JPH04322466A - Manufacture of solid-state image sensing device - Google Patents

Manufacture of solid-state image sensing device

Info

Publication number
JPH04322466A
JPH04322466A JP3116529A JP11652991A JPH04322466A JP H04322466 A JPH04322466 A JP H04322466A JP 3116529 A JP3116529 A JP 3116529A JP 11652991 A JP11652991 A JP 11652991A JP H04322466 A JPH04322466 A JP H04322466A
Authority
JP
Japan
Prior art keywords
thin film
solid
microlens
refractive index
transparent film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3116529A
Other languages
Japanese (ja)
Other versions
JP3420776B2 (en
Inventor
Kazuya Matsumoto
一哉 松本
Etsuro Shimizu
悦朗 清水
Takahisa Fukuoka
荘尚 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP11652991A priority Critical patent/JP3420776B2/en
Publication of JPH04322466A publication Critical patent/JPH04322466A/en
Application granted granted Critical
Publication of JP3420776B2 publication Critical patent/JP3420776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Heads (AREA)

Abstract

PURPOSE:To provide the manufacturing method, of a solid-state image sensing device, which can easily form a microlens whose lens effect does not disappear even in the case of a clear molding mounting operation or the like. CONSTITUTION:A photodiode 2 is formed in a semiconductor substrate 1; after that, a thin film 3 composed of a transparent material is formed on the whole surface. Then, ions 4 are implanted from the surface by an ion implantation method; the surface is coated with a resist film 5; and after that, an opening part 6 is formed in the part of the photodiode. Then, a recessed part 7 is formed in the thin film 3 by a wet etching method; the resist film 5 is removed. Then, a sol of a transparent material whose refractive index is higher than that of the thin film 3 is coated by a spin coating method; it is dried and heat-treated; and a transparent thin film 8 whose refractive index is high is formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、固体撮像装置の製造
方法に関し、特に感度を向上させるためマイクロレンズ
を備えた固体撮像装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a solid-state imaging device, and more particularly to a method of manufacturing a solid-state imaging device equipped with a microlens to improve sensitivity.

【0002】0002

【従来の技術】一般に、CCDやCMD(Charge
 Modulation Device)等を用いた固
体撮像装置においては、半導体主面に光電変換部及び信
号読み出し部を備えているので、実際に光電変換に寄与
する領域は、20〜50%程度に制限されている。この
欠点を解決するための手段として、集光のためのマイク
ロレンズを画素毎に設け、入射光を光電変換部に集光す
る方法が特公昭60−59752号公報などに提案され
ている。
[Prior Art] Generally, CCD and CMD (Charge
In a solid-state imaging device using a modulation device, etc., the main surface of the semiconductor is equipped with a photoelectric conversion section and a signal readout section, so the area that actually contributes to photoelectric conversion is limited to about 20 to 50%. . As a means to solve this drawback, a method has been proposed in Japanese Patent Publication No. 60-59752, etc., in which a microlens for condensing light is provided for each pixel and incident light is condensed onto a photoelectric conversion section.

【0003】図2は、上記公報記載のマイクロレンズ付
の固体撮像装置の画素部の構造を示す断面図であり、図
において、11はシリコン基板、12はチャネルストッ
プ、13は拡散層、14はフォトダイオード、15は絶
縁膜、16はポリシリコンゲート、17は例えばホトレ
ジスト等の有機材料よりなるマイクロレンズ集束体であ
り、この構成により、Dで示す範囲の入射光がフォトダ
イオード14に照射されるようになっている。
FIG. 2 is a sectional view showing the structure of a pixel section of a solid-state imaging device with a microlens described in the above-mentioned publication. In the figure, 11 is a silicon substrate, 12 is a channel stop, 13 is a diffusion layer, and 14 is a 15 is an insulating film, 16 is a polysilicon gate, and 17 is a microlens focusing body made of an organic material such as photoresist. With this configuration, the photodiode 14 is irradiated with incident light in the range indicated by D. It looks like this.

【0004】0004

【発明が解決しようとする課題】ところで固体撮像装置
の用途によっては、図3に示すように、図2に示したマ
イクロレンズ付の固体撮像装置上に、カバーガラス19
及びカバーガラス接着層18を形成することが要求され
る場合がある。更にはまた、クリアモールド実装の場合
にも、マイクロレンズ上に接してクリアモールド材が形
成されることとなる。このような構成とした場合には、
通常の有機材料で形成されたマイクロレンズの屈折率は
約1.6であり、一方カバーガラス接着層あるいはクリ
アモールド材の屈折率も、ほぼマイクロレンズ材料の屈
折率値に近いため、マイクロレンズ効果が大幅に低下す
る。
However, depending on the application of the solid-state imaging device, as shown in FIG.
It may also be required to form a cover glass adhesive layer 18. Furthermore, in the case of clear mold mounting, a clear mold material is formed in contact with the microlens. When configured like this,
The refractive index of microlenses formed from ordinary organic materials is approximately 1.6, and on the other hand, the refractive index of the cover glass adhesive layer or clear mold material is also close to the refractive index value of the microlens material, so the microlens effect decreases significantly.

【0005】この点を改善するため、特開昭58−22
0106号公報には、クリアモールド等の実装に適する
マイクロレンズの構造が開示されている。図4は、その
公報開示中の一実施例であり、21は半導体基板、22
は該半導体基板21中に形成されたフォトダイオード、
23は酸化膜、24は凹形状を有するガラス,樹脂等よ
りなる薄膜、25は薄膜24の凹部に充填された、透光
性を有し薄膜24よりも高屈折率を有する材料である。 この図4のような構成とすることにより、入射光26は
、充填材料25及び薄膜24のマイクロレンズ効果によ
り効果的にフォトダイオード22に集光されることとな
る。しかしながら、この公報には薄膜24は樹脂よりな
り、一方、薄膜24の凹部の充填材料25は透光性材料
としか記載されておらず、具体的な材料は開示されてい
ない。
[0005] In order to improve this point, Japanese Patent Laid-Open No. 58-22
Publication No. 0106 discloses a structure of a microlens suitable for mounting in a clear mold or the like. FIG. 4 shows an embodiment disclosed in the publication, in which 21 is a semiconductor substrate, 22
is a photodiode formed in the semiconductor substrate 21,
23 is an oxide film, 24 is a thin film made of glass, resin, etc. having a concave shape, and 25 is a material that is transparent and has a higher refractive index than the thin film 24, which is filled in the concave portion of the thin film 24. With the configuration shown in FIG. 4, the incident light 26 is effectively focused on the photodiode 22 due to the microlens effect of the filling material 25 and the thin film 24. However, this publication only describes that the thin film 24 is made of resin, and that the material 25 filling the recesses of the thin film 24 is a translucent material, but does not disclose the specific material.

【0006】また、特開昭62−23161号公報には
、図4に示したものと同様に、クリアモールド実装に適
したマイクロレンズの製法が開示されており、図5を用
いてその構成を説明する。図5において、31はシリコ
ン中に形成されたフォトダイオード部、32はシリコン
酸化膜からなる凹形状を有する薄膜、33は窒化シリコ
ンよりなるレンズである。窒化シリコンからなるレンズ
33の形成方法は、まずCVD法等により厚く窒化シリ
コンを堆積し、その後エッチバック法により、その表面
を平坦化するという工程がとられており、そのプロセス
工程が煩雑である欠点を有していた。
[0006] Furthermore, JP-A No. 62-23161 discloses a method for manufacturing a microlens suitable for clear mold mounting, similar to the one shown in FIG. explain. In FIG. 5, 31 is a photodiode portion formed in silicon, 32 is a thin film having a concave shape made of a silicon oxide film, and 33 is a lens made of silicon nitride. The method for forming the lens 33 made of silicon nitride involves first depositing a thick layer of silicon nitride using a CVD method or the like, and then flattening its surface using an etch-back method, which is a complicated process. It had drawbacks.

【0007】本発明は、従来のマイクロレンズを備えた
固体撮像装置における上記問題点を解消するためになさ
れたもので、クリアモールド実装等の場合においても、
レンズ効果が消失しないようなマイクロレンズを容易に
形成することが可能な固体撮像装置の製造方法を提供す
ることを目的とする。
The present invention has been made to solve the above-mentioned problems in conventional solid-state imaging devices equipped with microlenses, and even in the case of clear mold mounting, etc.
It is an object of the present invention to provide a method for manufacturing a solid-state imaging device that can easily form a microlens that does not lose its lens effect.

【0008】[0008]

【課題を解決するための手段及び作用】上記問題点を解
決するため、本発明は、半導体基板の表面領域にマトリ
クス状に配設された複数の光電変換素子と、前記半導体
基板上の前記各光電変換素子に対応する部分に入射光を
収束するマイクロレンズをそれぞれ備えた固体撮像装置
の製造方法において、前記マイクロレンズを凹形状を有
する第1透明膜と、その上部に位置し且つ前記第1透明
膜よりも高い屈折率を有する第2透明膜で構成し、該第
2透明膜を、金属種を含むゾルを前記第1透明膜上にス
ピンコート又はディップコートすることにより形成する
ものである。
Means and Effects for Solving the Problems In order to solve the above problems, the present invention provides a plurality of photoelectric conversion elements arranged in a matrix on a surface area of a semiconductor substrate, and each of the photoelectric conversion elements on the semiconductor substrate. In a method of manufacturing a solid-state imaging device, each of which includes microlenses that converge incident light on a portion corresponding to a photoelectric conversion element, the microlenses are formed by a first transparent film having a concave shape, and a first transparent film located on the top of the first transparent film and a first transparent film having a concave shape. It is composed of a second transparent film having a higher refractive index than the transparent film, and the second transparent film is formed by spin coating or dip coating a sol containing a metal species on the first transparent film. .

【0009】本発明において、上記第2透明膜を形成す
る方法は、最近研究開発が盛んになってきたゾル−ゲル
法による薄膜技術を応用するものである。このゾル−ゲ
ル法による薄膜形成方法は、半導体プロセス工程でなじ
みのSpin On Grass 法(S.O.G法と
略称されている)が例として挙げられ、具体的には、原
料の液体状態を化学反応により固体状態へ転化する方法
である。その過程は、例えば、工業材料第37巻第4号
第50〜55頁,「ゾル−ゲル法による光応答材料の可
能性」という表題の論文で示されているように、主に金
属アルコキシドのアルコール溶液を、酸又は塩基を触媒
とし、室温付近で加水分解,脱水,縮合することによっ
てゾル(微粒子からなり流動性がある状態のもの)から
ゲル(ゾル中の微粒子が集合し流動性がなくなった状態
のもので、かんてん,ゼリー,シリカゲルなどが対応す
る)化、更に加熱によって有機物を含まないガラスへと
転化する方法である。
[0009] In the present invention, the method for forming the second transparent film is one that applies thin film technology based on the sol-gel method, which has recently been actively researched and developed. An example of a thin film forming method using the sol-gel method is the Spin On Grass method (abbreviated as the S.O.G method), which is familiar to semiconductor process processes. This is a method of converting it into a solid state through a chemical reaction. The process is mainly based on the production of metal alkoxides, as shown in the paper titled "Possibility of creating photoresponsive materials using the sol-gel method" in Kogyo Materials Vol. 37, No. 4, pp. 50-55. By hydrolyzing, dehydrating, and condensing an alcohol solution at around room temperature using an acid or base as a catalyst, a sol (which is made up of fine particles and has a fluidity) is converted into a gel (the fine particles in the sol aggregate and lose fluidity). In this method, the glass is converted into a glass that does not contain organic substances by heating it and then heating it.

【0010】本発明における第2透明膜は、このゾル−
ゲル法を応用し、金属種を含むゾルをディップコート又
はスピンコートすることにより形成するので、大面積に
均一にコートすることが容易に行え、また第2透明膜の
屈折率は第1透明膜の屈折率より高く設定されているの
で、クリアモールド実装等においても、レンズ効果を消
失しないマイクロレンズを備えた固体撮像装置を容易に
製造することができる。
[0010] The second transparent film in the present invention is made of this sol-
Since it is formed by applying a gel method and dip coating or spin coating a sol containing metal species, it is easy to uniformly coat a large area, and the refractive index of the second transparent film is equal to that of the first transparent film. Since the refractive index is set higher than the refractive index of the microlens, it is possible to easily manufacture a solid-state imaging device equipped with a microlens that does not lose its lens effect even in clear mold mounting or the like.

【0011】[0011]

【実施例】次に本発明に係る固体撮像装置の製造方法の
実施例を、図1に示す製造工程図を用いて説明する。ま
ず図1の(A)に示すように、半導体基板1にマトリク
ス状に配設される画素を構成する多数のPN接合フォト
ダイオード2を形成し、半導体基板表面に、その中に凹
構造を形成する透明材料からなる薄膜3を設ける。この
薄膜3の形成する透明材料は、本実施例においてはシリ
コン酸化膜を念頭においている。薄膜3の厚さは、その
構成材料の屈折率及び画素ピッチにより決まり、薄膜3
の材料がシリコン酸化膜の場合、画素ピッチが10μm
とすると、厚さは約15〜20μmとなり、画素ピッチ
が5μmとすると、約5μm前後の厚さが望ましい。
[Embodiment] Next, an embodiment of the method for manufacturing a solid-state imaging device according to the present invention will be described using the manufacturing process diagram shown in FIG. First, as shown in FIG. 1A, a large number of PN junction photodiodes 2 constituting pixels arranged in a matrix are formed on a semiconductor substrate 1, and a concave structure is formed on the surface of the semiconductor substrate. A thin film 3 made of a transparent material is provided. The transparent material for forming the thin film 3 is a silicon oxide film in this embodiment. The thickness of the thin film 3 is determined by the refractive index of its constituent materials and the pixel pitch.
If the material is silicon oxide film, the pixel pitch is 10 μm
Then, the thickness is about 15 to 20 μm, and if the pixel pitch is 5 μm, the thickness is preferably about 5 μm.

【0012】薄膜3中に凹部を形成する方法は、前記特
開昭58−220106号又は特開昭62−23161
号に開示されている方法の他に種々のものが考えられる
が、本実施例では、イオン注入法とウェットエッチング
法を適用した凹部形成方法を用いており、次にその説明
を行う。まず図1の(A)において、薄膜3を形成した
のち、イオン注入法を用いて表面よりイオン4を注入す
る。このイオン注入処理により、ウェットエッチングの
際のエッチングレートは表面ほど大きくなる。次にフォ
トリソグラフィー法により、レジスト膜5をウェハー表
面に塗布し、次の露光・現像工程により、フォトダイオ
ード2の中心に対応する部分に所望の大きさを有する開
口部6を形成する。その後、HF系のウェットエッチン
グ法により、図1の(B)に示すように凹部7を薄膜3
中に形成する。先に述べたように、薄膜3はイオン注入
処理により、表面に近いほどエッチングレートが大きい
性質を有するため、アスペクト比が1/2以下の曲面状
の凹部7が形成可能となる。なお逆に光学設計により最
適な凹部形状が得られた場合、最適な凹部形状をウェッ
トエッチング法で形成可能なように、イオン注入法の加
速エネルギー,ドーズ量等の条件を設定すればよい。
A method for forming recesses in the thin film 3 is described in the above-mentioned JP-A-58-220106 or JP-A-62-23161.
Although various methods are possible in addition to the method disclosed in the above publication, in this embodiment, a recess forming method using an ion implantation method and a wet etching method is used, which will be explained next. First, in FIG. 1A, after forming a thin film 3, ions 4 are implanted from the surface using an ion implantation method. Due to this ion implantation process, the etching rate during wet etching increases toward the surface. Next, a resist film 5 is applied to the wafer surface by photolithography, and an opening 6 having a desired size is formed in a portion corresponding to the center of the photodiode 2 by the next exposure and development process. Thereafter, by using an HF-based wet etching method, the recess 7 is etched into the thin film 3 as shown in FIG. 1(B).
form inside. As described above, the thin film 3 has a property that the etching rate is larger closer to the surface due to the ion implantation process, so that it is possible to form a curved recess 7 with an aspect ratio of 1/2 or less. On the other hand, when an optimal recess shape is obtained by optical design, conditions such as acceleration energy and dose of the ion implantation method may be set so that the optimal recess shape can be formed by wet etching.

【0013】次に図1の(B)に示す断面形状の透明薄
膜3が得られたのち、レジスト膜5を除去し、次いでス
ピンコート法により、薄膜3の構成材料よりも高屈折率
を有する透明材料のゾルを塗布し、続いて乾燥,熱処理
を行うことにより、図1の(C)に示すように薄膜3よ
りも高屈折率を有する透明薄膜8を形成する。薄膜3の
材料がシリコン酸化膜の場合、薄膜8の形成材料として
は、TiO2 ,ZrO2 ,Y2 O3 ,Al2 
O3 ,SnO2 ,La2 O3 等が挙げられるが
、シリコン酸化膜より高い屈折率を有するものであれば
、この限りではなく、金属成分が複数であっても、その
効果は何ら変わるものではない。凹部を有する薄膜3と
組み合わせて良好なレンズ効果を得るという意味では、
薄膜8の屈折率は2前後の値を有する材料がより好まし
い。例えばTiO2 は屈折率が2前後の値を有するの
で、好適な材料である。
Next, after obtaining the transparent thin film 3 having the cross-sectional shape shown in FIG. By applying a sol of a transparent material, followed by drying and heat treatment, a transparent thin film 8 having a higher refractive index than the thin film 3 is formed as shown in FIG. 1C. When the material of the thin film 3 is a silicon oxide film, the forming material of the thin film 8 is TiO2, ZrO2, Y2 O3, Al2.
Examples include O3, SnO2, La2 O3, etc., but this is not the case as long as it has a higher refractive index than a silicon oxide film.Even if there are a plurality of metal components, the effect will not change in any way. In the sense of obtaining a good lens effect in combination with the thin film 3 having concave portions,
A material having a refractive index of around 2 for the thin film 8 is more preferable. For example, TiO2 is a suitable material since it has a refractive index of around 2.

【0014】以上の工程により本発明に係る製造方法の
工程は終了するが、上記工程による構成に加えて、薄膜
8上に薄膜8よりも低屈折率を有する保護膜を形成する
ことも勿論可能であり、この場合は下層に対する保護効
果に加えて、薄膜8の上面での反射を低減する効果をも
たせることができる。
Although the steps of the manufacturing method according to the present invention are completed through the above steps, it is of course possible to form a protective film having a refractive index lower than that of the thin film 8 on the thin film 8, in addition to the structure according to the above steps. In this case, in addition to the effect of protecting the lower layer, it is possible to have the effect of reducing reflection on the upper surface of the thin film 8.

【0015】また薄膜8の表面を、薄膜3の凹部7の形
状に対応させて凸形状に加工することも可能であり、そ
の構成とした場合は、より薄い薄膜3を用いて同様なレ
ンズ効果を達成することができる。
It is also possible to process the surface of the thin film 8 into a convex shape corresponding to the shape of the concave portion 7 of the thin film 3, and in this case, a similar lens effect can be achieved using a thinner thin film 3. can be achieved.

【0016】通常のマイクロレンズ付の固体撮像装置に
おいては、マイクロレンズより下面にカラーフィルター
が形成されており、5μmピッチ等の微小画素を考えた
場合、先に述べたように、半導体基板上の薄膜の膜厚と
カラーフィルターの膜厚の合計を5μm以下にすること
が必要となり、高度な技術が要求され、更に5μm以下
の微細画素に対しては、マイクロレンズとフォトダイオ
ード表面間の距離を、5μm以下のマイクロレンズ焦点
距離より小さくすることは事実上不可能となるが、本発
明において得られる構成では、マイクロレンズを構成す
る薄膜8上にカラーフィルターが形成可能であり、この
点から、本発明に係る製造方法は、画素微細化に対して
も有利であるという特徴を有する。
In a normal solid-state imaging device with a microlens, a color filter is formed on the lower surface of the microlens, and when considering micropixels with a pitch of 5 μm, as mentioned above, the color filter is formed on the lower surface of the microlens. It is necessary to reduce the total thickness of the thin film and color filter to 5 μm or less, which requires advanced technology. Furthermore, for fine pixels of 5 μm or less, the distance between the microlens and the photodiode surface must be reduced. , it is virtually impossible to make the microlens focal length smaller than 5 μm, but in the configuration obtained in the present invention, a color filter can be formed on the thin film 8 constituting the microlens, and from this point, The manufacturing method according to the present invention is also advantageous for pixel miniaturization.

【0017】[0017]

【発明の効果】以上実施例に基づいて説明したように、
本発明によれば、最表面が平坦で内部にマイクロレンズ
を有する固体撮像装置を、短時間で容易に製造すること
ができ、また製造された固体撮像装置は、クリアモール
ド実装等により表面に空気とは異なる有機材料等が隣接
形成された場合でも、レンズ効果消失による感度低下を
回避することが可能となる。
[Effect of the invention] As explained above based on the embodiments,
According to the present invention, a solid-state imaging device having a flat outermost surface and a microlens inside can be easily manufactured in a short period of time, and the manufactured solid-state imaging device can be made with air on the surface by clear mold mounting or the like. Even if an organic material different from the above is formed adjacently, it is possible to avoid a decrease in sensitivity due to loss of lens effect.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係る固体撮像装置の製造方法の実施例
を説明するための製造工程を示す図である。
FIG. 1 is a diagram showing a manufacturing process for explaining an embodiment of a method for manufacturing a solid-state imaging device according to the present invention.

【図2】従来のマイクロレンズを備えた固体撮像装置の
構成例を示す断面図である。
FIG. 2 is a cross-sectional view showing a configuration example of a conventional solid-state imaging device equipped with a microlens.

【図3】カバーガラスを備えた従来の固体撮像装置の構
成例を示す断面図である。
FIG. 3 is a cross-sectional view showing a configuration example of a conventional solid-state imaging device including a cover glass.

【図4】クリアモールド実装に適するマイクロレンズを
備えた従来の固体撮像装置の構成例を示す断面図である
FIG. 4 is a cross-sectional view showing a configuration example of a conventional solid-state imaging device equipped with a microlens suitable for clear mold mounting.

【図5】クリアモールド実装に適するマイクロレンズを
備えた従来の固体撮像装置の他の構成例を示す断面図で
ある。
FIG. 5 is a sectional view showing another configuration example of a conventional solid-state imaging device equipped with a microlens suitable for clear mold mounting.

【符号の説明】[Explanation of symbols]

1  半導体基板 2  フォトダイオード 3  薄膜 4  イオン 5  レジスト膜 6  開口部 7  凹部 8  薄膜 1 Semiconductor substrate 2 Photodiode 3 Thin film 4 Ion 5 Resist film 6 Opening 7 Recess 8 Thin film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板の表面領域にマトリクス状
に配設された複数の光電変換素子と、前記半導体基板上
の前記各光電変換素子に対応する部分に入射光を収束す
るマイクロレンズをそれぞれ備えた固体撮像装置の製造
方法において、前記マイクロレンズを凹形状を有する第
1透明膜と、その上部に位置し且つ前記第1透明膜より
も高い屈折率を有する第2透明膜で構成し、該第2透明
膜を、金属種を含むゾルを前記第1透明膜上にスピンコ
ート又はディップコートすることにより形成することを
特徴とする固体撮像装置の製造方法。
1. A plurality of photoelectric conversion elements arranged in a matrix on a surface area of a semiconductor substrate, each comprising a microlens that converges incident light onto a portion of the semiconductor substrate corresponding to each of the photoelectric conversion elements. In the method for manufacturing a solid-state imaging device, the microlens is composed of a first transparent film having a concave shape and a second transparent film located above the first transparent film and having a higher refractive index than the first transparent film, A method for manufacturing a solid-state imaging device, characterized in that a second transparent film is formed by spin coating or dip coating a sol containing a metal species on the first transparent film.
JP11652991A 1991-04-22 1991-04-22 Method for manufacturing solid-state imaging device Expired - Fee Related JP3420776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11652991A JP3420776B2 (en) 1991-04-22 1991-04-22 Method for manufacturing solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11652991A JP3420776B2 (en) 1991-04-22 1991-04-22 Method for manufacturing solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH04322466A true JPH04322466A (en) 1992-11-12
JP3420776B2 JP3420776B2 (en) 2003-06-30

Family

ID=14689385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11652991A Expired - Fee Related JP3420776B2 (en) 1991-04-22 1991-04-22 Method for manufacturing solid-state imaging device

Country Status (1)

Country Link
JP (1) JP3420776B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995008192A1 (en) * 1993-09-17 1995-03-23 Polaroid Corporation Forming microlenses on solid state imager
JPH0945884A (en) * 1995-07-31 1997-02-14 Nec Corp Solid-state image pickup device and manufacture thereof
JPH10284710A (en) * 1997-04-09 1998-10-23 Nec Corp Solid-state image-pickup element, manufacture therefor, and solid-state image-pickup device
JP2007528515A (en) * 2004-03-09 2007-10-11 イン エス. タン Lens array and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995008192A1 (en) * 1993-09-17 1995-03-23 Polaroid Corporation Forming microlenses on solid state imager
US5670384A (en) * 1993-09-17 1997-09-23 Polaroid Corporation Process for forming solid state imager with microlenses
JPH0945884A (en) * 1995-07-31 1997-02-14 Nec Corp Solid-state image pickup device and manufacture thereof
JPH10284710A (en) * 1997-04-09 1998-10-23 Nec Corp Solid-state image-pickup element, manufacture therefor, and solid-state image-pickup device
US6104021A (en) * 1997-04-09 2000-08-15 Nec Corporation Solid state image sensing element improved in sensitivity and production cost, process of fabrication thereof and solid state image sensing device using the same
US6291811B1 (en) 1997-04-09 2001-09-18 Nec Corporation Solid state image sensing element improved in sensitivity and production cost, process of fabrication thereof and solid state image sensing device using the same
KR100302466B1 (en) * 1997-04-09 2001-11-22 가네꼬 히사시 Solid state image pickup device improved in sensitivity and manufacturing stage, its manufacturing method and solid state image pickup device using the same
JP2007528515A (en) * 2004-03-09 2007-10-11 イン エス. タン Lens array and manufacturing method thereof

Also Published As

Publication number Publication date
JP3420776B2 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
US6221687B1 (en) Color image sensor with embedded microlens array
KR100213422B1 (en) Solid-state image pickup device and method of manufacturing same
TWI252332B (en) High efficiency microlens array
US6831311B2 (en) Solid-state imaging device
JP3447510B2 (en) Solid-state imaging device, manufacturing method thereof, and solid-state imaging device
US7829965B2 (en) Touching microlens structure for a pixel sensor and method of fabrication
JP4318007B2 (en) Solid-state image sensor
EP0542581B1 (en) Solid state image pickup apparatus having microlenses
US7029944B1 (en) Methods of forming a microlens array over a substrate employing a CMP stop
US5734190A (en) Imager having a plurality of cylindrical lenses
US5711890A (en) Method for forming cylindrical lens arrays for solid state imager
US6001540A (en) Microlens process
JP2000156486A (en) Manufacture of slid state image sensor
JPH04322466A (en) Manufacture of solid-state image sensing device
KR100424530B1 (en) Reflecting structures for photosensitive devices
JPH05335533A (en) Method of manufacturing solid-state imaging device
JP4067175B2 (en) Method for manufacturing solid-state imaging device
JPH07106537A (en) Manufacture of solid-state image sensing device
JP2003258224A (en) Solid state image sensor and its fabricating method
JPH07161953A (en) Microlens
JPH05145813A (en) Manufacture of micro lens for solid-state image pickup element
JPH07106538A (en) Manufacture of solid-state image sensing device
JP3399495B2 (en) Solid-state imaging device and manufacturing method thereof
JPH056988A (en) Manufacture of solid-state image sensing device
JPH06317701A (en) Microlens and production thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees