法においても,光源3の
移動タイミングは,先に説明したタイミング信号発生器
12のタイミング信号により,カメラ2の撮像タイミン
グと同期させて行なわれる。尚,光源の発生位置移動は
,上記説明した上下方向の移動によらず,水平方向への
移動によっても,上記と同様の効果を得ることができる
The means for moving the light emitting position of the light source 3 is not a method of sequentially lighting up a plurality of light sources 3a to 3n as described above, but a method of moving one light source 3 step by step in the moving direction as shown in FIG. The driving device 10 is attached to the sliding plate 11 to
It can also be moved by Alternatively, as shown in FIG. 7, the light source 3 can be moved by installing a liquid crystal shutter 15 in front of the light source 3 and sequentially shutting it off in the moving direction by the control device 13. . In either method shown in FIGS. 6 and 7, the movement timing of the light source 3 is synchronized with the imaging timing of the camera 2 using a timing signal from the timing signal generator 12 described above. Note that the same effect as described above can be obtained by moving the light source position not only in the vertical direction as described above but also in the horizontal direction.

【0012】0012

【発明の効果】以上の説明の通り,本発明の逆反射スク
リーンによる表面検査方法およびその装置によれば,従
来方法の課題であった欠陥部分の影響による疑似像の発
生を,光源の発光位置を移動させ,発光位置移動毎に捕
えるカメラの画像を加算処理することにより解決するこ
とができるので,逆反射スクリーンによる表面検査方法
および装置を,より完璧なものにならしめる効果を奏す
る。
Effects of the Invention As explained above, according to the surface inspection method and device using a retroreflective screen of the present invention, the generation of false images due to the influence of defective parts, which was a problem with conventional methods, can be avoided by changing the light emitting position of the light source. This problem can be solved by moving the light emitting position and adding the images captured by the camera each time the light emitting position is moved. This has the effect of making the surface inspection method and device using a retroreflective screen more perfect.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明に関る一実施例の逆反射スクリーン
による検査装置の説明図。
FIG. 1 is an explanatory diagram of an inspection device using a retroreflective screen according to an embodiment of the present invention.

【図2】  欠陥像および疑似像の発生を説明する光路
図。
FIG. 2 is an optical path diagram illustrating the generation of defect images and pseudo images.

【図3】  欠陥部分が凹部であったときのカメラが捕
える画像図。
FIG. 3 is an image captured by a camera when the defective part is a recess.

【図4】  欠陥部分が凸部であったときのカメラが捕
える画像図。
FIG. 4 is an image captured by a camera when the defective portion is a convex portion.

【図5】  光源を移動させて画像処理したときの画像
図。
FIG. 5 is an image diagram when image processing is performed by moving the light source.

【図6】  光源の発光位置移動手段の実施態様を示す
概念図。
FIG. 6 is a conceptual diagram showing an embodiment of a light emitting position moving means of a light source.

【図7】  光源の発光位置移動手段の別実施態様を示
す概念図。
FIG. 7 is a conceptual diagram showing another embodiment of the light emitting position moving means of the light source.

【図8】  従来例の表面検査方法を実施する検査装置
の概念図。
FIG. 8 is a conceptual diagram of an inspection device that implements a conventional surface inspection method.

【図9】  従来例検査方法における欠陥部分のない場
合の光路の説明図。
FIG. 9 is an explanatory diagram of an optical path when there is no defective part in a conventional inspection method.

【図10】  従来例検査方法における欠陥部分のある
場合の光路の説明図。
FIG. 10 is an explanatory diagram of an optical path when there is a defective part in a conventional inspection method.

【符号の説明】[Explanation of symbols]

1…逆反射スクリーン 2…カメラ 3(3a ,3b …3n )…光源(発光位置移動手
段)5…検査対象物 7…反射球 8…画像処理装置(画像処理手段)
1...Retroreflective screen 2...Camera 3 (3a, 3b...3n)...Light source (light emitting position moving means) 5...Inspection object 7...Reflecting ball 8...Image processing device (image processing means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  表面にビーズ状の反射球を密設した逆
反射スクリーンと,光源と,検査対象物とを,前記光源
からの光が前記検査対象物に当り反射して,前記逆反射
スクリーンに向かうような相対的位置に配置し,検査対
象物の表面を光源で照射したときの反射光を逆反射スク
リーンで検査対象物に戻し,検査対象物の表面で再反射
した光を,光源の近傍に配置したカメラで捕えることに
より,検査対象物表面の欠陥部分の凹凸変化を,明暗変
化に強調された画像として得る逆反射スクリーンによる
表面検査方法において,前記光源の発光位置を複数位置
とし,光源の発光位置毎に前記カメラが捕える画像を,
画像処理装置によって加算処理することを特徴とする逆
反射スクリーンによる表面検査方法。
1. A retroreflective screen having bead-like reflective balls closely arranged on its surface, a light source, and an object to be inspected; light from the light source hits and reflects the object to be inspected, and the retroreflective screen When the surface of the object to be inspected is irradiated with a light source, the reflected light is returned to the object to be inspected using a retroreflective screen, and the light re-reflected from the surface of the object to be inspected is reflected by the light source. In a surface inspection method using a retroreflective screen, in which changes in unevenness of a defective portion on a surface of an object to be inspected are captured as an image with emphasis on changes in brightness and darkness by capturing with a camera placed nearby, the light source is emitted at a plurality of positions, The image captured by the camera for each light emitting position of the light source is
A surface inspection method using a retroreflective screen, characterized in that addition processing is performed by an image processing device.
【請求項2】  逆反射スクリーンと,光源と,検査対
象物とを,前記光源からの光が前記検査対象物で反射し
て,前記逆反射スクリーンに向かうような相対的位置に
配し,検査対象物の表面を光源で照射したときの反射光
を逆反射スクリーンで検査対象物に戻し,検査対象物の
表面で再反射した光を捕えるカメラを,光源の近傍に配
した逆反射スクリーンによる表面検査装置において,前
記光源の発光位置をカメラ近傍の複数位置に移動させる
発光位置移動手段と,前記カメラが光源の発光位置毎に
捕える画像を加算処理する画像処理手段とを具備したこ
とを特徴とする逆反射スクリーンによる表面検査装置。
2. A retroreflective screen, a light source, and an object to be inspected are arranged in relative positions such that light from the light source is reflected by the object to be inspected and directed toward the retroreflective screen, A surface using a retro-reflective screen in which the reflected light when the surface of the object is irradiated with a light source is returned to the object to be inspected using a retro-reflective screen, and a camera is placed near the light source to capture the light that is re-reflected from the surface of the object to be inspected. The inspection device is characterized by comprising a light emitting position moving means for moving the light emitting position of the light source to a plurality of positions near the camera, and an image processing means for performing addition processing on images captured by the camera for each light emitting position of the light source. A surface inspection device using a retro-reflective screen.
JP3111991A 1991-05-16 1991-05-16 Method and device for inspecting surface by retro-reflection screen Pending JPH04340447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3111991A JPH04340447A (en) 1991-05-16 1991-05-16 Method and device for inspecting surface by retro-reflection screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3111991A JPH04340447A (en) 1991-05-16 1991-05-16 Method and device for inspecting surface by retro-reflection screen

Publications (1)

Publication Number Publication Date
JPH04340447A true JPH04340447A (en) 1992-11-26

Family

ID=14575210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3111991A Pending JPH04340447A (en) 1991-05-16 1991-05-16 Method and device for inspecting surface by retro-reflection screen

Country Status (1)

Country Link
JP (1) JPH04340447A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101006983B1 (en) * 2008-11-10 2011-01-12 주식회사 쓰리비 시스템 detecting apparatus for panel
WO2011083989A3 (en) * 2010-01-07 2011-11-10 주식회사 쓰리비시스템 Defect inspection device
WO2011152605A1 (en) * 2010-06-04 2011-12-08 Lee Jae Sun Device for inspecting flat panel
JP2014517914A (en) * 2011-04-18 2014-07-24 イスメカ セミコンダクター ホールディング エス アー Inspection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101006983B1 (en) * 2008-11-10 2011-01-12 주식회사 쓰리비 시스템 detecting apparatus for panel
WO2011083989A3 (en) * 2010-01-07 2011-11-10 주식회사 쓰리비시스템 Defect inspection device
WO2011152605A1 (en) * 2010-06-04 2011-12-08 Lee Jae Sun Device for inspecting flat panel
JP2014517914A (en) * 2011-04-18 2014-07-24 イスメカ セミコンダクター ホールディング エス アー Inspection device

Similar Documents

Publication Publication Date Title
CN101726499B (en) Surface inspection apparatus
US6175645B1 (en) Optical inspection method and apparatus
JP5410092B2 (en) Apparatus and method for inspecting composite structures for inconsistencies
JPH0875661A (en) Defect detecting equipment
US20190064310A1 (en) Methods and apparatus for acquiring and tracking a projectile
US6618136B1 (en) Method and apparatus for visually inspecting transparent body and translucent body
JPH04340447A (en) Method and device for inspecting surface by retro-reflection screen
JP2019120642A (en) Image inspection device and lighting unit
JP2008164324A (en) Apparatus and method for acquisition of shape information and apparatus and method for defect detection
JP3417736B2 (en) Optical member inspection device
JP4761245B2 (en) Defect inspection system
JPH07270323A (en) Device and method for detecting painted face state
JPH11280378A (en) Method and device for measuring clearance of tail section in shield machine
JPH0283438A (en) Apparatus for evaluating deposit or the like on surface of transparent plate
US7236201B1 (en) Method of generating an image in a turbid medium
JP2980286B2 (en) Light beam detector using holograph
JP2005249946A (en) Defect inspecting apparatus for display device
JP3231592B2 (en) Optical member inspection device
JP3020398B2 (en) Plate surface inspection method and inspection device, and inspection light source
JPH07306150A (en) Surface inspecting device using reversely reflecting screen
JP2003262509A (en) Inspection apparatus, measuring instrument, and method for measurement
JPH04315951A (en) Surface inspection device using reversely reflecting screen
CN102608132A (en) Multi-type glass flaw detection device and detection method
JPH0634349A (en) Surface inspecting method with counter-reflection screen
JPH04294261A (en) Inspection of surface by means of reversely reflecting screen