JPH0434000B2 - - Google Patents

Info

Publication number
JPH0434000B2
JPH0434000B2 JP58000021A JP2183A JPH0434000B2 JP H0434000 B2 JPH0434000 B2 JP H0434000B2 JP 58000021 A JP58000021 A JP 58000021A JP 2183 A JP2183 A JP 2183A JP H0434000 B2 JPH0434000 B2 JP H0434000B2
Authority
JP
Japan
Prior art keywords
liquid injection
liquid
impeller
compressor
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58000021A
Other languages
Japanese (ja)
Other versions
JPS58135400A (en
Inventor
Ron Harorudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPS58135400A publication Critical patent/JPS58135400A/en
Publication of JPH0434000B2 publication Critical patent/JPH0434000B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/705Adding liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5846Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling by injection

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は遠心式ガス圧縮機の効力を高める装置
に関し、特に、水のような蒸発可能な液体を遠心
式多段圧縮機のガス流内に直接噴射(injection)
するためのアセンブリに関する。
TECHNICAL FIELD The present invention relates to a device for increasing the efficiency of a centrifugal gas compressor, and more particularly, to a device for increasing the efficiency of a centrifugal gas compressor, and more particularly, for direct injection of vaporizable liquids, such as water, into the gas stream of a centrifugal multi-stage compressor. injection)
Regarding assembly for.

(背景技術) 遠心式ガス圧縮機はジエツトエンジンや熱ポン
プのような多種多様な用途に長年用いられてき
た。従来、遠心式ガス圧縮機において、乾式圧縮
に対比される湿式圧縮、すなわち、蒸発可能な液
体を圧縮機のガス流中に噴射して該液体を蒸発さ
せながら圧縮を行うことが特に有利であることが
知られている。これは、圧縮機内に噴射された液
体の蒸発により液体噴射点の「上流」の圧縮段の
入口温度が下げられ、圧縮機に供給する動力をほ
とんどあるいはまつたく増加しなくても、圧縮比
すなわち流出ガス圧力対流入ガス圧力の比がかな
り高くなるからである。また、水を直接噴射する
ことによつて圧縮機の動作温度を効果的に下げる
ことができ、従つて、高価な外部中間冷却器が必
要でなくなる。
BACKGROUND ART Centrifugal gas compressors have been used for many years in a wide variety of applications such as jet engines and heat pumps. Conventionally, in centrifugal gas compressors, it has been particularly advantageous to perform wet compression as opposed to dry compression, i.e. to carry out compression while injecting an evaporable liquid into the gas stream of the compressor and evaporating the liquid. It is known. This is because the evaporation of the liquid injected into the compressor lowers the inlet temperature of the compression stage "upstream" of the liquid injection point, reducing the compression ratio or This is because the ratio of outflow gas pressure to inflow gas pressure becomes considerably high. Direct water injection also effectively reduces the operating temperature of the compressor, thus eliminating the need for expensive external intercoolers.

このように蒸発可能な液体を遠心圧縮機のガス
流内に直接噴射することによつて得られる利益は
広く認識されているが、湿式圧縮をなすための装
置および技術として当業者に知られているものは
幾つかの明白な欠点をもつ。このような従来技術
の一例が米国特許第2786626号に記載されている。
この特許では、蒸発可能な液体を圧縮機入口内に
噴射すると共に初めの数圧縮段の各段の連絡流路
(crossover channel:これは、羽根車から出た高
速ガス流を減速して圧力に変換するためのデイフ
ユーザとガス流を外周から次段の羽根車の中心部
分に向つて内向きに導く戻り流路との間を連絡す
る流路部分である)内にも噴射するようにした多
段圧縮機におけるガスの圧縮方式が開示されてい
る。上記連絡流路内に噴射される液体は、圧縮機
のガス流の上流に向けられた液体噴射口から噴射
されている。また液体噴射口は1段につき1個だ
け設けられている。
Although the benefits of injecting vaporizable liquid directly into the gas stream of a centrifugal compressor are widely recognized, there are no known devices and techniques known to those skilled in the art for performing wet compression. The ones that do have some obvious drawbacks. An example of such prior art is described in US Pat. No. 2,786,626.
In this patent, a vaporizable liquid is injected into the compressor inlet and a crossover channel between each of the first few compression stages decelerates the high-velocity gas stream leaving the impeller to bring it to pressure. This is a flow path that communicates between the diff user for conversion and the return flow path that guides the gas flow inward from the outer periphery toward the center of the next stage impeller. A method of compressing gas in a compressor is disclosed. The liquid injected into the communication flow path is injected from a liquid injection port directed upstream of the gas flow of the compressor. Further, only one liquid injection port is provided per stage.

上記特許に記載された圧縮機では、圧縮機ガス
流中に噴射された液体の蒸発の程度はかなり限ら
れている。これは、液体が圧縮機の低速域内に噴
射され、従つて、液体の微粒化または霧化が達成
されないからである。これは圧縮機入口に噴射さ
れる液体について特にそうである。高度の蒸発を
達成するには非常に小さな液滴が必要である。な
ぜなら、このような液滴の表面積は液滴の体積に
対して大きく、従つて、液滴はただちに熱を吸収
して蒸発しうるからである。前記特許に開示され
た圧縮機では噴射された液体の蒸発が限られてい
る結果、その圧縮機に供給される動力の低減も限
られる。また、蒸発が限られている結果、大きな
液滴が羽根車のような圧縮機内部部品に衝突する
ことになり、従つて、比較的短い運転期間後にこ
のような部品の重大な浸食と孔食が生ずる危険が
存在する。
In the compressor described in the above patent, the degree of evaporation of the liquid injected into the compressor gas stream is quite limited. This is because the liquid is injected into the low speed region of the compressor and therefore no atomization or atomization of the liquid is achieved. This is especially true for liquids injected into the compressor inlet. Very small droplets are required to achieve a high degree of evaporation. This is because the surface area of such droplets is large relative to the volume of the droplet, and therefore the droplet can quickly absorb heat and evaporate. As a result of the limited evaporation of the injected liquid in the compressor disclosed in said patent, the reduction in power supplied to the compressor is also limited. Limited evaporation also results in large droplets impinging on compressor internal components such as the impeller, thus resulting in significant erosion and pitting of such components after a relatively short period of operation. There is a risk that this may occur.

前記特許に記載の方式では、噴射口から液体を
圧縮機ガス流中に、かなりの霧化を達成するのに
必要な距離だけ噴射することが望ましい場合、液
体をガス流に高速で噴射するための複雑な装置が
必要になる。このような高速が必要となるのは、
前記特許に記載の液体噴射口がガス流の流れ方向
に対抗する方向に向けられているからである。
The system described in said patent provides a method for injecting liquid into a gas stream at a high velocity when it is desired to inject the liquid from the injection orifice into the compressor gas stream over a distance necessary to achieve appreciable atomization. complex equipment is required. Such high speed is required by
This is because the liquid injection ports described in the patent are oriented in a direction opposite to the flow direction of the gas flow.

(発明の目的) 従つて、本発明の目的は、前述した従来技術に
おける問題、すなわち圧縮機のガス流中に噴射さ
れた蒸発可能な液体の霧化が不充分であり、この
ため圧縮機に供給される動力の低減が制限され且
つ圧縮機内部部品に浸食と孔食が生じる危険性が
ある等の問題を解消することにある。
OBJECTS OF THE INVENTION It is therefore an object of the present invention to address the problems in the prior art mentioned above, namely the insufficient atomization of the vaporizable liquid injected into the gas stream of the compressor, The object of the present invention is to solve problems such as limited reduction in the power supplied and the risk of erosion and pitting occurring in internal parts of the compressor.

(発明の構成) 上記の目的を達成するため、本発明では、ハウ
ジングと、このハウジング内に軸支された回転軸
と、この回転軸の縦軸線に沿つて配設された複数
の相欠ぐ圧縮段とを含む圧縮機において、圧縮段
の少なくとも1段を、回転軸と共に回転する多数
の羽根を持つ羽根車(インペラ)と、羽根車から
ガス流を受入れるデイフユーザと、このデイフユ
ーザからガス流を受入れる連絡流路と、蒸発可能
な液体をガス流中に噴射する液体噴射手段とで構
成し、液体噴射手段が連絡流路の実質的に上流に
おいて液体をデイフユーザ内に噴射するように配
置される。液体噴射手段は複数の液体噴射口を有
し、各噴射口は液体の噴射方向とガス流との間の
角度が80度乃至100度になるように方向づけられ
ると共に、回転軸の縦軸線に対して羽根車の最大
半径の1.05乃至1.1倍の範囲内の半径の所に配設
される。
(Structure of the Invention) In order to achieve the above object, the present invention includes a housing, a rotating shaft pivotally supported within the housing, and a plurality of reciprocating shafts disposed along the longitudinal axis of the rotating shaft. In a compressor including a compression stage, at least one stage of the compression stage includes an impeller having a large number of blades that rotates with a rotating shaft, a diff user that receives a gas flow from the impeller, and a diff user that receives the gas flow from the diff user. a communicating channel for receiving and a liquid injection means for injecting an evaporable liquid into the gas stream, the liquid injecting means being arranged to inject the liquid into the diffuser substantially upstream of the communicating channel; . The liquid injection means has a plurality of liquid injection ports, and each injection port is oriented such that the angle between the liquid injection direction and the gas flow is 80 degrees to 100 degrees, and the angle between the liquid injection direction and the gas flow is 80 degrees to 100 degrees. It is arranged at a radius within the range of 1.05 to 1.1 times the maximum radius of the impeller.

(発明の作用効果) 上記の構成により、噴射口からガス流に略直角
に噴射された液体は羽根車を出た比較的高速のガ
ス流によりせん断されて微細な液滴に細分され、
すなわち霧化される。このように霧化された液体
は、デイフユーザから連絡流路を介して戻り流路
を通るので、次段の羽根車に達するまでに高温の
ガス流中に従来よりも時間的にも距離的にも長く
滞留し、このため液体は完全に蒸発することがで
きる。このように注入された液体の完全な蒸発の
結果、ガス流が効果的に冷却されるので、目標の
圧力まで圧縮するのに必要な動力が低減でき、ま
た液滴として次段の羽根等に衝突することがなく
なるので、注入された液体による羽根等の浸食と
孔食が防止される。さらに、本発明では、従来技
術におけるように液体を高速でガス流中に噴射す
るための複雑な装置は必要とされない。
(Operations and Effects of the Invention) With the above configuration, the liquid injected from the injection port at a substantially right angle to the gas flow is sheared by the relatively high-speed gas flow exiting the impeller and is subdivided into fine droplets.
In other words, it is atomized. Since the atomized liquid passes through the return flow path from the differential user via the communication flow path, it is transported into the high-temperature gas flow longer in time and distance than conventional methods before reaching the next stage impeller. The liquid remains for a long time so that the liquid can completely evaporate. As a result of complete evaporation of the injected liquid, the gas stream is effectively cooled, reducing the power required to compress it to the target pressure and discharging it as droplets to the next stage of vanes, etc. Since there is no collision, erosion and pitting of the blades etc. due to the injected liquid is prevented. Furthermore, the present invention does not require complex equipment for injecting liquid into a gas stream at high velocity as in the prior art.

(好適実施例の説明) 次に添付図面を参照して本発明を詳述する。(Description of preferred embodiment) The invention will now be described in detail with reference to the accompanying drawings.

第1図には普通の遠心式4段圧縮機を全体的に
符号10で示してある。ただし、本発明はそれより
多数または少数の段を有する圧縮機においても有
効に用いうるものである。圧縮機10は簡略に図
示してあり、静止部分(例えば圧縮機ハウジン
グ)には一方向の斜線をつけ、回転部分には他方
向の斜線をつけてある。圧縮すべきガスは入口1
1から圧縮機10に入り、通路12を通流した
後、回転軸15に取付けた第1の多数の羽根を持
つ羽根車14に入る。周知のように、羽根車14
の高い回転速度により、羽根車14からのガスは
遠心的にデイフユーザ17に導入される。このデ
イフユーザは好ましくは無翼形のものであり、こ
れについては後に詳述する。圧縮されつつあるガ
ス流は連絡流路18を通り、さらに戻り流路19
を通る。この戻り流路には通例、符号20で示す
ような方向制御羽根が設けられ、4段圧縮機10
の第2段をなす別の羽根車21にガス流を向け
る。同様に、さらに別の羽根車22,23がそれ
ぞれ圧縮機10の第3段と第4段を構成するよう
に設けられている。圧縮機10の第2段と第3段
は、第1段と同様に構成される。従つて、第1乃
至第3段のいずれか1段を説明すれば、これらの
段すべてが理解されよう。そこで、羽根車14を
含む第1圧縮段だけについて説明すると、本発明
に従つて複数の液体噴射口24が設けられる。こ
れらの液体噴射口24は水噴射口からなることが
好ましく、供給管25を介して液体供給源に連結
されている。各供給管25は、例えば、分配管2
7に連結され、この分配管は液体送給手段(図示
せず)に連結される。また液体噴射口24は液体
を連絡流路18の実質的に上流においてデイフユ
ーザ17内に噴射するように配置される。ここで
用いる「実質的に上流」とは、デイフユーザ内に
おいて羽根車に近い方の位置を意味し、具体的に
は噴射口を羽根車の最大半径の1.05乃至1.1倍の
範囲内の半径の所に配置することを意味する。
In FIG. 1, a conventional centrifugal four-stage compressor is shown generally at 10. However, the present invention can also be effectively used in compressors having more or fewer stages. Compressor 10 is illustrated in a simplified manner, with stationary parts (eg, the compressor housing) being shaded in one direction and rotating parts being shaded in the other direction. Gas to be compressed is at inlet 1
1 enters the compressor 10 , passes through a passage 12 , and then enters a first multi-bladed impeller 14 attached to a rotating shaft 15 . As is well known, the impeller 14
Due to the high rotational speed of the impeller 14, the gas from the impeller 14 is centrifugally introduced into the diffuser 17. The diff user is preferably wingless, as will be explained in more detail below. The gas stream being compressed passes through connecting channel 18 and further through return channel 19.
pass through. This return flow path is usually provided with a direction control vane as shown by the reference numeral 20, and the four-stage compressor 10
The gas flow is directed to another impeller 21 forming the second stage of the gas flow. Similarly, further impellers 22 and 23 are provided to constitute the third and fourth stages of the compressor 10, respectively. The second and third stages of compressor 10 are configured similarly to the first stage. Therefore, by explaining any one of the first to third stages, all of these stages will be understood. Therefore, only the first compression stage including the impeller 14 will be described. According to the invention, a plurality of liquid injection ports 24 are provided. Preferably, these liquid injection ports 24 are water injection ports, and are connected to a liquid supply source via a supply pipe 25. Each supply pipe 25 is, for example, a distribution pipe 2
7, and this distribution pipe is connected to liquid delivery means (not shown). Further, the liquid injection port 24 is arranged to inject the liquid into the diffuser 17 substantially upstream of the communication channel 18 . As used herein, "substantially upstream" means a position closer to the impeller within the differential user, and specifically, the injection port is located at a radius within the range of 1.05 to 1.1 times the maximum radius of the impeller. means to place it in

液体を連絡流路18の実質的に上流においてデ
イフユーザ17内に噴射することの重要性は第2
図を考察することによりさらに良く理解されう
る。第2図は第1図に示した多段圧縮機10の第
1段の上部の詳細図である。当業者に周知のよう
に、「デイフユーザ」は動圧すなわち運動エネル
ギーを静圧に変換する能力をもつように形成され
ている。破線28はデイフユーザ17の最大半径
を表すもので、デイフユーザ17と連絡流路18
との間の境界を示す。デイフユーザ17は半径方
向デイフユーザである。すなわち、デイフユーザ
17内の有用な空間は回転軸15の軸線からの半
径方向距離の増加と共に増加する。矢印29で示
すように、圧縮機10内で圧縮されるガス流は左
から右の方へ向けられて羽根車14の羽根14′
を通過し、さらにデイフユーザ17と連絡流路1
8とを通つた後、戻り流路19の方向制限羽根2
0を通過する。デイフユーザ17が半径方向デイ
フユーザであり、かつ羽根車14がガス流29を
高い回転速度でデイフユーザ17内に放出するの
で、ガス流29は(第2図に明瞭に示されていな
いが)実際にはデイフユーザ17内と戻り流路1
9内においてらせん状の経路をたどる。ガス流2
9は、羽根車14を離れるとき最高速度に達し、
次いで、角運動量の保存により、デイフユーザ1
7内を半径方向に進行中に急速に減速する。液体
噴射口24をデイフユーザ内に、連絡流路18の
実質的に上流において、すなわち、羽根車中に近
い、ガス流29が比較的高速である区域に配置す
ることにより、重要な利点が得られる。
The importance of injecting liquid into the diffuser 17 substantially upstream of the connecting channel 18 is secondary.
It can be better understood by considering the figure. FIG. 2 is a detailed view of the upper part of the first stage of the multi-stage compressor 10 shown in FIG. As is well known to those skilled in the art, "diffusers" are constructed with the ability to convert dynamic or kinetic energy into static pressure. The broken line 28 represents the maximum radius of the differential user 17 and the connection channel 18 between the differential user 17 and the connecting channel 18.
indicates the boundary between The differential user 17 is a radial differential user. That is, the useful space within the differential user 17 increases with increasing radial distance from the axis of the rotating shaft 15. As shown by arrow 29, the gas flow being compressed in compressor 10 is directed from left to right to impeller 14's vanes 14'.
, and further connects to the differential user 17 and the communication channel 1.
8, the direction limiting vane 2 of the return flow path 19
Pass through 0. Since the diff user 17 is a radial diff user and the impeller 14 discharges the gas flow 29 into the diff user 17 at a high rotational speed, the gas flow 29 (not clearly shown in FIG. 2) actually Inside the differential user 17 and the return flow path 1
9 follows a spiral path. gas flow 2
9 reaches maximum speed when leaving the impeller 14;
Then, due to conservation of angular momentum, the differential user 1
7 and rapidly decelerates while traveling in the radial direction. Significant advantages are obtained by locating the liquid injection ports 24 in the diff user substantially upstream of the communicating channel 18, i.e. close to the impeller, in an area where the gas flow 29 is relatively high velocity. .

例えば、複数の噴射口24によつてガス流29
中に噴射された液体の流れは、強力に微粒化また
は霧化されて微細な液滴になる。前に述べたよう
に、液滴は小さければ小さいほど一層容易に熱を
吸収して蒸発する。事実上、蒸発率は、近似的に
液滴の小ささ(すなわち液滴直径の逆数)に正比
例する。液滴の小ささは液滴とガス流29との間
の相対速度に関係する。すなわち、液滴の小ささ
はこの相対速度の自乗に従う。この相対速度は、
噴射された液体の速度が比較的低いので、主とし
てガス流29の速度に依存し、そしてガス流29
の速度は液体噴射口24の半径方向間隔(すなわ
ち軸線からの半径方向の距離)が長くなるにつれ
て小さくなるので、液滴の小ささ従つてその蒸発
率と、液体噴射口24の半径方向間隔との関係
は、第3図に示すようにグラフ化されうる。
For example, the gas flow 29 may be
The liquid stream injected into it is strongly atomized or atomized into fine droplets. As mentioned earlier, the smaller the droplet, the more easily it absorbs heat and evaporates. In fact, the evaporation rate is approximately directly proportional to the droplet size (ie, the inverse of the droplet diameter). The droplet size is related to the relative velocity between the droplet and the gas stream 29. That is, the size of the droplet follows the square of this relative velocity. This relative speed is
Since the velocity of the injected liquid is relatively low, it depends primarily on the velocity of the gas stream 29 and
The velocity decreases as the radial spacing of the liquid jets 24 (i.e., the radial distance from the axis) increases, so the droplet size and therefore its evaporation rate are dependent on the radial spacing of the liquid jets 24. The relationship can be graphed as shown in FIG.

本発明は蒸発率を高めるばかりでなく、蒸発の
持続時間もかなり長くし、こうして完全な蒸発を
さらに保証する。蒸発の持続時間の増加は、ガス
流29(第2図)中の液滴が噴射口24における
噴射点から圧縮機10の次の段まで移動しなけれ
ばならない長いらせん状の経路をたどることによ
る。従つて、本発明に従つて液体噴射口24の半
径方向間隔を小さくすることによつて、全体的な
蒸発を著しく改善するように2つの要因が協働す
る。すなわち、(1)噴射された液体を霧化して微細
な液滴にすることにより、液滴の蒸発率を著しく
高めること(第3図参照)と、(2)ガス流29(第
2図)内の液滴の持続時間すなわち「滞留時間」
をかなり長くすることである。
The present invention not only increases the evaporation rate, but also significantly increases the duration of evaporation, thus further ensuring complete evaporation. The increase in the duration of evaporation is due to the long spiral path that the droplets in the gas stream 29 (FIG. 2) have to travel from the point of injection at the nozzle 24 to the next stage of the compressor 10. . Thus, by reducing the radial spacing of liquid jets 24 in accordance with the present invention, two factors work together to significantly improve overall evaporation. Specifically, (1) the evaporation rate of the droplets is significantly increased by atomizing the injected liquid into fine droplets (see Figure 3), and (2) the gas flow 29 (Figure 2). The duration of the droplet in the
The goal is to make it quite long.

本発明によつて達成される著しくすぐれた蒸発
は、圧縮機10の性能と耐久性に重要な効果を及
ぼす。圧縮機10に供給される動力の減少をかな
り促進するとともに、ガス流29の温度を望まし
い低い温度に保持する。さらに、圧縮機10の内
部部品、例えば羽根車21,22,23に対する
高速の未蒸発液滴の衝突による孔食と浸食のおそ
れが事実上無くなる。
The significantly improved evaporation achieved by the present invention has a significant effect on the performance and durability of compressor 10. This significantly facilitates a reduction in the power supplied to the compressor 10 while maintaining the temperature of the gas stream 29 at a desirable low temperature. Furthermore, the risk of pitting and erosion due to the impact of high-velocity unevaporated droplets on internal components of the compressor 10, such as the impellers 21, 22, 23, is virtually eliminated.

液体噴射口24を渡り流路18の実質的に上流
においてデイフユーザ17内に半径方向に隔設し
たことによる他の利点は、高速で移動する液滴の
冷却作用すなわち温度低減作用に伴なう運動量の
変化によつて圧縮段の圧力ゲインが増加すること
である。このような温度低減作用は液体の蒸発率
の増加および速度の増加につれて増大し、液体の
蒸発率および速度の増加は両方とも液体噴射口2
4の半径方向間隔を短くすることにより得られ
る。こうして得られる圧力ゲインの増加分は温度
低減作用が無い場合の圧縮段の圧力ゲインの少な
くとも2%または3%になると信じられる。
Another benefit of radially spacing the liquid jets 24 into the diffuser 17 substantially upstream of the flow path 18 is that the momentum associated with the cooling or temperature reducing effect of rapidly moving droplets is The pressure gain of the compression stage increases due to the change in . This temperature reduction effect increases with increasing liquid evaporation rate and velocity, both of which increase as the liquid jet 2 increases.
4 by shortening the radial spacing. It is believed that the resulting increased pressure gain is at least 2% or 3% of the pressure gain of the compression stage in the absence of temperature reduction effects.

本発明者は、複数の液体噴射口24の半径方向
間隔を羽根車14の最大半径の1.05乃至1.1倍に
すべきであり、1.05倍より小さくすると羽根車1
4から出るガス流が不安定になり、1.1倍より大
きくすると効率が低下することを見出した。
The inventor believes that the radial spacing between the plurality of liquid injection ports 24 should be 1.05 to 1.1 times the maximum radius of the impeller 14;
It has been found that the gas flow coming out of 4 becomes unstable and the efficiency decreases when it is made larger than 1.1 times.

再び第2図について説明すると、この図は本発
明の他の特徴を示す。液体噴射口24はガス流2
9に垂直に向けられている。これにより、噴射口
24に供給される液体は低速、例えば50フイート
毎秒(15.3m/秒)でガス流29中に噴射するこ
とができる。なぜなら、噴射される液体がガス流
29を横切る方向に向けられるからである。従つ
て、噴射された液体はガス流29中に容易に侵入
して、最適に霧化させることができる。しかし、
噴射される液体はデイフユーザ17の右側壁に衝
突しないようにしなければならない。そうしない
と、液体の霧化が悪くなる。液体噴射口24がガ
ス流29に垂直に方向づけられている場合、噴射
口24を通つて噴射される液体の流れは低速でよ
いので、液体噴射用の液体送給手段(図示せず)
の構造を簡単にしうる。この利点は、噴射口24
からの液体の噴射方向がガス流29に対して80度
乃至100度の範囲内にあれば実現される。
Referring again to FIG. 2, this figure illustrates another feature of the invention. The liquid injection port 24 has a gas flow 2
9 is oriented vertically. This allows the liquid supplied to the nozzle 24 to be injected into the gas stream 29 at a low velocity, for example 50 feet per second (15.3 m/sec). This is because the injected liquid is directed across the gas stream 29. The injected liquid can therefore easily penetrate into the gas stream 29 and be optimally atomized. but,
The injected liquid must be prevented from colliding with the right side wall of the diffuser 17. Otherwise, the atomization of the liquid will be poor. If the liquid jet orifice 24 is oriented perpendicular to the gas flow 29, the flow of liquid injected through the jet orifice 24 may be at a low velocity, so that a liquid delivery means (not shown) for liquid jetting is required.
The structure of can be simplified. This advantage is that the injection port 24
This can be achieved if the direction of liquid injection from the gas flow 29 is within the range of 80 degrees to 100 degrees.

第4図は本発明のさらに別の特徴を示す。第4
図は第1図の線4−4に沿つて見た図であり、部
分的に破断して供給管32と液体噴射口30を示
し、また簡単のため戻り流路26の羽根を省略し
てある。第4図に示す本発明の上記の別の特徴
は、羽根車22を含む圧縮機10の第3段につい
て示されており、(第1圧縮段の複数の噴射口2
4に対応する)複数の液体噴射口30の個数と位
置に関する。噴射口30は供給管32と分配管3
1を介して液体送給手段(図示せず)に連結され
ている。噴射口30の好ましい個数は6個乃至1
2個であり、本発明の最適実施例では8個用いら
れる。噴射口30は軸15の縦軸線について軸対
称に配設されることが好ましい。複数の噴射口3
0の前述の個数と位置により、圧縮機10内で液
滴を蒸発させるために全範囲にわたつてガス流を
利用することができる。
FIG. 4 shows yet another feature of the invention. Fourth
The figure is a view taken along line 4--4 in FIG. 1, partially broken away to show the supply pipe 32 and liquid injection port 30, and with the vanes of the return channel 26 omitted for simplicity. be. The above-described further features of the invention shown in FIG.
(corresponding to No. 4) regarding the number and position of the plurality of liquid jet ports 30. The injection port 30 is connected to the supply pipe 32 and the distribution pipe 3
1 to a liquid supply means (not shown). The preferred number of injection ports 30 is 6 to 1.
In the preferred embodiment of the present invention, eight are used. The injection ports 30 are preferably disposed axially symmetrically about the longitudinal axis of the shaft 15. Multiple injection ports 3
The aforementioned number and location of zeros allows a full range of gas flows to be utilized in the compressor 10 for vaporizing droplets.

液体噴射口の数は上述の好適な数よりも多数ま
たは少数にしてもよい。液体噴射口の数の上限
は、その数に応じて小さくされる噴射口の内孔の
直径によつて定められる。内孔の直径を小さくし
過ぎるとそれらを通つて噴射される液体中の汚染
物によつて詰まりやすくなるからである。最少の
好適な数(すなわち6個)より小さい数の噴射口
を用いると、圧縮機10内で液滴の蒸発のために
ガス流を全範囲にわたつて利用できないが、それ
でもやはり本発明の効果は得られる。
The number of liquid jets may be greater or lesser than the preferred number described above. The upper limit of the number of liquid injection ports is determined by the diameter of the inner hole of the injection port, which is made smaller according to the number. This is because if the diameter of the bores is made too small, they will be more likely to become clogged by contaminants in the liquid that is injected through them. Using fewer than the minimum preferred number (i.e., 6) will not allow the full range of gas flow to be utilized within the compressor 10 for droplet evaporation, but will still benefit from the present invention. is obtained.

本発明の最適と考えられる実施態様では、圧縮
機10は工業プロセス用熱ポンプであり、圧縮機
内のガス流中に噴射される蒸発可能な液体は水で
あり、そして液体噴射口24の好適な半径方向間
隔は羽根車14の最大半径の約1.05倍乃至1.1倍
の範囲にあり、この範囲の上限が特に好ましい。
この範囲は次のような圧縮機、すなわち1段当り
の圧力比が約1.4乃至1.6の範囲にありかつ1段当
りの羽根車先端速度が毎秒約900乃至1100フイー
ト(274.5乃至335.5m/秒)の範囲にあるような
圧縮機に対するものである。しかし、本発明の有
利な諸効果は、圧縮段が前述の羽根車先端速度よ
りかなり高い先端速度で動作している場合、前述
の1.05倍乃至1.1倍の範囲以上の液体噴射口24
の半径方向間隔においても得られる。
In the most preferred embodiment of the invention, compressor 10 is an industrial process heat pump, the vaporizable liquid injected into the gas stream within the compressor is water, and the preferred embodiment of liquid injection ports 24 is The radial spacing is in the range of about 1.05 to 1.1 times the maximum radius of impeller 14, with the upper end of this range being particularly preferred.
This range applies to compressors with pressure ratios in the range of about 1.4 to 1.6 per stage and impeller tip speeds of about 900 to 1100 feet per second (274.5 to 335.5 m/s). This is for compressors in the range of . However, the advantageous effects of the present invention are that when the compression stage is operating at a tip speed significantly higher than the impeller tip speed described above, the liquid injection orifice 24
can also be obtained with a radial spacing of

このような熱ポンプは比較的高い性能係数を有
する。これは、熱ポンプ内に噴射された水の良好
な蒸発によるだけでなく、熱ポンプ出力における
水蒸気の質量流量が増加することにもよる。
Such heat pumps have a relatively high coefficient of performance. This is not only due to the good evaporation of the water injected into the heat pump, but also due to the increased mass flow rate of water vapor at the heat pump output.

以上、本発明の幾つかの好適な特徴を例示した
が、もちろん本発明の範囲内で幾多の変形および
変更が可能である。例えば、遠心圧縮機10に軸
流圧縮機を組合わせてもよい。
Although some preferred features of the invention have been illustrated above, it is understood that many variations and modifications are possible within the scope of the invention. For example, the centrifugal compressor 10 may be combined with an axial flow compressor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を取入れた普通の遠心式多段圧
縮機の一部分の簡略断面図、第2図は第1図に示
した多段圧縮機の第1段の一部分の断面図、第3
図は第1図に示した圧縮機の液体噴射口の半径方
向間隔に対する液滴の蒸発率を示すグラフ、第4
図は第1図の圧縮機の第3段の詳細を示す第1図
の線4−4に沿つて見た断面図で、その上部を一
部破断して示す。 10…遠心圧縮機、14,21,22,23…
羽根車、15…軸、17…デイフユーザ、18…
連絡流路、24,30…液体噴射口、25,32
…液体供給管。
FIG. 1 is a simplified cross-sectional view of a portion of an ordinary centrifugal multi-stage compressor incorporating the present invention, FIG. 2 is a cross-sectional view of a portion of the first stage of the multi-stage compressor shown in FIG. 1, and FIG.
The figure is a graph showing the evaporation rate of droplets with respect to the radial spacing of the liquid injection ports of the compressor shown in Figure 1, and the graph shown in Figure 4.
The figure is a cross-sectional view taken along line 4--4 of FIG. 1 showing details of the third stage of the compressor of FIG. 1, with the upper part thereof partially cut away. 10... Centrifugal compressor, 14, 21, 22, 23...
Impeller, 15...shaft, 17... differential user, 18...
Communication channel, 24, 30...Liquid injection port, 25, 32
...Liquid supply pipe.

Claims (1)

【特許請求の範囲】 1 ハウジングと、このハウジング内に軸支され
た回転軸と、この回転軸の縦軸線に沿つて配設さ
れた複数の相次ぐ圧縮段とを含み、前記圧縮段の
少なくとも1段が、前記回転軸と共に回転しうる
羽根車14と、この羽根車からガス流を受入れる
ようになつているデイフユーザと、このデイフユ
ーザから前記ガス流を戻り流路19に導く連絡流
路18と、前記羽根車に対して静止した液体噴射
手段であつて、蒸発可能な液体を前記羽根車から
のガス流によつて微細な液滴に細分して前記デイ
フユーザ内で蒸発させるために、蒸発可能な液体
を前記連絡流路より上流で且つ前記羽根車に近い
所において前記デイフユーザ内のガス流中に直接
噴射し、しかも該液体を該ガス流に対して高相対
速度で噴射する液体噴射手段24,25,27と
を含み、 前記液体噴射手段が複数の液体噴射口24を有
し、前記各液体噴射口は前記液体の噴射方向と前
記デイフユーザ内の前記ガス流との間の角度が80
度乃至100度になるように方向づけられていると
共に、前記軸線に対して前記羽根車の最大半径の
1.05乃至1.1倍の範囲内の半径の所に配設されて
いることを特徴とする圧縮機。 2 前記複数の液体噴射口は前記軸線についてほ
ぼ軸対称に配設されている、特許請求の範囲第1
項記載の圧縮機。 3 前記複数の液体噴射口は6乃至12個の液体噴
射口からなる、特許請求の範囲第1項または第2
項記載の圧縮機。 4 前記液体噴射口は、それらを通つて前記ガス
流に噴射される液体が実質的に完全に蒸発してか
ら次の圧縮段の羽根車に達するように前記軸線に
対して隔設されている、特許請求の範囲第1項記
載の圧縮機。 5 前記複数の液体噴射口は8個の液体噴射口か
らなる、特許請求の範囲第2項記載の圧縮機。 6 前記各液体噴射口は前記軸線に対して前記羽
根車の最大半径の1.1倍の半径の所に配設されて
いる、特許請求の範囲第5項記載の圧縮機。 7 前記液体噴射口は水を通すようになつてい
る、特許請求の範囲第1項記載の圧縮機。
What is claimed is: 1 a housing, a rotating shaft pivotally supported within the housing, and a plurality of successive compression stages disposed along the longitudinal axis of the rotating shaft; at least one of the compression stages; an impeller 14 whose stages are rotatable with said rotational shaft, a diff user adapted to receive a gas flow from said impeller, and a connecting channel 18 directing said gas flow from said diff user to a return channel 19; liquid injection means stationary with respect to the impeller, the vaporizable liquid being subdivided into fine droplets by the gas flow from the impeller and evaporated within the diffuser; a liquid injection means 24 for injecting liquid directly into the gas flow in the diffuser upstream of the communication channel and close to the impeller, and at a high relative velocity to the gas flow; 25, 27, the liquid injection means has a plurality of liquid injection ports 24, and each liquid injection port has an angle of 80 between the liquid injection direction and the gas flow in the diff user.
and a maximum radius of the impeller with respect to the axis.
A compressor characterized in that it is arranged at a radius within a range of 1.05 to 1.1 times. 2. Claim 1, wherein the plurality of liquid injection ports are arranged approximately axially symmetrically about the axis.
Compressor as described in section. 3. Claim 1 or 2, wherein the plurality of liquid injection ports are comprised of 6 to 12 liquid injection ports.
Compressor as described in section. 4 the liquid injection ports are spaced relative to the axis such that the liquid injected through them into the gas stream has substantially completely evaporated before reaching the impeller of the next compression stage; , a compressor according to claim 1. 5. The compressor according to claim 2, wherein the plurality of liquid injection ports includes eight liquid injection ports. 6. The compressor according to claim 5, wherein each of the liquid injection ports is arranged at a radius 1.1 times the maximum radius of the impeller with respect to the axis. 7. The compressor according to claim 1, wherein the liquid injection port is configured to allow water to pass through.
JP58000021A 1982-01-04 1983-01-04 Evaporable liquid injection type centrifugal compressor Granted JPS58135400A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US33673382A 1982-01-04 1982-01-04
US336733 1989-04-12

Publications (2)

Publication Number Publication Date
JPS58135400A JPS58135400A (en) 1983-08-11
JPH0434000B2 true JPH0434000B2 (en) 1992-06-04

Family

ID=23317414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58000021A Granted JPS58135400A (en) 1982-01-04 1983-01-04 Evaporable liquid injection type centrifugal compressor

Country Status (5)

Country Link
JP (1) JPS58135400A (en)
DE (1) DE3248440A1 (en)
FR (1) FR2519383B1 (en)
IT (1) IT1155033B (en)
SE (1) SE456687B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515606A (en) * 2008-03-13 2011-05-19 エーエーエフ−マックウェイ インク. Large capacity chiller compressor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111094A (en) * 1983-11-21 1985-06-17 Kobe Steel Ltd Centrifugal type vapor compressor
CA2088947C (en) * 1993-02-05 1996-07-16 Daniel A. Warkentin Hydrogen fuelled gas turbine
DE19652754A1 (en) * 1996-12-18 1998-06-25 Asea Brown Boveri Exhaust gas supercharger
US6398518B1 (en) * 2000-03-29 2002-06-04 Watson Cogeneration Company Method and apparatus for increasing the efficiency of a multi-stage compressor
DE102004052483A1 (en) * 2004-10-28 2006-05-11 Man Turbo Ag Device for injecting water or steam into the working fluid of a gas turbine plant
CZ305822B6 (en) * 2008-10-23 2016-03-30 Man Diesel Se Device to remove contaminants from turbocharger diffuser
JP2010127245A (en) * 2008-11-28 2010-06-10 Mitsubishi Heavy Ind Ltd Centrifugal compressor
JP2011111990A (en) * 2009-11-27 2011-06-09 Mitsubishi Heavy Ind Ltd Centrifugal compressor
US8690519B2 (en) * 2011-02-04 2014-04-08 General Electric Company Wet gas compressor systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617552B2 (en) * 1974-07-31 1981-04-23

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR511564A (en) * 1919-11-10 1920-12-29 Escher Wyss & Cie Const Mec Vapor compression process in multi-stage rotary compressors
US2280845A (en) * 1938-01-29 1942-04-28 Humphrey F Parker Air compressor system
US2819838A (en) * 1952-07-23 1958-01-14 Douglas K Warner Centrifugal compressors
US2786626A (en) * 1952-08-07 1957-03-26 Gulf Oil Corp Process for the compression of gases
US2924292A (en) * 1956-02-16 1960-02-09 Cons Electrodynamics Corp Apparatus for pumping
FR1563749A (en) * 1967-12-20 1969-04-18
JPS5617552U (en) * 1979-07-20 1981-02-16
JPS5694898U (en) * 1979-12-21 1981-07-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617552B2 (en) * 1974-07-31 1981-04-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515606A (en) * 2008-03-13 2011-05-19 エーエーエフ−マックウェイ インク. Large capacity chiller compressor

Also Published As

Publication number Publication date
JPS58135400A (en) 1983-08-11
DE3248440C2 (en) 1990-12-06
DE3248440A1 (en) 1983-07-14
FR2519383A1 (en) 1983-07-08
IT8224876A0 (en) 1982-12-21
IT1155033B (en) 1987-01-21
SE8206931L (en) 1983-07-05
SE456687B (en) 1988-10-24
SE8206931D0 (en) 1982-12-03
IT8224876A1 (en) 1984-06-21
FR2519383B1 (en) 1988-12-02

Similar Documents

Publication Publication Date Title
US4695224A (en) Centrifugal compressor with injection of a vaporizable liquid
US4478553A (en) Isothermal compression
CA2823766C (en) Wet compression apparatus and method
US7938910B2 (en) Method for washing gas turbine compressor with nozzle
JP7187292B2 (en) Speed compressor and refrigeration cycle equipment
US7866937B2 (en) Method of pumping gaseous matter via a supersonic centrifugal pump
US11855511B2 (en) Wind power generation unit, electric motor, and airflow delivery device for electric motor air gap
JPH0434000B2 (en)
CN103477086A (en) Pump device and pump system
US4358249A (en) Vacuum chamber with a supersonic flow aerodynamic window
CN105823254B (en) Ejector and heat pump device
JP2918773B2 (en) Centrifugal compressor
CN109952440A (en) Coolant compressor
JP2003129997A (en) Water injection method to centrifugal compressor and centrifugal compressor with water injection function
JP2009191635A (en) Gas machine
CN107559239A (en) A kind of centrifugal gas compressor attemperator of center nozzle structure
CN106837822A (en) A kind of pulsing jet vavuum pump of horizontal water outlet
CN206647277U (en) A kind of pulsing jet vavuum pump of horizontal water outlet
JP2019027628A (en) Refrigeration cycle device
JP2017053223A (en) Ejector and heat pump device
US20020083713A1 (en) Gas turbine engine power boost using micro droplet liquid injection
JPS6114427B2 (en)
CN118119771A (en) Compressor, in particular radial compressor
US1326652A (en) Inghouse electric
US6405703B1 (en) Internal combustion engine