JPH04337300A - Superconducting deflection magnet - Google Patents

Superconducting deflection magnet

Info

Publication number
JPH04337300A
JPH04337300A JP11025391A JP11025391A JPH04337300A JP H04337300 A JPH04337300 A JP H04337300A JP 11025391 A JP11025391 A JP 11025391A JP 11025391 A JP11025391 A JP 11025391A JP H04337300 A JPH04337300 A JP H04337300A
Authority
JP
Japan
Prior art keywords
superconducting
vacuum duct
wire coil
deflection magnet
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11025391A
Other languages
Japanese (ja)
Inventor
Tomohiro Kesseki
友宏 結石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Sumitomo Electric Industries Ltd
Original Assignee
Research Development Corp of Japan
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Sumitomo Electric Industries Ltd filed Critical Research Development Corp of Japan
Priority to JP11025391A priority Critical patent/JPH04337300A/en
Publication of JPH04337300A publication Critical patent/JPH04337300A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To provide a superconducting deflection magnet capable of suppressing the occurrence of quenching by providing a vacuum duct with a refrigerant passage on a superconducting wire coil. CONSTITUTION:A thin plate 4a is welded in close contact with the outer periphery of a vacuum duct 4 to form a refrigerant passage 5 with a square cross section. Liquid helium flows as a refrigerant in the passage 5 of the vacuum duct 4, not only the duct 4 but also a superconducting wire coil 1 is cooled at the extremely low temperature state via the thin plate 4a via the heat conduction by the temperature of the liquid helium. The coil 2 is efficiently cooled because it is cooled not merely via an epoxy resin outer film 3. A superconducting deflection magnet can suppress the occurrence of quenching, and the synchrotron radiation light with stable intensity can be provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、シンクロトロン放射光
発生装置において電子の進行方向を偏向するために使用
される超電導偏向マグネットに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting deflection magnet used for deflecting the traveling direction of electrons in a synchrotron radiation generator.

【0002】0002

【従来の技術】円環状に構成された真空ダクトの超高真
空状態にある内部空胴にて電子を加速周回させ、上記真
空ダクトの湾曲部にて電子の進行方向を偏向させること
で当該電子より放射されるシンクロトロン放射光を外部
へ取り出し利用するシンクロトロン放射光発生装置が存
在する。従来上記装置では、電子の進行方向を偏向させ
るための磁場を発生させるため上記湾曲部には真空ダク
トの外周面側に超電導線にて構成されるコイルを設ける
。例えば特願平1−069798号に開示され、又、図
5に示すように上述のごとく設けられる超電導線コイル
は、真空ダクト1の外周側から4極マグネットを構成す
る当該超電導線コイル2全体を覆うエポキシ樹脂にてモ
ールドされ真空ダクト1の外周面に固定される。そして
エポキシ樹脂外皮3の外周側には、超電導線コイル2を
超電導状態とするために超電導線コイル2を冷却する液
体ヘリウムが充填される。尚、エポキシ樹脂外皮3の外
周面側には他のコイル、カラー等が設けられるが図5に
おいては省略している。
[Prior Art] Electrons are accelerated in an internal cavity in an ultra-high vacuum state of a vacuum duct configured in an annular shape, and the traveling direction of the electrons is deflected at a curved portion of the vacuum duct. There is a synchrotron radiation generating device that extracts synchrotron radiation emitted from the synchrotron radiation to the outside and utilizes it. Conventionally, in the above device, a coil made of superconducting wire is provided in the curved portion on the outer peripheral surface of the vacuum duct in order to generate a magnetic field for deflecting the traveling direction of electrons. For example, the superconducting wire coil disclosed in Japanese Patent Application No. 1-069798 and provided as described above as shown in FIG. It is molded with a covering epoxy resin and fixed to the outer peripheral surface of the vacuum duct 1. The outer peripheral side of the epoxy resin outer skin 3 is filled with liquid helium for cooling the superconducting wire coil 2 in order to bring the superconducting wire coil 2 into a superconducting state. It should be noted that other coils, collars, etc. are provided on the outer peripheral surface side of the epoxy resin outer skin 3, but these are omitted in FIG.

【0003】0003

【発明が解決しようとする課題】上述したように超電導
線コイル2は液体ヘリウムにて冷却されるが、冷却はエ
ポキシ樹脂外皮3を介して間接的に行なわれるので、冷
却効率が必ずしも良くなく、特に電子より放射されるシ
ンクロトロン放射光が真空ダクト1の内周面に照射され
ることで真空ダクト1の温度が上昇しその熱伝導にて超
電導線コイル2の温度も上昇する。よって、超電導線コ
イル2が超電導状態でなくなる、いわゆるクエンチが発
生しやすくなり、もしクエンチが発生するとシンクロト
ロン放射光が発生できなくなるという問題点がある。本
発明はこのような問題点を解決するためになされたもの
で、クエンチの発生を抑えることができる超電導偏向マ
グネットを提供することを目的とする。
[Problems to be Solved by the Invention] As mentioned above, the superconducting wire coil 2 is cooled with liquid helium, but since the cooling is performed indirectly via the epoxy resin outer skin 3, the cooling efficiency is not necessarily good. In particular, synchrotron radiation light emitted from electrons is irradiated onto the inner peripheral surface of the vacuum duct 1, so that the temperature of the vacuum duct 1 rises, and the temperature of the superconducting wire coil 2 also rises due to the heat conduction. Therefore, a so-called quench, in which the superconducting wire coil 2 ceases to be in a superconducting state, is likely to occur, and if a quench occurs, there is a problem that synchrotron radiation cannot be generated. The present invention was made to solve these problems, and an object of the present invention is to provide a superconducting deflection magnet that can suppress the occurrence of quenching.

【0004】0004

【課題を解決するための手段】本発明は、超高真空内を
通過する電子の進行方向を偏向するための磁場の発生の
ため超電導状態にて使用する超電導線コイルを備えた超
電導偏向マグネットにおいて、冷媒の流通路を有する真
空ダクトを備えたことを特徴とする。
[Means for Solving the Problems] The present invention provides a superconducting deflection magnet equipped with a superconducting wire coil used in a superconducting state to generate a magnetic field for deflecting the traveling direction of electrons passing through an ultra-high vacuum. , characterized by comprising a vacuum duct having a refrigerant flow path.

【0005】[0005]

【作用】このように構成することで、真空ダクトは流通
路を流通する冷媒にて冷却されるので、シンクロトロン
放射光の照射により発生した熱が超電導線コイルに伝導
するのを抑えることができるとともに超電導線コイルの
外側からの冷却を補助することができ、超電導線コイル
におけるクエンチの発生を抑えるように作用する。
[Operation] With this configuration, the vacuum duct is cooled by the refrigerant flowing through the flow path, so it is possible to suppress the heat generated by synchrotron radiation irradiation from being conducted to the superconducting wire coil. At the same time, it can assist in cooling the superconducting wire coil from the outside, and acts to suppress the occurrence of quench in the superconducting wire coil.

【0006】[0006]

【実施例】本発明の超電導偏向マグネットに使用される
、以下に説明する真空ダクト4は、シンクロトロン放射
光発生装置を構成する真空ダクトの内、電子の進行方向
を偏向する屈曲部の真空ダクトである。このような真空
ダクト4の一実施例を示す図1ないし図4において、真
空ダクト4の外周面には、図2に示すように真空ダクト
4の内周方向へ該ダクトの管壁を貫通することなく適宜
な深さにてなる凹状の溝5aが、真空ダクト4の軸方向
に沿って形成される。真空ダクト4外周面における溝5
aの形成位置は任意であるが、図1に示すように例えば
真空ダクト4の外周面側に設けられる超電導線コイル2
を有効に冷却可能なように、超電導線コイル2と対向す
る位置に、ダクト4の周方向に適宜な間隔をおいて複数
形成しても良いし、電子より放射されるシンクロトロン
放射光が照射されるダクト4の内周面に対応する箇所に
集中的に形成してもよい。
[Example] The vacuum duct 4 described below, which is used in the superconducting deflection magnet of the present invention, is a vacuum duct at a bent part that deflects the traveling direction of electrons among the vacuum ducts constituting the synchrotron radiation light generating device. It is. 1 to 4 showing one embodiment of such a vacuum duct 4, on the outer peripheral surface of the vacuum duct 4, as shown in FIG. A concave groove 5a having an appropriate depth is formed along the axial direction of the vacuum duct 4. Groove 5 on the outer peripheral surface of vacuum duct 4
Although the formation position of a is arbitrary, as shown in FIG.
In order to effectively cool the superconducting wire coil 2, a plurality of ducts may be formed at appropriate intervals in the circumferential direction of the duct 4 at a position facing the superconducting wire coil 2, and synchrotron radiation light emitted from electrons may be irradiated with the duct 4. They may be formed intensively at locations corresponding to the inner circumferential surface of the duct 4.

【0007】溝5aが形成された真空ダクト4の外周面
全面に、図2に示すように該外周面に密着するようにし
て薄板4aを溶接することで溝5aは密閉され図示する
ように方形状の断面形状にてなる冷媒通路5が形成され
る。このような冷却通路5の両端部、即ち図3に示すよ
うに真空ダクト4の軸方向の両端部であってシンクロト
ロン放射光発生装置を構成する他の真空ダクトと接続す
るために当該真空ダクト4に設けられるフランジ7の近
傍において、薄板4aに穴をあけることで冷媒出入口6
が形成される。
By welding a thin plate 4a to the entire outer peripheral surface of the vacuum duct 4 in which the groove 5a is formed, as shown in FIG. A refrigerant passage 5 having a cross-sectional shape is formed. Both ends of such a cooling passage 5, that is, both ends of the vacuum duct 4 in the axial direction as shown in FIG. By drilling a hole in the thin plate 4a near the flange 7 provided in the refrigerant inlet/outlet 6
is formed.

【0008】又、図4に示すように冷媒通路5の冷媒出
入口6は、冷媒通路5をフランジ7まで延長しフランジ
7内部に通路を設けることでフランジ7の外表面に設け
ても良い。このように形成される冷媒出入口6は、超電
導線コイル2の外部に存在し冷媒である液体ヘリウムと
接続され、冷媒通路5には液体ヘリウムが流通する。 尚、図1にはエポキシ樹脂外皮3の外周方向にはコイル
等の構成部分は示してなく、又、図2ないし図4にも真
空ダクト4の薄板4aの外周方向にはコイル等の構成部
分は示していないが、エポキシ樹脂外皮3あるいは薄板
4aの外周方向にも図5と同様に特願平1−06979
8号に開示されている構成部分が設けられている。さら
に、エポキシ樹脂外皮3の外周側には液体ヘリウムが充
填され従来同様真空ダクト4の外周面に接して設けられ
る超電導線コイル2は当該液体ヘリウムにて冷却される
Further, as shown in FIG. 4, the refrigerant inlet/outlet 6 of the refrigerant passage 5 may be provided on the outer surface of the flange 7 by extending the refrigerant passage 5 to the flange 7 and providing a passage inside the flange 7. The refrigerant inlet/outlet 6 thus formed is connected to liquid helium, which is a refrigerant, existing outside the superconducting wire coil 2 , and liquid helium flows through the refrigerant passage 5 . Note that FIG. 1 does not show any components such as a coil in the outer circumferential direction of the epoxy resin sheath 3, and FIGS. Although not shown, the outer circumferential direction of the epoxy resin outer skin 3 or the thin plate 4a is also described in Japanese Patent Application No. 1-06979 in the same way as in FIG.
The components disclosed in No. 8 are provided. Further, the outer circumferential side of the epoxy resin jacket 3 is filled with liquid helium, and the superconducting wire coil 2 provided in contact with the outer circumferential surface of the vacuum duct 4 is cooled by the liquid helium, as in the conventional case.

【0009】このように構成することで、真空ダクト4
の冷媒通路5には冷媒である液体ヘリウムが流通するの
で、液体ヘリウムの温度による熱伝導にて真空ダクト4
は勿論のこと薄板4aを介しても超電導線コイル2は極
低温状態に冷却される。よって超電導線コイル2は従来
のようにエポキシ樹脂外皮3を介してのみ冷却されるの
ではないので効率よく冷却が行なわれる。よって、本実
施例の超電導偏向マグネットは、クエンチの発生を抑え
ることができ、安定した強度のシンクロトロン放射光を
得ることができる。
With this configuration, the vacuum duct 4
Since liquid helium, which is a refrigerant, flows through the refrigerant passage 5, the vacuum duct 4 is heated by heat conduction due to the temperature of the liquid helium.
Of course, the superconducting wire coil 2 is also cooled to an extremely low temperature via the thin plate 4a. Therefore, since the superconducting wire coil 2 is not cooled only through the epoxy resin outer sheath 3 as in the conventional case, cooling is performed efficiently. Therefore, the superconducting deflection magnet of this example can suppress the occurrence of quenching and can obtain synchrotron radiation light of stable intensity.

【0010】尚、冷媒通路5を有する真空ダクト4は上
述したようにエポキシ樹脂外皮3を使用した超電導偏向
マグネットに特に有効であるが、エポキシ樹脂にて超電
導線コイルをモールドしないタイプの超電導偏向マグネ
ットを構成する真空ダクトとして使用してもシンクロト
ロン放射光の照射による該ダクトの温度上昇を抑えるこ
とができ有効性は十分に認められ、上記実施例による真
空ダクトは上記非モールドタイプの超電導偏向マグネッ
トにも使用することができる。
The vacuum duct 4 having the refrigerant passage 5 is particularly effective for superconducting deflection magnets using the epoxy resin outer cover 3 as described above, but it is also useful for superconducting deflection magnets of a type in which the superconducting wire coil is not molded with epoxy resin. Even when used as a vacuum duct constituting the non-molded type superconducting deflection magnet, the effectiveness of the vacuum duct in the above embodiment is fully recognized as it can suppress the temperature rise of the duct due to irradiation with synchrotron radiation light. It can also be used.

【0011】[0011]

【発明の効果】以上詳述したように本発明によれば、真
空ダクトは流通路を流通する冷媒にて冷却されるので、
超電導線コイルに伝導する熱の発生を抑えることができ
るとともに超電導線コイルの外側からの冷却を補助する
ことができ、超電導線コイルにおけるクエンチの発生を
抑えることができる。
[Effects of the Invention] As detailed above, according to the present invention, since the vacuum duct is cooled by the refrigerant flowing through the flow path,
The generation of heat conducted to the superconducting wire coil can be suppressed, and the cooling from the outside of the superconducting wire coil can be assisted, and the occurrence of quench in the superconducting wire coil can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の超電導偏向マグネットの一実施例
を構成する真空ダクト部分の横断面図である。
FIG. 1 is a cross-sectional view of a vacuum duct portion constituting an embodiment of a superconducting deflection magnet of the present invention.

【図2】  図1に示す冷媒通路を示す拡大図である。FIG. 2 is an enlarged view showing the refrigerant passage shown in FIG. 1.

【図3】  本発明の超電導偏向マグネットを構成する
真空ダクトに形成される冷媒通路の冷媒出入口の一例を
示す真空ダクトの縦断面図である。
FIG. 3 is a longitudinal sectional view of a vacuum duct showing an example of a refrigerant inlet/outlet of a refrigerant passage formed in the vacuum duct constituting the superconducting deflection magnet of the present invention.

【図4】  本発明の超電導偏向マグネットを構成する
真空ダクトに形成される冷媒通路の冷媒出入口の一例を
示す真空ダクトの縦断面図である。
FIG. 4 is a longitudinal sectional view of a vacuum duct showing an example of a refrigerant inlet/outlet of a refrigerant passage formed in the vacuum duct constituting the superconducting deflection magnet of the present invention.

【図5】  従来の超電導偏向マグネットの真空ダクト
部分の横断面図である。
FIG. 5 is a cross-sectional view of a vacuum duct portion of a conventional superconducting deflection magnet.

【符号の説明】[Explanation of symbols]

2…超電導線コイル、3…エポキシ樹脂外皮、4…真空
ダクト、4a…薄板、5…冷媒通路。
2... Superconducting wire coil, 3... Epoxy resin outer cover, 4... Vacuum duct, 4a... Thin plate, 5... Refrigerant passage.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  超高真空内を通過する電子の進行方向
を偏向するための磁場の発生のため超電導状態にて使用
する超電導線コイルを備えた超電導偏向マグネットにお
いて、冷媒の流通路を有する真空ダクトを備えたことを
特徴とする超電導偏向マグネット。
Claim 1: A superconducting deflection magnet equipped with a superconducting wire coil used in a superconducting state to generate a magnetic field for deflecting the traveling direction of electrons passing through an ultra-high vacuum, the vacuum having a coolant flow path. A superconducting deflection magnet characterized by being equipped with a duct.
【請求項2】  超高真空内を通過する電子の進行方向
を偏向するための磁場の発生のため超電導状態にて使用
する超電導線コイルを該コイルの外周側より樹脂にてモ
ールドした超電導偏向マグネットにおいて、冷媒の流通
路を有する真空ダクトを備えたことを特徴とする超電導
偏向マグネット。
2. A superconducting deflection magnet in which a superconducting wire coil used in a superconducting state is molded with resin from the outer circumferential side of the coil to generate a magnetic field to deflect the traveling direction of electrons passing through an ultra-high vacuum. A superconducting deflection magnet characterized by comprising a vacuum duct having a coolant flow path.
JP11025391A 1991-05-15 1991-05-15 Superconducting deflection magnet Pending JPH04337300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11025391A JPH04337300A (en) 1991-05-15 1991-05-15 Superconducting deflection magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11025391A JPH04337300A (en) 1991-05-15 1991-05-15 Superconducting deflection magnet

Publications (1)

Publication Number Publication Date
JPH04337300A true JPH04337300A (en) 1992-11-25

Family

ID=14531002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11025391A Pending JPH04337300A (en) 1991-05-15 1991-05-15 Superconducting deflection magnet

Country Status (1)

Country Link
JP (1) JPH04337300A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916843B2 (en) 2005-11-18 2014-12-23 Mevion Medical Systems, Inc. Inner gantry
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8941083B2 (en) 2007-10-11 2015-01-27 Mevion Medical Systems, Inc. Applying a particle beam to a patient
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US8970137B2 (en) 2007-11-30 2015-03-03 Mevion Medical Systems, Inc. Interrupted particle source
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
USRE48047E1 (en) 2004-07-21 2020-06-09 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US9925395B2 (en) 2005-11-18 2018-03-27 Mevion Medical Systems, Inc. Inner gantry
US10722735B2 (en) 2005-11-18 2020-07-28 Mevion Medical Systems, Inc. Inner gantry
US10279199B2 (en) 2005-11-18 2019-05-07 Mevion Medical Systems, Inc. Inner gantry
US9452301B2 (en) 2005-11-18 2016-09-27 Mevion Medical Systems, Inc. Inner gantry
US8916843B2 (en) 2005-11-18 2014-12-23 Mevion Medical Systems, Inc. Inner gantry
US8941083B2 (en) 2007-10-11 2015-01-27 Mevion Medical Systems, Inc. Applying a particle beam to a patient
USRE48317E1 (en) 2007-11-30 2020-11-17 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8970137B2 (en) 2007-11-30 2015-03-03 Mevion Medical Systems, Inc. Interrupted particle source
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US10368429B2 (en) 2012-09-28 2019-07-30 Mevion Medical Systems, Inc. Magnetic field regenerator
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US9706636B2 (en) 2012-09-28 2017-07-11 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US10155124B2 (en) 2012-09-28 2018-12-18 Mevion Medical Systems, Inc. Controlling particle therapy
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US10456591B2 (en) 2013-09-27 2019-10-29 Mevion Medical Systems, Inc. Particle beam scanning
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US11717700B2 (en) 2014-02-20 2023-08-08 Mevion Medical Systems, Inc. Scanning system
US10434331B2 (en) 2014-02-20 2019-10-08 Mevion Medical Systems, Inc. Scanning system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US11213697B2 (en) 2015-11-10 2022-01-04 Mevion Medical Systems, Inc. Adaptive aperture
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US11786754B2 (en) 2015-11-10 2023-10-17 Mevion Medical Systems, Inc. Adaptive aperture
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor
US11311746B2 (en) 2019-03-08 2022-04-26 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system
US11717703B2 (en) 2019-03-08 2023-08-08 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor

Similar Documents

Publication Publication Date Title
JPH04337300A (en) Superconducting deflection magnet
JP3988167B2 (en) X-ray generator having heat transfer device
US10701787B2 (en) X-Ray conversion target and X-ray generator
US6084225A (en) RF induction coil
US3259790A (en) Beam tube and magnetic circuit therefor
US4387323A (en) Permanent magnet structure for linear-beam electron tubes
TW201816801A (en) Electron beam irradiation device
US6977991B1 (en) Cooling arrangement for an X-ray tube having an external electron beam deflector
US6975704B2 (en) X-ray tube with housing adapted to receive and hold an electron beam deflector
WO2022185568A1 (en) Superconductive electromagnet device and method for cooling superconductive electromagnet device
JP2019205254A (en) Rotary electric machine
KR930009236B1 (en) Cooling apparatus for magnetron
JPH04354312A (en) Gas insulation transformer
US3538366A (en) Fluid cooled electromagnetic structure for traveling wave tubes
JPS62180999A (en) Synchrotron radiation light generator
JPH0499886A (en) Coil for generating magnetic field in dry etching device
JP2642612B2 (en) Superconducting coil device for magnetic levitation train
KR200162359Y1 (en) Cathode ray tube
KR200279682Y1 (en) Cooling system of transformer active-part
JP2643471B2 (en) Microwave generation unit
JP3125167B2 (en) Superconducting wiggler device
JP2023107103A (en) Electromagnet and accelerator system
JP4228176B2 (en) Magnetizer
JPS6166400A (en) Plasma heating antenna
JPH02267898A (en) Absorber for synchrotron discharger