JPH04331418A - Method and device for detecting grounded section of distribution line - Google Patents

Method and device for detecting grounded section of distribution line

Info

Publication number
JPH04331418A
JPH04331418A JP9993791A JP9993791A JPH04331418A JP H04331418 A JPH04331418 A JP H04331418A JP 9993791 A JP9993791 A JP 9993791A JP 9993791 A JP9993791 A JP 9993791A JP H04331418 A JPH04331418 A JP H04331418A
Authority
JP
Japan
Prior art keywords
distribution line
phase
ground fault
section
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9993791A
Other languages
Japanese (ja)
Inventor
Soji Nishimura
荘治 西村
Yoshio Kuroiwa
黒岩 良雄
Hiroshi Kumegawa
久米川 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP9993791A priority Critical patent/JPH04331418A/en
Publication of JPH04331418A publication Critical patent/JPH04331418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To know a grounded section of a distribution line with less number of voltage sensors than before by finding a phase difference between a zero phase current and a phase of a line voltage between the specified two phases which is detected at a measuring point located at the end of each section of the distribution line. CONSTITUTION:A terminal station T1 detects an earth current of one direction and a terminal station T2 detects an earth current of the opposite direction. An element having a phase common to the terminal stations T1 and T2, for example, a line voltage between the specified two phases or a phase voltage of the specified one phase is taken and a phase difference between a zero-phase current and the said element is calculated and the result is sent to a master station. Based on a distribution of a phase difference from the zero-phase current, one of the data received from each terminal station, the master station decides a grounded section of the distribution line.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、配電線上の一定区間ご
とに設けた端末局において配電線の電圧及び電流を測定
することにより方向地絡情報を検出して配電線の地絡故
障区間を検出することができる配電線の地絡故障区間検
出方法及び装置に関するものである。
[Industrial Application Field] The present invention detects directional ground fault information by measuring the voltage and current of the distribution line at terminal stations installed in certain sections on the distribution line, and detects ground fault fault sections of the distribution line. The present invention relates to a method and device for detecting a ground fault section of a power distribution line.

【0002】0002

【従来の技術】配電線は、変電所から需要家までの間に
設置される電線路であり、1つの変電所から多数本の配
電線が供給される。各配電線には、遮断器の他、一定間
隔ごとに区分開閉器が設けられている。配電線の途中に
おいて地絡等の事故が起こると、遮断器が開路され、そ
れに応じて区分開閉器も開路され、配電線が保護される
が、この場合、地絡故障の原因究明をし地絡区間以外に
電力供給を行うために地絡故障区間がいずれにあるかを
検出することが重要である。
2. Description of the Related Art A power distribution line is an electric line installed between a substation and a consumer, and a large number of power distribution lines are supplied from one substation. In addition to circuit breakers, each distribution line is provided with section switches at regular intervals. When an accident such as a ground fault occurs in the middle of a distribution line, the circuit breaker is opened and the sectional switch is also opened accordingly to protect the distribution line. In order to supply power to areas other than the faulted area, it is important to detect which area has the ground fault fault.

【0003】そこで、従来においては、配電線の一定間
隔ごとに端末局(区分開閉器と同じ場所に設けてもよく
、別の場所に設けてもよい。また、区分開閉器の数と一
致していなくてもよい)を設けていた。この端末局は、
各相電流を測定する3つの電流センサと、各相電圧を測
定する3つの電圧センサとを有し、3つの電流センサか
ら零相電流I0 を算出し、3つの電圧センサから零相
電圧V0 を算出し、「零相電流I0 及び零相電圧V
0 が発生していることと、零相電流I0 と零相電圧
V0 との位相差を算出すること」により端末局内にお
いて地絡情報と方向地絡情報とを判定して親局に送信し
、親局は、変電所の存在する方向に地絡を検出した端末
局と負荷の存在する方向に地絡を検出した端末局との間
に位置する区間を地絡故障区間であるとしていた。
[0003] Therefore, in the past, terminal stations (which may be installed at the same location as the section switches or at a different location) are installed at regular intervals along the distribution line. ). This terminal station is
It has three current sensors that measure each phase current and three voltage sensors that measure each phase voltage.The zero-sequence current I0 is calculated from the three current sensors, and the zero-sequence voltage V0 is calculated from the three voltage sensors. Calculate "Zero-sequence current I0 and zero-sequence voltage V
0 has occurred, and calculate the phase difference between the zero-sequence current I0 and the zero-sequence voltage V0, determine ground fault information and directional ground fault information in the terminal station, and transmit it to the master station, The master station determined that the section located between the terminal station that detected the ground fault in the direction of the substation and the terminal station that detected the ground fault in the direction of the load was the ground fault fault section.

【0004】0004

【発明が解決しようとする課題】前記の端末局には3つ
の電圧センサが必要であるが、これらの電圧センサには
、通常布設されている配電線に直接取り付けて大地との
電圧を光学的に測定するタイプのものが用いられる。 しかし、高電圧(例えば6.6kV)を測定するので、
大地との絶縁抵抗に大きく左右されるという欠点がある
。例えば、天候や電圧センサ表面の汚損等により大地と
の絶縁抵抗が変動すると測定電圧の位相角が実際の電圧
の位相角とずれたり、測定電圧の大きさそのものに誤差
が生じたりする。
[Problem to be Solved by the Invention] The terminal station described above requires three voltage sensors, but these voltage sensors are required to be attached directly to the normally installed power distribution line and optically measure the voltage between them and the ground. A type of measurement is used. However, since we are measuring high voltage (e.g. 6.6kV),
The drawback is that it is greatly affected by the insulation resistance with the ground. For example, if the insulation resistance with the ground changes due to weather or dirt on the surface of the voltage sensor, the phase angle of the measured voltage may deviate from the phase angle of the actual voltage, or an error may occur in the magnitude of the measured voltage itself.

【0005】そこで、電圧センサを変圧器PTにより構
成し端末局に内蔵すれば前記の欠点は生じないが、零相
電圧V0 を検出するために高価な変圧器PTを3つも
設けなければならないという問題がある。端末局は、各
配電線に多数配置されるものであり、配電線の数が多い
ことを考えると端末局の構成はできるだけ簡単にするこ
とが好ましいので、1つの端末局に使用する変圧器PT
の数はできるだけ少ない方がよい。
[0005] Therefore, if the voltage sensor is constituted by a transformer PT and built into the terminal station, the above-mentioned drawbacks will not occur, but in order to detect the zero-sequence voltage V0, three expensive transformers PT must be installed. There's a problem. A large number of terminal stations are placed on each distribution line, and considering the large number of distribution lines, it is preferable to make the configuration of the terminal station as simple as possible.
It is better to keep the number as small as possible.

【0006】本発明の目的は、上述の技術的課題を解決
し、従来と比べて少ない個数の電圧センサを使用した端
末局を配置することにより、配電線の地絡故障区間を知
ることができる配電線の地絡故障区間検出方法及び装置
を提供することである。
[0006] An object of the present invention is to solve the above-mentioned technical problems, and by arranging terminal stations that use fewer voltage sensors than in the past, it is possible to know the faulty section of a power distribution line due to a ground fault. An object of the present invention is to provide a method and apparatus for detecting a faulty section of a power distribution line.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの請求項1記載の配電線の地絡故障区間検出方法は、
配電線を複数区間に区分し、各区間の端の測定点におい
て配電線の各相電流を検出し、これらの検出電流に基づ
いて零相電流を求め、その零相電流と、当該測定点で得
られる配電線の所定の2相間の線間電圧との位相差を算
出し、配電線に沿って各測定点において算出された前記
位相差の分布を求め、位相差がほぼ180°転換する測
定点同士の間に存在する区間を地絡故障区間として決定
する方法である。
[Means for Solving the Problems] A method for detecting a ground fault fault section of a power distribution line according to claim 1 for achieving the above object includes the following steps:
Divide the distribution line into multiple sections, detect each phase current of the distribution line at the measurement point at the end of each section, calculate the zero-sequence current based on these detected currents, and calculate the zero-sequence current and the current at the measurement point. Calculate the phase difference between the obtained line voltage between two predetermined phases of the distribution line, find the distribution of the calculated phase difference at each measurement point along the distribution line, and measure the phase difference by approximately 180°. This method determines the section that exists between the points as the ground fault section.

【0008】請求項2記載の配電線の地絡故障区間検出
方法は、配電線を複数区間に区分し、各区間の端の測定
点において、配電線の所定の1相の相電圧を検出すると
ともに、配電線の各相電流を検出し、検出電流に基づい
て零相電流を求め、その零相電流と前記検出された相電
圧との位相差を算出し、配電線に沿って各測定点におい
て算出された前記位相差の分布を求め、位相差がほぼ1
80°転換する測定点同士の間に存在する区間を地絡故
障区間として決定する方法である。
[0008] The method for detecting a ground fault fault section of a distribution line according to claim 2 divides the distribution line into a plurality of sections, and detects the phase voltage of a predetermined one phase of the distribution line at a measurement point at the end of each section. At the same time, each phase current of the distribution line is detected, the zero-sequence current is determined based on the detected current, the phase difference between the zero-sequence current and the detected phase voltage is calculated, and each measurement point is measured along the distribution line. The distribution of the phase difference calculated in is obtained, and the phase difference is approximately 1.
This method determines the section existing between measurement points that turn 80 degrees as a ground fault section.

【0009】上記の目的を達成するための請求項3記載
の配電線の地絡故障区間検出装置は、複数区間に区分さ
れた配電線の各区間に配置された端末局と、前記端末局
からデータを受信するための親局とを有し、各端末局に
は、配電線の各相電流を検出する電流センサと、電流セ
ンサの検出電流に基づいて零相電流を求め、その零相電
流と当該端末局の制御用交流電源電圧である配電線の所
定の2相間の線間電圧との位相差を算出する算出手段と
、算出手段により検出された前記位相差のデータを送信
する送信手段とが設けられ、親局には、各端末局から受
信されたデータに含まれる前記位相差の分布に基づいて
、位相差がほぼ180°異なる端末局群を区別し、これ
ら区別された端末局群のうち互いに隣接する端末局の間
に存在する区間を配電線の地絡故障区間として決定する
地絡故障区間決定手段が設けられているものである。
[0009] In order to achieve the above object, there is provided a ground fault fault section detection device for a distribution line according to claim 3, which includes a terminal station arranged in each section of a distribution line divided into a plurality of sections, and Each terminal station has a current sensor that detects each phase current of the distribution line, and calculates the zero-sequence current based on the detected current of the current sensor, and calculates the zero-sequence current. and a line voltage between two predetermined phases of the distribution line, which is the control AC power supply voltage of the terminal station, and a transmitting means for transmitting data on the phase difference detected by the calculating means. The master station is provided with a terminal station that distinguishes a group of terminal stations having a phase difference of approximately 180 degrees based on the distribution of the phase differences included in the data received from each terminal station, and A ground fault section determination means is provided for determining a section existing between mutually adjacent terminal stations in the group as a ground fault section of the distribution line.

【0010】請求項4記載の配電線の地絡故障区間検出
装置は、複数区間に区分された配電線の各区間に配置さ
れた端末局と、前記端末局からデータを受信するための
親局とを有し、各端末局には、配電線の所定の1相の相
電圧を検出する電圧センサと、配電線の各相電流を検出
する電流センサと、電流センサの検出電流に基づいて零
相電流を求め、その零相電流と電圧センサにより検出さ
れた所定の1相の相電圧との位相差を算出する算出手段
と、算出手段により検出された前記位相差のデータを送
信する送信手段とが設けられ、親局には、各端末局から
受信されたデータに含まれる前記位相差の分布に基づい
て、位相差がほぼ180°異なる端末局群を区別し、こ
れら区別された端末局群のうち互いに隣接する端末局の
間に存在する区間を配電線の地絡故障区間として決定す
る地絡故障区間決定手段が設けられているものである。
[0010] The ground fault fault section detection device for a distribution line according to claim 4 includes a terminal station arranged in each section of a distribution line divided into a plurality of sections, and a master station for receiving data from the terminal station. Each terminal station has a voltage sensor that detects the phase voltage of one predetermined phase of the distribution line, a current sensor that detects each phase current of the distribution line, and a current sensor that detects the current of each phase of the distribution line. Calculating means for determining a phase current and calculating a phase difference between the zero-sequence current and a predetermined phase voltage of one phase detected by a voltage sensor; and a transmitting means for transmitting data on the phase difference detected by the calculating means. The master station is provided with a terminal station that distinguishes a group of terminal stations having a phase difference of approximately 180° based on the distribution of the phase differences included in the data received from each terminal station, and A ground fault section determining means is provided for determining a section existing between mutually adjacent terminal stations in the group as a ground fault section of the distribution line.

【0011】請求項5又は6記載の配電線の地絡故障区
間検出装置では、端末局は、全方位を少なくとも5つの
領域に分割し、零相電流と所定の2相間の線間電圧又は
所定の1相の相電圧との位相差を当該位相差が含まれる
領域のデータとして送信し、親局は、1つ以上離れた領
域に属する端末局同士を同じ端末局群にまとめるもので
ある。
[0011] In the distribution line ground fault fault section detection device according to claim 5 or 6, the terminal station divides the omnidirectional area into at least five areas, and detects the zero-sequence current and the line voltage between two predetermined phases or the predetermined line voltage between two phases. The master station transmits the phase difference with the phase voltage of one phase as data of the region including the phase difference, and the master station groups terminal stations belonging to regions separated by one or more regions into the same terminal station group.

【0012】0012

【作用】上記の請求項1〜4記載の各発明によれば、零
相電流と所定の2相間の線間電圧又は所定の1相の相電
圧との位相差をθとすると、配電線に地絡故障が発生し
たときは、地絡故障点と端末局との位置関係によって位
相差θが約180°逆転することを利用して、送電端の
存在する方向に地絡点を検出する端末局群と、送電端の
存在する方向と反対の方向に地絡点を検出する端末局群
とを区別し、これら区別された端末局のうち互いに隣接
するものの間に位置する区間を配電線の地絡故障区間と
して決定することができる。
[Operation] According to each of the inventions described in claims 1 to 4 above, when the phase difference between the zero-sequence current and the line voltage between two predetermined phases or the phase voltage of one predetermined phase is θ, When a ground fault occurs, the terminal detects the ground fault point in the direction of the power transmission end by utilizing the fact that the phase difference θ is reversed by approximately 180 degrees depending on the positional relationship between the ground fault fault point and the terminal station. A station group is distinguished from a terminal station group that detects a ground fault point in the direction opposite to the direction in which the power transmission end exists, and the section located between adjacent terminal stations among these differentiated terminal stations is defined as a distribution line. It can be determined as a ground fault section.

【0013】このことを詳細に説明する。図1は配電線
の概念図であり、送電端にEa,Eb,Ecの電源が存
在するものとする。互いに隣接して設置された端末局を
T1,T2と表示する。端末局T1,T2の間で地絡が
発生したとし、地絡抵抗をRgとする。C1,C2は、
それぞれ地絡点の電源側と負荷側における配電線の対地
容量である。
This will be explained in detail. FIG. 1 is a conceptual diagram of a power distribution line, and assumes that power sources Ea, Eb, and Ec exist at the power transmission end. Terminal stations installed adjacent to each other are indicated as T1 and T2. Assume that a ground fault has occurred between terminal stations T1 and T2, and that the ground fault resistance is Rg. C1 and C2 are
These are the ground capacity of the distribution line on the power supply side and load side of the ground fault point, respectively.

【0014】地絡発生時においては、地絡点の零相電圧
V0 は、 V0 =−Ea/(1+3jωCRg)で表される。こ
こに、 C=C1 +C2 である。また、零相電流I0 は、端末局T1で検出さ
れたものは、     I0 =C1 Ig/3C         
                       (1
) 端末局T2で検出されたものは、     I0 =−C2 Ig/3C        
                      (2)
 である。ここに、 Ig=3jωCEa/(1+3jωCRg)である。
[0014] When a ground fault occurs, the zero-sequence voltage V0 at the ground fault point is expressed as V0 = -Ea/(1+3jωCRg). Here, C=C1 +C2. Furthermore, the zero-sequence current I0 detected at the terminal station T1 is I0 = C1 Ig/3C
(1
) What is detected at terminal station T2 is I0 = -C2 Ig/3C
(2)
It is. Here, Ig=3jωCEa/(1+3jωCRg).

【0015】前記(1) 式と(2) 式から、端末局
T1と端末局T2とは互いに逆方向の地絡電流を検出し
ていることが分かる。そこで端末局T1と端末局T2と
で共通の位相を有する要素、例えば所定の2相間の線間
電圧又は所定の1相の相電圧をとって、それと零相電流
との相対位相差を算出し、親局に送信するようにすれば
、親局には、各端末局から受信されたデータに含まれる
前記零相電流との位相差の分布に基づいて、送電端の存
在する方向に地絡点を検出する端末局群と、送電端の存
在する方向と反対の方向に地絡点を検出する端末局群と
を区別できるので、これら区別された端末局のうち互い
に隣接するものの間に位置する区間を配電線の地絡故障
区間として決定することができる。
From equations (1) and (2) above, it can be seen that terminal station T1 and terminal station T2 detect ground fault currents in opposite directions. Therefore, an element having a common phase between the terminal station T1 and the terminal station T2, for example, the line voltage between two predetermined phases or the phase voltage of one predetermined phase, is taken and the relative phase difference between it and the zero-sequence current is calculated. , to the master station, the master station detects a ground fault in the direction of the power transmission end based on the distribution of the phase difference with the zero-sequence current included in the data received from each terminal station. It is possible to distinguish between a terminal station group that detects a ground fault point and a terminal station group that detects a ground fault point in the direction opposite to the direction in which the power transmission end exists. The section where the ground fault occurs can be determined as the section where the distribution line has a ground fault.

【0016】請求項5又は6記載の発明では、全方位を
少なくとも5つの領域に分割するので、零相電流と所定
の2相間の線間電圧又は所定の1相の相電圧との位相差
のデータをそのまま送る必要がなく、領域を特定するデ
ータのみを送信すればよいことになる。
In the invention described in claim 5 or 6, since all directions are divided into at least five regions, the phase difference between the zero-sequence current and the line voltage between two predetermined phases or the phase voltage of one predetermined phase is There is no need to send the data as is, and only the data that specifies the area needs to be sent.

【0017】[0017]

【実施例】以下実施例を示す添付図面によって詳細に説
明する。図2は、配電系統図であり、配電用変電所1に
はΔ−Δ結線の変圧器11が備えられており、変圧器1
1により6.6kVに降圧された電力が遮断器3a,3
b,・・・・を通して配電線4a,4b,・・・・に供
給される。配電線4a,4b,・・・・には、需要家に
対して電力を分配するためのY−Y結線の変圧器5a1
,5a2,・・・・,5b1,5b2,・・・・が接続
され、各変圧器5a1,5a2,・・・・の近傍に端末
局7a1,7a2,・・・・,7b1,7b2,・・・
・が設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples will be explained in detail below with reference to the accompanying drawings showing examples. FIG. 2 is a power distribution system diagram, and the distribution substation 1 is equipped with a transformer 11 with a Δ-Δ connection.
1, the power stepped down to 6.6kV is transferred to circuit breakers 3a and 3.
It is supplied to the distribution lines 4a, 4b, . . . through b, . The distribution lines 4a, 4b, . . . are equipped with Y-Y connected transformers 5a1 for distributing power to consumers.
, 5a2, ..., 5b1, 5b2, ... are connected, and terminal stations 7a1, 7a2, ..., 7b1, 7b2, ... are connected near each transformer 5a1, 5a2, ...・・・
・ is provided.

【0018】各端末局7a1,7a2,・・・・はすべ
て同じ構成を有し、各相の電流を検出するCT1,CT
2,CT3 から取り出される各相電流情報と、変圧器
5a1,5a2,・・・・から取り出されるab相間の
線間電圧情報(このab相間の線間電圧は端末局の駆動
電源用に利用されるものを流用するものであり、電圧セ
ンサは特に新しく設ける必要はない)とに基づいて零相
電流I0 、正相電流I1 、逆相電流I2 、零相電
流I0 と線間電圧Vabとの位相差θ等を算出し、地
絡、短絡又は断線の判定を行う演算処理部71と、演算
処理部71によって得られた判定結果を4ビットのデー
タにして親局9(図8参照)に送信する送信部72とを
備えている。
Each terminal station 7a1, 7a2, . . . has the same configuration, and CT1, CT detecting the current of each phase
2, each phase current information taken out from CT3 and the line voltage information between the ab phases taken out from the transformers 5a1, 5a2, etc. (this line voltage between the ab phases is used for the driving power source of the terminal station) It is not necessary to install a new voltage sensor). An arithmetic processing unit 71 that calculates the phase difference θ, etc. and determines whether there is a ground fault, short circuit, or disconnection, and the judgment result obtained by the arithmetic processing unit 71 is converted into 4-bit data and transmitted to the master station 9 (see FIG. 8). The transmitter 72 is provided with a transmitter 72 for transmitting data.

【0019】演算処理部71は、図3に示すように、零
相電流の値を算出する加算回路716と、a相電流Ia
 の値をサンプリングするサンプルホールド回路711
 と、b相電流Ib の値をサンプリングするサンプル
ホールド回路712 と、c相電流Ic の値をサンプ
リングするサンプルホールド回路713 と、零相電流
I0 の値をサンプリングするサンプルホールド回路7
14 と、線間電圧Vabの値をサンプリングするサン
プルホールド回路715 とを有し、それぞれサンプル
ホールドされた値を時間順に並べて送り出すマルチプレ
クサ720 と、マルチプレクサ720 から出力され
るデータをA/D変換する変換回路730 と、A/D
変換されたデータをディジタル演算して線間電圧Vab
、各相電流Ia,Ib,Ic 、零相電流I0 、正相
電流I1 、逆相電流I2 の大きさと位相角とを算出
するとともに、線間電圧Vabと零相電流I0 との位
相差θ、正相電流I1 の大きさに対する逆相電流I2
 の大きさの比率I2/I1 を算出する算出回路74
0 と、算出回路740 の算出データに基づいて地絡
、短絡又は断線の判定を行う判定回路750 とを有す
る。
As shown in FIG. 3, the arithmetic processing unit 71 includes an addition circuit 716 that calculates the value of the zero-phase current, and an a-phase current Ia.
A sample hold circuit 711 that samples the value of
, a sample-and-hold circuit 712 that samples the value of the b-phase current Ib, a sample-and-hold circuit 713 that samples the value of the c-phase current Ic, and a sample-and-hold circuit 7 that samples the value of the zero-sequence current I0.
14 and a sample hold circuit 715 that samples the value of the line voltage Vab, a multiplexer 720 that sends out the sampled and held values in chronological order, and a conversion circuit that A/D converts the data output from the multiplexer 720. Circuit 730 and A/D
The converted data is digitally calculated to calculate the line voltage Vab.
, the magnitude and phase angle of each phase current Ia, Ib, Ic, zero-sequence current I0, positive-sequence current I1, negative-sequence current I2, and the phase difference θ between line voltage Vab and zero-sequence current I0, Negative sequence current I2 relative to the magnitude of positive sequence current I1
Calculation circuit 74 that calculates the ratio I2/I1 of the size of
0 and a determination circuit 750 that determines whether there is a ground fault, short circuit, or disconnection based on the calculation data of the calculation circuit 740.

【0020】さらに、演算処理部71は、線間電圧Va
bの1周期ごとに基本波パルスを発生させる基本波パル
ス発生回路760 と、このように発生したパルスを所
定の分周比率(例えば1/12倍)で分周する分周器7
61 と、分周器761 の分周比をサンプルホールド
回路の数で割ったさらに細かな分周比率(例えば1/6
0倍)で分周する分周器762 と、分周器762 の
出力パルスに基づいてサンプルホールド回路711 〜
715 に切換え制御信号を供給する切換え制御器76
3 とを有し、算出回路740は分周器761 の出力
パルスを同期信号として算出処理を行っている。
Furthermore, the arithmetic processing unit 71 calculates the line voltage Va
A fundamental wave pulse generation circuit 760 that generates a fundamental wave pulse every cycle of b, and a frequency divider 7 that divides the frequency of the pulse thus generated by a predetermined frequency division ratio (for example, 1/12 times).
61, and a finer frequency division ratio (for example, 1/6
A frequency divider 762 that divides the frequency by
switching controller 76 providing switching control signals to 715;
3, and the calculation circuit 740 performs calculation processing using the output pulse of the frequency divider 761 as a synchronization signal.

【0021】算出回路740 が電流や電圧の大きさと
位相角を算出する方法は、従来公知の方法を使用できる
。例えば、1周期にわたるフーリエ正弦成分とフーリエ
余弦成分とを求め、両方の成分の二乗平均をとることに
よって大きさを求めることができる。また、フーリエ正
弦成分とフーリエ余弦成分との比のtan−1をとるこ
とにより位相角を求めることができる。
The calculation circuit 740 can use any conventionally known method to calculate the magnitude and phase angle of the current or voltage. For example, the magnitude can be determined by determining a Fourier sine component and a Fourier cosine component over one period and taking the root mean of both components. Further, the phase angle can be determined by taking the ratio tan-1 of the Fourier sine component and the Fourier cosine component.

【0022】判定回路750 の行う地絡、短絡、断線
判定の手順を表わすフローチャートを図4に示す。図4
によれば、判定回路750 は、算出回路740 から
供給される各種データに基づいて、短絡判定(ステップ
(1) )を行い、短絡と判定されれば短絡を表わす符
号“0001”を送信部72に送出する。短絡でないと
判定されれば、断線判定(ステップ(2) )を行い、
断線と判定されれば、断線を表わす符号“0010”を
送出する。
FIG. 4 is a flowchart showing the procedure for determining ground faults, short circuits, and disconnections performed by the determination circuit 750. Figure 4
According to , the determination circuit 750 performs a short circuit determination (step (1)) based on various data supplied from the calculation circuit 740 , and if it is determined that there is a short circuit, it sends a code "0001" representing a short circuit to the transmitter 72 . Send to. If it is determined that there is no short circuit, a disconnection determination (step (2)) is performed.
If it is determined that the wire is broken, a code "0010" representing the wire breakage is sent.

【0023】断線でもないと判定されれば、地絡判定(
ステップ(3) (4) )を行う。ステップ(3) 
では、零相電流I0 を閾値Ixと比較し、零相電流I
0 が閾値Ixを越えていれば、ステップ(4) にお
いて線間電圧Vabと零相電流I0 との位相差θが、
360°を8等分した領域I,II,・・・・,VII
I(図5参照)のいずれに入るのか判定し、ステップ(
7) において対応する符号を送出する。例えば0<θ
≦π/4であれば領域Iに入るので符号“1000”を
送出する。π/4<θ≦π/2  であれば領域IIに
入るので符号“1001”を送出する。なお、このステ
ップ(3) (4) での地絡判定は1線地絡を判定を
意味し、2線地絡、3線地絡の場合は、ステップ(1)
 の短絡判定により判定できるので、ステップ(3) 
(4) で2線地絡、3線地絡を判定することはない。
If it is determined that there is no disconnection, it is determined that there is a ground fault (
Perform steps (3) (4)). Step (3)
Now, the zero-sequence current I0 is compared with the threshold value Ix, and the zero-sequence current I0 is
0 exceeds the threshold Ix, in step (4) the phase difference θ between the line voltage Vab and the zero-sequence current I0 is
Regions I, II, ..., VII divided into 8 equal parts of 360°
I (see Figure 5) is determined, and step (
7) Send the corresponding code in . For example, 0<θ
If ≦π/4, the signal falls into region I, so the code "1000" is sent. If π/4<θ≦π/2, the signal falls into region II, so the code “1001” is transmitted. Note that the ground fault determination in steps (3) and (4) means a one-wire ground fault, and in the case of a two-wire or three-wire ground fault, step (1) is used.
This can be determined by short circuit determination, so step (3)
(4) There is no way to determine a 2-wire ground fault or a 3-wire ground fault.

【0024】地絡がないと判定されればステップ(8)
 において故障なしの符号“0000”を送出する。送
信部72は判定回路750 から受け取った符号を、親
局9に、無線、光、赤外線等の媒体を通して送信する(
ステップ(9) )。親局9は、図8に示すように受信
部91と、故障区間決定部92とからなるものである。
[0024] If it is determined that there is no ground fault, step (8)
The code "0000" indicating no failure is sent out. The transmitter 72 transmits the code received from the determination circuit 750 to the master station 9 through a medium such as wireless, optical, or infrared rays.
Step (9)). The master station 9 consists of a receiving section 91 and a failure section determining section 92, as shown in FIG.

【0025】前記ステップ(1) の短絡判定は、図6
に示すように、各相電流Ia,Ib,Ic のいずれか
が基準電流(例えば定格電流の1.2倍)を越えたかど
うかで判定する。図6では、基準電流は480A(定格
電流は400A)と表示している。ステップ(2) の
断線判定は、図7に示すように、1線断線、2線断線、
3線断線について別々に判定され、いずれかの種類の断
線があったときに「断線」と判定するものである。
The short circuit determination in step (1) is shown in FIG.
As shown in FIG. 1, the determination is made based on whether any of the phase currents Ia, Ib, and Ic exceeds a reference current (for example, 1.2 times the rated current). In FIG. 6, the reference current is shown as 480A (rated current is 400A). The disconnection determination in step (2) is as shown in Figure 7: 1 wire disconnection, 2 wire disconnection,
Disconnection of the three wires is determined separately, and when any type of disconnection occurs, it is determined as a "disconnection."

【0026】1線断線は各相電流Ia,Ib,Ic 何
れかが定格電流の1%を越え、線間電圧Vabが相電圧
の約80%を越え、かつ正相電流I1 と逆相電流I2
 の大きさの比率I2/I1 が0.6倍を越えたこと
をもって判定する。図7では「定格電流の1%」は4A
、「相電圧」の約80%は3000Vで表示されている
。0.6倍という数字は経験的に決定されるものである
One wire breakage occurs when any of the phase currents Ia, Ib, and Ic exceeds 1% of the rated current, the line voltage Vab exceeds approximately 80% of the phase voltage, and the positive-sequence current I1 and the negative-sequence current I2
The determination is made when the ratio I2/I1 of the magnitude exceeds 0.6 times. In Figure 7, "1% of rated current" is 4A
, about 80% of the "phase voltage" is displayed at 3000V. The number 0.6 times is determined empirically.

【0027】2線断線は各相電流Ia,Ib,Ic が
すべて定格電流の1%未満であり、かつ、線間電圧Va
bは相電圧の約1%から約2.5%の範囲に入ったこと
をもって判定される。3線断線は各相電流Ia,Ib,
Ic がすべて定格電流の0.1%未満であり、線間電
圧Vabは相電圧の約1%未満であることをもって判定
される。
Two-wire disconnection occurs when the phase currents Ia, Ib, and Ic are all less than 1% of the rated current, and the line voltage Va
b is determined when it falls within a range of about 1% to about 2.5% of the phase voltage. 3-wire disconnection is caused by each phase current Ia, Ib,
It is determined that Ic is all less than 0.1% of the rated current and the line voltage Vab is less than about 1% of the phase voltage.

【0028】親局9の故障区間決定部92は各端末の送
信部72から無線、光、赤外線等の媒体を通して受け取
った符号に基づき、どの区間において地絡、短絡又は断
線があったのかを判定する。その判定の手法は、次のと
おりである。図9に示すように配電線に沿って端末局7
a1,・・・・,7a6が配列されている場合を想定す
る。
The failure section determination section 92 of the master station 9 determines in which section there is a ground fault, short circuit, or disconnection based on the code received from the transmission section 72 of each terminal through a medium such as radio, light, or infrared rays. do. The method for this determination is as follows. Terminal station 7 along the distribution line as shown in Figure 9.
Assume that a1, . . . , 7a6 are arranged.

【0029】端末局7a3と端末局7a4との間で1線
地絡故障が発生した場合(図9(a) 参照)、地絡点
より送電側の端末局7a1,7a2,7a3から送られ
てくる線間電圧Vabと零相電流I0 との位相差θを
示す領域は同じ領域であるか又は互いに隣接する2つの
領域である(例えば図5の領域IやVIIIとする)。 ところが、地絡点より負荷側の端末局7a4,7a5,
7a6から送られてくる線間電圧Vabと零相電流I0
との位相差θを示す領域は、領域Iと比較して約180
°ずれた領域(図5の領域VとIV)である。したがっ
て親局9は、位相差の領域が大きくずれた場合の前後の
端末局7a3と端末局7a4との間で地絡故障が発生し
ていることが分かる。
When a one-wire ground fault occurs between the terminal station 7a3 and the terminal station 7a4 (see FIG. 9(a)), the power is sent from the terminal stations 7a1, 7a2, and 7a3 on the power transmission side from the ground fault point. The regions showing the phase difference θ between the line voltage Vab and the zero-sequence current I0 are the same region or two regions adjacent to each other (for example, regions I and VIII in FIG. 5). However, terminal stations 7a4, 7a5, on the load side from the ground fault point
Line voltage Vab and zero-sequence current I0 sent from 7a6
The region showing a phase difference θ with
These are the regions (regions V and IV in FIG. 5) that are shifted by degrees. Therefore, the master station 9 knows that a ground fault has occurred between the terminal station 7a3 and the terminal station 7a4 before and after the region of phase difference deviates greatly.

【0030】次に、端末局7a3と端末局7a4との間
で短絡故障が発生した場合(図9(b) 参照)、故障
点より送電側にある端末局7a1,7a2,7a3から
送られてくる情報は、「短絡」情報であるのに対し、故
障点より負荷側にある端末局7a4,7a5,7a6か
ら送られてくる情報は、「断線」(2線短絡の場合)あ
るいは「故障なし」(3線短絡の場合)の情報である。 したがって、親局9は、端末局7a3と端末局7a4と
の間で短絡故障が発生していることが明らかとなる。
Next, when a short circuit failure occurs between the terminal stations 7a3 and 7a4 (see FIG. 9(b)), the power is sent from the terminal stations 7a1, 7a2, and 7a3 on the power transmission side from the failure point. The information sent from the terminal stations 7a4, 7a5, and 7a6 located on the load side of the failure point is "short circuit" information, whereas the information sent from the terminal stations 7a4, 7a5, and 7a6 on the load side from the failure point is "broken wire" (in the case of a two-wire short circuit) or "no failure". ” (in case of 3-wire short circuit). Therefore, in the master station 9, it becomes clear that a short circuit failure has occurred between the terminal station 7a3 and the terminal station 7a4.

【0031】次に、端末局7a3と端末局7a4との間
で断線故障が発生した場合(図9(c) 参照)、故障
点より送電側にある端末局7a1,7a2,7a3から
送られてくる情報は、「故障なし」の情報であるのに対
し、故障点より負荷側にある端末局7a4,7a5,7
a6から送られてくる情報は、「断線」情報である。し
たがって、親局9は、端末局7a3と端末局7a4との
間で断線故障が発生していることが分かる。
Next, when a disconnection fault occurs between the terminal station 7a3 and the terminal station 7a4 (see FIG. 9(c)), the power is sent from the terminal stations 7a1, 7a2, and 7a3 on the power transmission side from the fault point. The information coming from the terminal station 7a4, 7a5, 7 located on the load side from the failure point is "no failure" information.
The information sent from a6 is "disconnection" information. Therefore, the master station 9 knows that a disconnection fault has occurred between the terminal station 7a3 and the terminal station 7a4.

【0032】以上、実施例に基づき本発明を説明してき
たが、本発明は前記の実施例に限定されるものではない
。前記の実施例では、ab相間の線間電圧Vabを使用
していたが、1相電圧(例えばa相電圧Va )を利用
してもよい。この場合、電圧センサは既設のものを流用
できないので、専用のものを1つ設ける必要があるが従
来3つ設けていたのに比較して構成は簡素になるという
利点はある。
Although the present invention has been described above based on examples, the present invention is not limited to the above-mentioned examples. In the embodiment described above, the line voltage Vab between the ab and phase was used, but a single phase voltage (for example, the a phase voltage Va) may be used. In this case, since the existing voltage sensor cannot be used, it is necessary to provide one dedicated voltage sensor, but there is an advantage that the configuration is simpler than the conventional one, which required three.

【0033】また、1線断線を判定する回路は、図7に
示したものの他、図10に示すような回路を使用するこ
とも可能である。図10の回路では、各相電流Ia,I
b,Ic何れかが定格電流の1%未満で、かつ、線間電
圧Vabが相電圧の約80%を越えたことをもって判定
する。 また、図11の回路を使用することも可能である。図1
1の回路では、各相電流Ia,Ib,Ic 何れか1つ
が定格電流の1%未満で残りの2つが1%以上、かつ、
線間電圧Vabが相電圧の約80%を越え、正相電流I
1 と逆相電流I2 の大きさの比率I2/I1 が0
.6倍を越えたことをもって判定する。この図11の回
路を使用すれば短絡故障が発生した場合、故障点より負
荷側にある端末局から送られてくる情報はすべて「故障
なし」の情報となる。
In addition to the circuit shown in FIG. 7, it is also possible to use a circuit as shown in FIG. 10 as the circuit for determining whether one wire is disconnected. In the circuit of FIG. 10, each phase current Ia, I
The determination is made when either b or Ic is less than 1% of the rated current and the line voltage Vab exceeds about 80% of the phase voltage. It is also possible to use the circuit of FIG. Figure 1
In circuit 1, one of the phase currents Ia, Ib, and Ic is less than 1% of the rated current, and the remaining two are 1% or more of the rated current, and
The line voltage Vab exceeds approximately 80% of the phase voltage, and the positive sequence current I
1 and the magnitude of the negative sequence current I2, I2/I1, is 0.
.. Judgment will be made when it exceeds 6 times. If the circuit shown in FIG. 11 is used, if a short-circuit failure occurs, all information sent from the terminal station on the load side of the failure point will be "no failure" information.

【0034】また、図5によれば、全方位を8つの領域
に分割しているが、少なくとも5つの領域に分割されて
いれば実用可能である(もし4つの領域に分割した場合
、図12に示すように位相角データが全ての領域を占め
てしまい、地絡故障区間を特定できなくなるということ
が発生する)。その他本発明の要旨を変更しない範囲で
種々の変更を施すことが可能である。
Also, according to FIG. 5, all directions are divided into eight areas, but it is practical if the omnidirectional area is divided into at least five areas (if divided into four areas, as shown in FIG. As shown in Figure 2, the phase angle data occupies the entire area, making it impossible to identify the ground fault section). Various other changes can be made without departing from the gist of the invention.

【0035】[0035]

【発明の効果】以上のように請求項1記載の配電線の地
絡故障区間検出方法の発明によれば、配電線の各区間の
端の測定点において検出される所定の2相間の線間電圧
の位相を基準として、零相電流との位相差を求め、その
位相差の各測定点にわたる分布から地絡故障点を容易に
検出することができる。
As described above, according to the invention of the method for detecting a ground fault fault section of a distribution line as set forth in claim 1, the line between the predetermined two phases detected at the measurement point at the end of each section of the distribution line. Using the phase of the voltage as a reference, the phase difference with the zero-sequence current is determined, and the ground fault point can be easily detected from the distribution of the phase difference over each measurement point.

【0036】請求項2記載の配電線の地絡故障区間検出
方法の発明によれば、配電線の各区間の端の測定点にお
いて所定の1相の相電圧を検出し、検出された所定の1
相の相電圧の位相を基準として、零相電流との位相差を
求め、その位相差の各測定点にわたる分布から地絡故障
点を容易に検出することができる。請求項3記載の配電
線の地絡故障区間検出装置の発明によれば、各端末局に
おいて零相電流と線間電圧との位相差を検出して親局に
送信するようにすれば、親局は、各端末局から送られて
きた位相差の分布に基づいて、配電線の地絡故障区間を
決定することができる。この場合、端末局においては当
該端末局の制御用交流電源電圧である配電線の所定の2
相間の線間電圧を利用するので、従来のように3線電圧
を測定していたのと比較して、端末局の構成が簡単にな
り、またコストを下げることができ、端末局を多数配置
する場合に特に有利になる。
According to the invention of the method for detecting a ground fault fault section of a distribution line according to claim 2, a predetermined phase voltage of one phase is detected at the measurement point at the end of each section of the distribution line, and the detected predetermined phase voltage is detected. 1
The phase difference with the zero-sequence current is determined using the phase of the phase voltage of the phase as a reference, and the ground fault point can be easily detected from the distribution of the phase difference over each measurement point. According to the invention of the ground fault fault section detection device of a power distribution line according to claim 3, if each terminal station detects the phase difference between the zero-sequence current and the line voltage and transmits it to the master station, The station can determine the ground fault section of the distribution line based on the distribution of phase differences sent from each terminal station. In this case, the terminal station uses a predetermined voltage of 2 on the distribution line, which is the AC power supply voltage for control of the terminal station.
Since the line voltage between phases is used, compared to the conventional method of measuring three-wire voltage, the configuration of the terminal station is simpler and costs can be lowered, and many terminal stations can be arranged. This is particularly advantageous when

【0037】請求項4記載の配電線の地絡故障区間検出
装置の発明によれば、各端末局において零相電流と相電
圧との位相差を検出して親局に送信するようにすれば、
親局は、各端末局から送られてきた位相差の分布に基づ
いて、配電線の地絡故障区間を決定することができる。 この場合、測定点においては相電圧を1つ電圧測定する
だけでよいので、従来のように3線電圧を測定していた
のと比較して、端末局の構成が簡単になり、またコスト
を下げることができ、端末局を多数配置する場合に特に
有利になる。
[0037] According to the invention of the ground fault fault section detection device of a distribution line as set forth in claim 4, if each terminal station detects the phase difference between the zero-sequence current and the phase voltage and transmits it to the master station. ,
The master station can determine the ground fault section of the distribution line based on the distribution of phase differences sent from each terminal station. In this case, it is only necessary to measure one phase voltage at the measurement point, which simplifies the configuration of the terminal station and reduces costs compared to the conventional method of measuring three-wire voltage. This is especially advantageous when a large number of terminal stations are installed.

【0038】請求項5及び6の配電線の地絡故障区間検
出装置の発明によれば、全方位を少なくとも5つの領域
に分割したので、端末局と親局との送信回線は、位相角
がこれら5つの領域のいずれの領域に入るのかを示すデ
ータを送ればよい。したがって、位相角のデータをその
まま送る必要がなく、送信回線の容量の増大を防止する
ことができる。また送信回線の容量が決まっているなら
ば、他のデータの割り当てる容量を増やすことができる
[0038] According to the invention of the ground fault fault section detection device of the distribution line according to claims 5 and 6, since the omnidirectional area is divided into at least five areas, the transmission line between the terminal station and the master station has a phase angle. It is sufficient to send data indicating which of these five areas the device falls into. Therefore, it is not necessary to send the phase angle data as is, and it is possible to prevent the capacity of the transmission line from increasing. Furthermore, if the capacity of the transmission line is fixed, the capacity allocated to other data can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の原理を説明するための、地絡故障が発
生した配電線の回路図である。
FIG. 1 is a circuit diagram of a power distribution line in which a ground fault has occurred, for explaining the principle of the present invention.

【図2】端末局が配置された配電系統図である。FIG. 2 is a power distribution system diagram in which terminal stations are arranged.

【図3】端末局に設けられた演算処理部の内部構成を示
すブロック図である。
FIG. 3 is a block diagram showing the internal configuration of an arithmetic processing unit provided in the terminal station.

【図4】判定回路750 の行う地絡、短絡、断線判定
の手順を表わすフローチャートである。
FIG. 4 is a flowchart showing the procedure for determining ground faults, short circuits, and disconnections performed by the determination circuit 750.

【図5】位相角を分類するため、全方位を8つの領域に
分割した図である。
FIG. 5 is a diagram in which all directions are divided into eight regions for classifying phase angles.

【図6】短絡判定を行う論理回路図である。FIG. 6 is a logic circuit diagram for determining a short circuit.

【図7】断線判定を行う論理回路図である。FIG. 7 is a logic circuit diagram for determining disconnection.

【図8】親局の要部構成を示すブロック図である。FIG. 8 is a block diagram showing the main part configuration of a master station.

【図9】配電線の地絡故障区間の決定手法を説明するた
めの配電線図である。
FIG. 9 is a distribution line diagram for explaining a method for determining a ground fault section of a distribution line.

【図10】1線断線判定を行う他の実施例を示す論理回
路図である。
FIG. 10 is a logic circuit diagram showing another embodiment that performs one-line disconnection determination.

【図11】1線断線判定を行うさらに他の実施例を示す
論理回路図である。
FIG. 11 is a logic circuit diagram showing still another embodiment for determining one-line disconnection.

【図12】全方位を4つの領域に分割した図である。FIG. 12 is a diagram in which all directions are divided into four regions.

【符号の説明】[Explanation of symbols]

4a,4b  配電線 7a1,7a2,7b1,7b1  端末局72  送
信部 740  算出回路 9  親局 92  地絡故障区間決定部 I〜VIII  領域 CT1,CT2,CT3  電流センサT1,T2  
端末局
4a, 4b Distribution lines 7a1, 7a2, 7b1, 7b1 Terminal station 72 Transmission section 740 Calculation circuit 9 Master station 92 Ground fault fault section determining section I to VIII Regions CT1, CT2, CT3 Current sensors T1, T2
terminal station

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】配電線に地絡故障が発生した場合に配電線
の地絡故障区間を検出する方法であって、配電線を複数
区間に区分し、各区間の端の測定点において配電線の各
相電流を検出し、これらの検出電流に基づいて零相電流
を求め、その零相電流と、当該測定点で得られる配電線
の所定の2相間の線間電圧との位相差を算出し、配電線
に沿って各測定点において算出された前記位相差の分布
を求め、位相差がほぼ180°転換する測定点同士の間
に存在する区間を地絡故障区間として決定することを特
徴とする配電線の地絡故障区間検出方法。
Claim 1: A method for detecting a ground fault fault section of a power distribution line when a ground fault fault occurs in the power distribution line, wherein the power distribution line is divided into a plurality of sections, and the distribution line is detected at a measurement point at the end of each section. Detects each phase current of The distribution of the phase difference calculated at each measurement point along the distribution line is obtained, and the section existing between the measurement points where the phase difference changes approximately 180 degrees is determined as the ground fault section. A method for detecting ground fault fault sections in distribution lines.
【請求項2】配電線に地絡故障が発生した場合に配電線
の地絡故障区間を検出する方法であって、配電線を複数
区間に区分し、各区間の端の測定点において、配電線の
所定の1相の相電圧を検出するとともに、配電線の各相
電流を検出し、これらの検出電流に基づいて零相電流を
求め、その零相電流と前記検出された相電圧との位相差
を算出し、配電線に沿って各測定点において算出された
前記位相差の分布を求め、位相差がほぼ180°転換す
る測定点同士の間に存在する区間を地絡故障区間として
決定することを特徴とする配電線の地絡故障区間検出方
法。
Claim 2: A method for detecting a ground fault section of a distribution line when a ground fault occurs in the distribution line, the distribution line being divided into a plurality of sections, and measuring points at the ends of each section. At the same time as detecting the phase voltage of one predetermined phase of the electric wire, each phase current of the distribution line is detected, the zero-sequence current is determined based on these detected currents, and the difference between the zero-sequence current and the detected phase voltage is calculated. Calculate the phase difference, find the distribution of the calculated phase difference at each measurement point along the distribution line, and determine the area between the measurement points where the phase difference changes approximately 180 degrees as the ground fault area. A method for detecting a ground fault fault section of a power distribution line.
【請求項3】配電線に地絡故障が発生した場合に地絡故
障区間を検出する配電線の地絡故障区間検出装置であっ
て、複数区間に区分された配電線の各区間に端末局を配
置し、各端末局には、配電線の各相電流を検出する電流
センサと、電流センサの検出電流に基づいて零相電流を
求め、その零相電流と当該端末局の制御用交流電源電圧
である配電線の所定の2相間の線間電圧との位相差を算
出する算出手段と、算出手段により検出された前記位相
差のデータを送信する送信手段とが設けられ、さらに、
前記端末局からデータを受信するための親局を配置し、
この親局には、各端末局から受信されたデータに含まれ
る前記位相差の分布に基づいて、位相差がほぼ180°
異なる端末局群を区別し、これら区別された端末局群の
うち互いに隣接する端末局の間に存在する区間を配電線
の地絡故障区間として決定する地絡故障区間決定手段が
設けられていることを特徴とする配電線の地絡故障区間
検出装置。
3. A ground fault fault section detection device for a distribution line that detects a ground fault fault section when a ground fault occurs in a distribution line, the device comprising: a terminal station located in each section of a distribution line divided into a plurality of sections; Each terminal station is equipped with a current sensor that detects each phase current of the distribution line, and a zero-sequence current is determined based on the current detected by the current sensor. Calculating means for calculating a phase difference between the voltage and the line voltage between two predetermined phases of the distribution line, and a transmitting means for transmitting data of the phase difference detected by the calculating means, further comprising:
arranging a master station for receiving data from the terminal station;
This master station has a phase difference of approximately 180 degrees based on the distribution of the phase differences included in the data received from each terminal station.
Ground fault fault section determining means is provided for distinguishing between different terminal station groups and determining a section existing between mutually adjacent terminal stations among these differentiated terminal station groups as a ground fault fault section of the distribution line. A ground fault fault section detection device for a power distribution line, characterized in that:
【請求項4】配電線に地絡故障が発生した場合に地絡故
障区間を検出する配電線の地絡故障区間検出装置であっ
て、複数区間に区分された配電線の各区間に端末局を配
置し、各端末局には、配電線の所定の1相の相電圧を検
出する電圧センサと、配電線の各相電流を検出する電流
センサと、電流センサの検出電流に基づいて零相電流を
求め、その零相電流と電圧センサにより検出された所定
の1相の相電圧との位相差を算出する算出手段と、算出
手段により検出された前記位相差のデータを送信する送
信手段とが設けられ、さらに、前記端末局からデータを
受信するための親局を配置し、この親局には、各端末局
から受信されたデータに含まれる前記位相差の分布に基
づいて、位相差がほぼ180°異なる端末局群を区別し
、これら区別された端末局群のうち互いに隣接する端末
局の間に存在する区間を配電線の地絡故障区間として決
定する地絡故障区間決定手段が設けられていることを特
徴とする配電線の地絡故障区間検出装置。
4. A ground fault fault section detection device for a distribution line, which detects a ground fault fault section when a ground fault fault occurs in a distribution line, wherein a terminal station is provided in each section of a distribution line divided into a plurality of sections. Each terminal station is equipped with a voltage sensor that detects the phase voltage of one predetermined phase of the distribution line, a current sensor that detects the current of each phase of the distribution line, and a zero-phase sensor that detects the current of each phase of the distribution line. Calculating means for determining a current and calculating a phase difference between the zero-phase current and a predetermined phase voltage of one phase detected by a voltage sensor; and a transmitting means for transmitting data on the phase difference detected by the calculating means. Further, a master station for receiving data from the terminal stations is arranged, and the master station calculates the phase difference based on the distribution of the phase differences included in the data received from each terminal station. Ground fault fault section determining means distinguishes between terminal station groups that differ by approximately 180°, and determines a section existing between mutually adjacent terminal stations among the differentiated terminal station groups as a ground fault fault section of a power distribution line. What is claimed is: 1. A ground fault fault section detection device for a power distribution line.
【請求項5】端末局は、全方位を少なくとも5つの領域
に分割し、零相電流と所定の2相間の線間電圧との位相
差を当該位相差が含まれる領域のデータとして送信し、
親局は、1つ以上離れた領域に属する端末局同士を同じ
端末局群にまとめるものである請求項3記載の配電線の
地絡故障区間検出装置。
5. The terminal station divides the omnidirectional region into at least five regions, and transmits the phase difference between the zero-sequence current and the line voltage between two predetermined phases as data for the region including the phase difference,
4. The ground fault fault section detection device for a power distribution line according to claim 3, wherein the master station groups terminal stations belonging to one or more areas apart from each other into the same terminal station group.
【請求項6】端末局は、全方位を少なくとも5つの領域
に分割し、零相電流と所定の1相の相電圧との位相差を
当該位相差が含まれる領域のデータとして送信し、親局
は、1つ以上離れた領域に属する端末局同士を同じ端末
局群にまとめるものである請求項4記載の配電線の地絡
故障区間検出装置。
6. The terminal station divides the omnidirectional region into at least five regions, transmits the phase difference between the zero-sequence current and the predetermined one-phase phase voltage as data of the region including the phase difference, and 5. The ground fault fault section detection device for a power distribution line according to claim 4, wherein the station groups terminal stations belonging to one or more areas apart from each other into the same terminal station group.
JP9993791A 1991-05-01 1991-05-01 Method and device for detecting grounded section of distribution line Pending JPH04331418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9993791A JPH04331418A (en) 1991-05-01 1991-05-01 Method and device for detecting grounded section of distribution line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9993791A JPH04331418A (en) 1991-05-01 1991-05-01 Method and device for detecting grounded section of distribution line

Publications (1)

Publication Number Publication Date
JPH04331418A true JPH04331418A (en) 1992-11-19

Family

ID=14260634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9993791A Pending JPH04331418A (en) 1991-05-01 1991-05-01 Method and device for detecting grounded section of distribution line

Country Status (1)

Country Link
JP (1) JPH04331418A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795129A (en) * 1980-12-01 1982-06-12 Tokyo Electric Power Co Directional comparison carrier relay
JPH01180469A (en) * 1988-01-12 1989-07-18 Ngk Insulators Ltd Accident section detecting device for power transmission line
JPH0265016A (en) * 1988-08-30 1990-03-05 Toto Ltd Optical switch
JPH0365016A (en) * 1989-07-31 1991-03-20 Mitsubishi Electric Corp Ground fault detector for distribution line

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795129A (en) * 1980-12-01 1982-06-12 Tokyo Electric Power Co Directional comparison carrier relay
JPH01180469A (en) * 1988-01-12 1989-07-18 Ngk Insulators Ltd Accident section detecting device for power transmission line
JPH0265016A (en) * 1988-08-30 1990-03-05 Toto Ltd Optical switch
JPH0365016A (en) * 1989-07-31 1991-03-20 Mitsubishi Electric Corp Ground fault detector for distribution line

Similar Documents

Publication Publication Date Title
US8461823B2 (en) System for metering electricity by integrating in-phase current
US8159210B2 (en) System for automatically detecting power system configuration
US9250282B2 (en) Fault parameter indicator device and related methods
US8861155B2 (en) High-impedance fault detection and isolation system
US9823637B2 (en) Fault detection and isolation using a common reference clock
US8102634B2 (en) Differential protection method, system and device
JPS59209018A (en) Protecting relaying device and method
CN106505533B (en) A kind of distance protection system and its control method suitable for half-wave power transmission route
Kasajima et al. The development of the advanced distribution automation system with optical fiber network of Tokyo Electric Power Co., Inc
CA2689776C (en) System for accurately detecting electricity theft
CN109193595B (en) Active power distribution network failure separation method based on current phase comparison
JPH04331418A (en) Method and device for detecting grounded section of distribution line
JPH04331417A (en) System for detecting fault section of distribution line
JPH04347532A (en) Method and device for detecting disconnected section of distribution line
JP5283369B2 (en) Disconnection protection relay
JP3189294B2 (en) Distribution line fault section determination system
JPH04344122A (en) Method and apparatus for deciding ground-fault zone in power distribution line
JP3221000B2 (en) Method and apparatus for determining ground fault section of distribution line
JPH0530646A (en) Method and apparatus for detecting ground fault section of distribution line
CN220399565U (en) Transformer substation transient fault ranging positioning and cable line insulation early warning device
JPH0522852A (en) Method and apparatus for determining grounding section of distribution line
JPH04359625A (en) Method and device for locating broken-wire section of distribution line
Bjerkan et al. Reliable detection of downed and broken conductors
JPH04158274A (en) Method for detecting breakage of high voltage power distribution system
JPH09251051A (en) Method for detecting grounding direction of transmission and distribution line