JPH04331366A - Zirconia ferrule evaluator - Google Patents

Zirconia ferrule evaluator

Info

Publication number
JPH04331366A
JPH04331366A JP3101620A JP10162091A JPH04331366A JP H04331366 A JPH04331366 A JP H04331366A JP 3101620 A JP3101620 A JP 3101620A JP 10162091 A JP10162091 A JP 10162091A JP H04331366 A JPH04331366 A JP H04331366A
Authority
JP
Japan
Prior art keywords
ferrule
zirconia
sample
microphone
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3101620A
Other languages
Japanese (ja)
Inventor
Shunji Watanabe
俊二 渡邊
Setsuo Shoji
節夫 東海林
Masahiko Tsunemi
恒見 雅彦
Akiya Shishido
宍戸 晃哉
Seiji Yahagi
矢作 誠治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP3101620A priority Critical patent/JPH04331366A/en
Publication of JPH04331366A publication Critical patent/JPH04331366A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a highly accurate evaluation of flaws and pollution of the surface and below the surface automatically by irradiating the surface of zirconia ferrule with a laser beam to detect a sound wave associated with light absorption and radiation less transition with a microphone. CONSTITUTION:A light source uses a He-Ne laser 1 and the light is separated spectrally into a part for irradiating zirconia ferrule 6 as sample and a part to be taken into a lockin amplifier 12 as reference signal. The laser on the side of the sample is modulated to be an intermittent light of 1kHz with an A/O modulator 2 to scan the ferrule 6 in a longitudinal direction with a scanner 4. A sample cell 5 is equipped with a microphone 7 for coarse or dense wave detection, a leak value 13 for preventing a rise in internal pressure during the introduction of the sample and a stepping motor 8 for rotating the ferrule 6. With the irradiation of the intermittent light, the coarse or dense wave generated with the ferrule 6 is detected with the microphone 7 and after amplified with a preamplifier 12 and the lockin amplifier 12, the wave is inputted into a CPU 9 as photoacoustic signal.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光ファイバーコネクタ
用ジルコニアフェルールの評価装置に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an evaluation device for zirconia ferrules for optical fiber connectors.

【0002】0002

【従来の技術】従来、ジルコニアフェルールの傷や汚れ
等の評価は、人間が目で観察することにより行われてい
た。
BACKGROUND OF THE INVENTION Hitherto, evaluation of scratches, stains, etc. on zirconia ferrules has been carried out by human visual observation.

【0003】0003

【発明が解決しようとする課題】ジルコニアフェルール
の傷や汚れ等の評価は、人間が目で観察することにより
行われていため、見落としがあったり、自動化ができな
かったりするという課題があった。
[Problems to be Solved by the Invention] Evaluation of scratches, stains, etc. on zirconia ferrules is performed by human observation by human eyes, which causes problems such as oversights and the inability to automate the evaluation.

【0004】0004

【課題を解決するための手段】本発明の装置によると、
目で観察する代わりにレーザ光線(断続)を照射し、ジ
ルコニアフェルールから発生する光吸収と無放射遷移に
伴う音波をマイクロフォンにより検出するため、ジルコ
ニアフェルール表面の傷および汚れ等を発見することが
できる。
[Means for Solving the Problems] According to the device of the present invention,
Instead of observing with the naked eye, a laser beam (intermittent) is irradiated and the sound waves accompanying light absorption and non-radiative transition generated from the zirconia ferrule are detected using a microphone, making it possible to discover scratches and dirt on the surface of the zirconia ferrule. .

【0005】[0005]

【作用】物質に断続光線を照射すると、物質に取り込ま
れた光エネルギーの一部は、物質内部に熱発生をともな
い、引続き起こる熱拡散により周囲の気体にリークする
。断続光線であるため、周辺気体には粗密波が発生しマ
イクロフォンで検出することができる。この現象は一般
に光音響効果と呼ばれ、発生する粗密波は光音響信号と
呼ばれている。この光音響効果を応用することにより、
ジルコニアフェルール表面及び表面下熱拡散長内の傷や
ジルコニアと光学的、熱的特性異なる汚れの評価を行う
ことができる。また、光源のビームを絞れば、面分解能
が上がり、ビームの強度を上げれば光音響信号の強度を
上げることができるため、精密測定が可能となる。
[Operation] When a material is irradiated with intermittent light, a portion of the light energy absorbed into the material generates heat within the material, and leaks into the surrounding gas due to subsequent thermal diffusion. Since it is an intermittent beam, compression waves are generated in the surrounding gas, which can be detected with a microphone. This phenomenon is generally called the photoacoustic effect, and the compression waves generated are called photoacoustic signals. By applying this photoacoustic effect,
It is possible to evaluate scratches on the zirconia ferrule surface and within the subsurface thermal diffusion length, as well as stains that have optical and thermal characteristics different from those of zirconia. Furthermore, by narrowing down the beam of the light source, the surface resolution increases, and by increasing the intensity of the beam, the intensity of the photoacoustic signal can be increased, making precise measurements possible.

【0006】[0006]

【実施例】図1にジルコニアフェルール評価装置のブロ
ックダイアグラムを示す。光源には、He−Neレーザ
1を用いた。レーザ光は、ビームスプリッタ3により試
料であるジルコニアフェルール6に照射される側と参照
信号としてロックインアンプ12に取り込まれる側に分
けられる。試料側のレーザ光は、A/Oモジュレータ2
で1kHzに変調され断続光となり、スキャナー4でジ
ルコニアフェルール6の長手方向に走査されながら試料
を照射する。このときジルコニアフェルール6は、スッ
テピングモータで回転させられているため、断続光はジ
ルコニアフェールール6の側面に隈なく照射されること
になる。
Embodiment FIG. 1 shows a block diagram of a zirconia ferrule evaluation device. A He-Ne laser 1 was used as a light source. The laser beam is divided by a beam splitter 3 into a side where it is irradiated onto a zirconia ferrule 6, which is a sample, and a side where it is taken into a lock-in amplifier 12 as a reference signal. The laser beam on the sample side is transmitted to the A/O modulator 2.
The intermittent light is modulated to 1 kHz and illuminates the sample while being scanned in the longitudinal direction of the zirconia ferrule 6 by the scanner 4. At this time, since the zirconia ferrule 6 is rotated by a stepping motor, the intermittent light is irradiated all over the side surface of the zirconia ferrule 6.

【0007】図2に試料セルの断面図を示す。内径5m
mの石英管14にジルコニアフェルール6を入れ、Oリ
ング15で密閉したものである。試料セル5には、粗密
波検出のためのマイクロフォン7、試料導入時の内圧上
昇防止のためのリーク弁13およびジルコニアフェルー
ル6を回転するためのスッテピングモータ8が取り付け
てある。断続光の照射に伴いジルコニアフェルール6か
ら発生した粗密波は、マイクロフォン7で検出されプリ
アンプ(図示せず)、ロックインアンプ12で増幅され
た後、光音響信号としてCPU9に取り込まれる。結果
は、モニタ(図示せず)およびプロッタ10に出力され
る。
FIG. 2 shows a cross-sectional view of the sample cell. Inner diameter 5m
A zirconia ferrule 6 is placed in a quartz tube 14 of size m, and the tube is sealed with an O-ring 15. The sample cell 5 is equipped with a microphone 7 for detecting compressional waves, a leak valve 13 for preventing an increase in internal pressure when introducing a sample, and a stepping motor 8 for rotating the zirconia ferrule 6. Compression waves generated from the zirconia ferrule 6 due to intermittent light irradiation are detected by a microphone 7, amplified by a preamplifier (not shown) and a lock-in amplifier 12, and then taken into the CPU 9 as a photoacoustic signal. The results are output to a monitor (not shown) and plotter 10.

【0008】図3に本発明によるに出力結果を示した。 X軸は回転角度、Y軸はジルコニアフェルール長手方向
の距離、Z軸は信号強度を表している。回転角度30度
と210度付近の縦のピークは射出成形時のウェルドラ
インに起因する欠陥または内部の不均一な部分が存在す
ることを示している。150度付近のピークは、表面ま
たは表面下熱拡散長内の汚れの存在を示している。さら
に、表面下の汚れや欠陥による光音響信号は、表面での
それに対して時間遅れを生じるため、ロックインアンプ
から出力される光音響信号の位相観察を行えば、非破壊
で深さ方向の情報が得られることになる。
FIG. 3 shows the output results according to the present invention. The X axis represents the rotation angle, the Y axis represents the distance in the longitudinal direction of the zirconia ferrule, and the Z axis represents the signal intensity. Vertical peaks near rotation angles of 30 degrees and 210 degrees indicate the presence of defects or internal non-uniformity caused by weld lines during injection molding. A peak near 150 degrees indicates the presence of contamination at the surface or within the subsurface thermal diffusion length. Furthermore, since the photoacoustic signal due to dirt or defects beneath the surface has a time delay compared to that on the surface, it is possible to observe the phase of the photoacoustic signal output from the lock-in amplifier in a non-destructive manner. Information will be obtained.

【0009】[0009]

【発明の効果】以上実施例でも述べたように、本発明の
装置は、従来人間の行っていたジルコニアフェルールの
傷や汚れの評価を精度良く行うものである。また、肉眼
では不可能であった、表面下の傷や汚れも発見できるも
のである。さらに、試料セルへの導入、取り出し装置を
付けることにより容易にラインに組み込むことができる
工業的に優れた装置である。
EFFECTS OF THE INVENTION As described in the embodiments above, the apparatus of the present invention is capable of accurately evaluating zirconia ferrules for scratches and stains, which was conventionally done by humans. It can also detect scratches and dirt beneath the surface that are impossible to see with the naked eye. Furthermore, it is an industrially superior device that can be easily incorporated into a line by adding a device for introducing it into a sample cell and taking it out.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明のブロック図である。FIG. 1 is a block diagram of the present invention.

【図2】本発明の要部を示す断面図である。FIG. 2 is a sectional view showing essential parts of the present invention.

【図3】本発明による出力結果図である。FIG. 3 is an output result diagram according to the present invention.

【符号の説明】[Explanation of symbols]

1  He−Neレーザ 6  ジルコニアフェルール 7  マイクロフォン 1 He-Ne laser 6 Zirconia ferrule 7. Microphone

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ジルコニアフェルールの評価において
、ジルコニアフェルールに断続的にレーザ光線を照射し
、ジルコニアフェルールから発生する光吸収と無放射遷
移に伴う音波をマイクロフォンにより検出することによ
り、ジルコニアフェルール表面の傷および汚れ等の評価
を行うことを特徴とするジルコニアフェルール評価装置
Claim 1: In the evaluation of zirconia ferrules, the zirconia ferrules are intermittently irradiated with a laser beam, and the sound waves accompanying the light absorption and non-radiative transition generated from the zirconia ferrules are detected by a microphone, thereby eliminating scratches on the surface of the zirconia ferrules. A zirconia ferrule evaluation device characterized by evaluating dirt, dirt, etc.
JP3101620A 1991-05-07 1991-05-07 Zirconia ferrule evaluator Pending JPH04331366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3101620A JPH04331366A (en) 1991-05-07 1991-05-07 Zirconia ferrule evaluator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3101620A JPH04331366A (en) 1991-05-07 1991-05-07 Zirconia ferrule evaluator

Publications (1)

Publication Number Publication Date
JPH04331366A true JPH04331366A (en) 1992-11-19

Family

ID=14305446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3101620A Pending JPH04331366A (en) 1991-05-07 1991-05-07 Zirconia ferrule evaluator

Country Status (1)

Country Link
JP (1) JPH04331366A (en)

Similar Documents

Publication Publication Date Title
JP3040474B2 (en) Photoacoustic leak detection and method
US6661519B2 (en) Semiconductor impurity concentration testing apparatus and semiconductor impurity concentration testing method
JPH0283481A (en) Optoacoustic imaging method by multiple modulation frequency
KR100822680B1 (en) A laser ultrasonic apparatus and method to detect micro multi-cracks
JPH09318535A (en) Light absorption spectrum measuring method of solution by laser induced photothermic displacement spectroscopy
JP3789696B2 (en) Battery electrolyte leak inspection apparatus and battery electrolyte leak inspection method
JPH04331366A (en) Zirconia ferrule evaluator
US5796004A (en) Method and apparatus for exciting bulk acoustic wave
JPH1078415A (en) Method and device for noncontact and non-destructive material evaluation, and method and device for elastic wave excitation
CN114280157A (en) Sub-surface crack length quantitative detection method based on laser excitation surface wave
Caron et al. Gas coupled laser acoustic detection for ultrasound inspection of composite materials
KR970010982B1 (en) Photo-detective apparatus in non-destructive test
JPH04323552A (en) Zirconia ferrule evaluating device
JPH01214719A (en) Collecting apparatus of optoacoustic signal
JPH0376419B2 (en)
Freese et al. Pre-pulse identification of localized laser damage sites in thin films using photoacoustic spectroscopy
JP3271994B2 (en) Dimension measurement method
Xianyu Non-Contact Photoacoustic Wave Detection Techniques for Inspection of Metals Structures
JP2001165643A (en) Resonance type photoacoustic measuring and inspection device and method
Tolev et al. Laser photothermal non-destructive metrology of cracks in un-sintered powder metallurgy manufactured automotive transmission sprockets
Zhu et al. Speckle pattern interferometry excited by pulsed laser for crack size detection
JPH07280781A (en) Ultrasonic microscopic apparatus
JPS61200463A (en) Ultrasonic probe
JPH0572186A (en) Ultrasonic wave generating/detecting device for ultrasonic microscope
JP2023178763A (en) Photoacoustic wave generation device, photoacoustic wave generation method, and composition estimation method