JPH04311066A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH04311066A
JPH04311066A JP3076422A JP7642291A JPH04311066A JP H04311066 A JPH04311066 A JP H04311066A JP 3076422 A JP3076422 A JP 3076422A JP 7642291 A JP7642291 A JP 7642291A JP H04311066 A JPH04311066 A JP H04311066A
Authority
JP
Japan
Prior art keywords
capacitor
insulating film
forming
electrode
tft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3076422A
Other languages
Japanese (ja)
Inventor
Kazuo Yudasaka
一夫 湯田坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3076422A priority Critical patent/JPH04311066A/en
Publication of JPH04311066A publication Critical patent/JPH04311066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To enable a device provided with a TFT and a capacitor to be efficiently formed by a method wherein a source, a drain, a channel, and the lower electrode of a capacitor are formed of the same material at a time, a gate insulating film and a capacitor insulating film are formed at the same time, ions are implanted into the lower electrode, and a gate electrode and the upper electrode of the capacitor are formed of the same material at a time. CONSTITUTION:A first polycrystalline silicon 102 is formed on a glass substrate 101 to serve as the source, the drain, and the channel region of a TFT and a lower electrode region of a capacitor. Then, polycrystalline silicon is thermally oxidized for the formation of an SiO 103, which is made to serve as the gate insulating film of the TFT and the insulating film of the capacitor. Next, a resist 104 is formed excluding the lower electrode region of the capacitor. Phosphorus ions are implanted to turn a polycrystalline silicon region which is not covered with resist into a conductive layer, which is made to serve as a lower electrode region 102' of the capacitor, and the resist is removed. Then, a second polycrystalline silicon is formed to serve as a gate electrode 105 and the upper electrode 105' of the capacitor.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、MOS型TFT(Th
in Film Transistor)に関する。
[Industrial Application Field] The present invention relates to a MOS type TFT (Th
in Film Transistor).

【0002】0002

【従来の技術】TFTによるアクティブマトリックス型
液晶表示デバイスでは、通常図3に示すように画素をス
イッチングするTFTに付加的な容量を接続する。画素
電極で保持する電荷量を多くする事により液晶表示デバ
イスの表示性能を上げるためである。図3は一画素を示
し、301は走査線、302はデータ線、303はTF
Tである。304は画素電極の面積に対応する液晶容量
であり、305は前述した付加的な容量である。容量の
構成は上下電極とその間の絶縁膜からなる。TFTは通
常MOS型であり、この構成は通常ソース、ドレイン及
びチャネルを構成する半導体層とゲート絶縁膜及びゲー
ト電極とからなる。TFTと前記付加的な容量をできる
だけ効率よく同一基板内に製造するための従来技術は、
TFTのデート絶縁膜と容量を構成する絶縁膜を同一材
料で同時に形成し、且つTFTのゲート電極と容量の上
電極を同一材料で同時に形成する方法がある。しかし、
容量の下電極は導電性である必要があり、従来技術では
TFTを構成する半導体材料とは別な材料で容量の下電
極を形成していた。図2は前述のようにTFTと容量を
できるだけ効率よく同一基板内に作る従来技術を示すも
のである。図2に於てガラス基板201上に容量の下電
極となる導電層202’を形成し、次にTFTのソース
、ドレイン及びチャネルとなる半導体層202を形成し
、次に絶縁膜203を形成しTFTのゲート絶縁膜と容
量の絶縁膜とする。次にTFTのゲート電極205と容
量の上電極205’を同時に形成する。次に層間絶縁膜
206を形成し、次にコンタクトホールを開口し、必要
な電極配線(207、207’)を形成する。
2. Description of the Related Art In active matrix liquid crystal display devices using TFTs, an additional capacitor is usually connected to the TFTs that switch pixels, as shown in FIG. This is to improve the display performance of the liquid crystal display device by increasing the amount of charge held in the pixel electrode. FIG. 3 shows one pixel, 301 is a scanning line, 302 is a data line, 303 is a TF
It is T. 304 is a liquid crystal capacitor corresponding to the area of the pixel electrode, and 305 is the additional capacitor mentioned above. The structure of the capacitor consists of upper and lower electrodes and an insulating film between them. A TFT is usually a MOS type, and this structure usually consists of a semiconductor layer that constitutes a source, a drain, and a channel, a gate insulating film, and a gate electrode. Conventional techniques for manufacturing TFTs and the additional capacitance on the same substrate as efficiently as possible include:
There is a method in which the date insulating film of the TFT and the insulating film constituting the capacitor are simultaneously formed of the same material, and the gate electrode of the TFT and the upper electrode of the capacitor are simultaneously formed of the same material. but,
The lower electrode of the capacitor needs to be conductive, and in the prior art, the lower electrode of the capacitor was formed of a material different from the semiconductor material that constitutes the TFT. FIG. 2 shows a conventional technique for fabricating TFTs and capacitors on the same substrate as efficiently as possible, as described above. In FIG. 2, a conductive layer 202' that will become the lower electrode of the capacitor is formed on a glass substrate 201, then a semiconductor layer 202 that will become the source, drain, and channel of the TFT is formed, and then an insulating film 203 is formed. This is used as the gate insulating film of the TFT and the insulating film of the capacitor. Next, the gate electrode 205 of the TFT and the upper electrode 205' of the capacitor are formed simultaneously. Next, an interlayer insulating film 206 is formed, contact holes are opened, and necessary electrode wiring (207, 207') is formed.

【0003】0003

【発明が解決しようとする課題】しかしながらTFTと
容量の両方が必要なデバイスでは、前述の従来技術はT
FTのソース、ドレイン及びチャネルとなる半導体層と
容量の下電極となる導電層を別の材料で形成していたた
め、工程数が増加するという問題がある。工程数の増加
はコスト増加、歩留まり低下などの問題となる。
[Problem to be Solved by the Invention] However, in devices that require both a TFT and a capacitor, the above-mentioned prior art
Since the semiconductor layer serving as the source, drain, and channel of the FT and the conductive layer serving as the lower electrode of the capacitor are formed of different materials, there is a problem in that the number of steps increases. An increase in the number of steps causes problems such as increased cost and decreased yield.

【0004】0004

【課題を解決するための手段】本発明は、前記問題を解
決するため、 (1)絶縁基板乃至絶縁膜上に形成されるMOS型TF
Tと該MOS型TFTと電気的に接続される容量を持つ
構造を有する半導体装置において、前記TFTのソース
、ドレイン及びチャネルを形成する半導体層と前記容量
の下電極となる半導体層を同一材料で同時に形成し、且
つ前記TFTのゲート絶縁膜と前記容量を構成する絶縁
膜を同一材料で同時に形成し、且つ前記絶縁膜形成後に
前記容量の下電極領域となる半導体層にイオン打ち込み
法により不純物を導入する工程と、且つ前記TFTのゲ
ート電極と前記容量の上電極を同一材料で同時に形成す
ることを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides (1) a MOS type TF formed on an insulating substrate or an insulating film;
In a semiconductor device having a structure having a capacitor electrically connected to the MOS type TFT, the semiconductor layer forming the source, drain, and channel of the TFT and the semiconductor layer serving as the lower electrode of the capacitor are made of the same material. A gate insulating film of the TFT and an insulating film constituting the capacitor are simultaneously formed of the same material, and after the insulating film is formed, impurities are implanted into the semiconductor layer that will become the lower electrode region of the capacitor. The gate electrode of the TFT and the upper electrode of the capacitor are simultaneously formed of the same material.

【0005】(2)絶縁基板乃至絶縁膜上にソース、ド
レイン、チャネル及び容量の下電極となるべき第1の多
結晶シリコンを形成する工程と、次にゲート絶縁膜と容
量を構成する絶縁膜を前記第1の多結晶シリコンの熱酸
化またはCVD法により同時に形成する工程と、次にレ
ジストなどによりイオン打ち込みのマスクを形成する工
程と、次に前記レジストをマスクとして前記容量の下電
極となる前記第1の多結晶シリコンにイオン打ち込み法
により不純物を導入する工程と、次に前記レジストを除
去する工程と、次にゲート電極と前記容量の上電極を第
2の多結晶シリコンにより形成し、次に前記容量の下電
極に導入された不純物と同一導電型の不純物を前記ゲー
ト電極と前記容量の上電極をマスクとしてイオン打ち込
み法により前記ソース、ドレイン領域に導入する工程と
、次に層間絶縁膜を形成する工程と、次にイオン打ち込
みされた不純物を活性化する熱処理工程と、次に電極取
り出しのためのコンタクトホールを開口する工程と、次
にAl等により電極配線を形成することを特徴とする。
(2) A step of forming a first polycrystalline silicon layer on an insulating substrate or an insulating film, which will become the source, drain, channel, and lower electrode of the capacitor, and then forming a gate insulating film and an insulating film that will form the capacitor. a step of simultaneously forming the first polycrystalline silicon by thermal oxidation or CVD, a step of forming a mask for ion implantation using a resist or the like, and a step of forming a lower electrode of the capacitor using the resist as a mask. a step of introducing impurities into the first polycrystalline silicon by ion implantation, a step of removing the resist, and then forming a gate electrode and an upper electrode of the capacitor from a second polycrystalline silicon, Next, an impurity of the same conductivity type as the impurity introduced into the lower electrode of the capacitor is introduced into the source and drain regions by ion implantation using the gate electrode and the upper electrode of the capacitor as a mask, and then interlayer insulation is performed. It is characterized by the steps of forming a film, then a heat treatment step to activate the ion-implanted impurities, then a step of opening a contact hole for taking out the electrode, and then forming an electrode wiring using Al or the like. shall be.

【0006】[0006]

【実施例】図1は、本発明の実施例を示すものであり、
TFTと容量を同時に形成するプロセスを断面図で説明
するものである。図1(a)においてガラス基板101
上に厚さ100nmの第1の多結晶シリコン102を形
成し、TFTのソース、ドレイン、チャネル領域及び容
量の下電極領域とする。次に前記多結晶シリコンの熱酸
化により、SiO2 103を厚さ100nm形成しT
FTのゲート絶縁膜及び容量の絶縁膜とする。前記第1
の多結晶シリコンは前記熱酸化後膜厚を減じて約45n
mの厚さとなる。次に図1(b)において前記容量の下
電極領域となる部分を除き、レジスト104を形成する
。 次にリンイオンをエネルギ90KeV、打ち込み量1×
1015/cm2 打ち込み、レジストで覆われていな
い領域の多結晶シリコンを導電層にし、容量の下電極領
域102’とする。イオン打ち込み後はレジストを除去
する。次に図1(c)のように厚さ350nmの第2の
多結晶シリコンを形成し、ゲート電極105と容量の上
電極105’とする。ここで前記イオン打ち込みされた
領域102’とゲート電極105の距離は、前記イオン
打ち込み後の全ての熱処理工程の影響を受けて打ち込ま
れた不純物が拡散しチャネル領域に達しないように設定
する必要がある。この設定に必要な値は1乃至2μmで
よく、TFTと容量を近接して作ることができる。次に
ゲート電極及び容量の上電極を構成する第2の多結晶シ
リコンをマスクとして第2のリンイオンの打ち込みをエ
ネルギ90KeV、打ち込み量2×1015/cm2 
で行ない、ソース、ドレイン領域を形成する。また、容
量の下電極とTFTとの必要な電気的接続も第2のイオ
ン打ち込みで行なう。次に図1(d)のようにCVD法
により厚さ500nmのSiO2 106を形成し層間
絶縁膜とする。次にランプアニール等の方法で二回行な
われた打ち込みイオンの活性化を行なう。次にコンタク
トホールを開口し、次に電極配線107、107’をA
lで行なう。
[Example] FIG. 1 shows an example of the present invention.
A process for simultaneously forming a TFT and a capacitor is explained using cross-sectional views. In FIG. 1(a), the glass substrate 101
A first polycrystalline silicon 102 having a thickness of 100 nm is formed thereon to serve as the source, drain, and channel regions of the TFT and the lower electrode region of the capacitor. Next, by thermal oxidation of the polycrystalline silicon, SiO2 103 was formed to a thickness of 100 nm, and T
This is used as the gate insulating film of FT and the insulating film of capacitor. Said first
After the thermal oxidation, the film thickness of the polycrystalline silicon was reduced to about 45 nm.
The thickness will be m. Next, in FIG. 1B, a resist 104 is formed except for the portion that will become the lower electrode region of the capacitor. Next, phosphorus ions were implanted at an energy of 90 KeV and an implantation amount of 1×
1015/cm2 is implanted, and the polycrystalline silicon in the area not covered with the resist is made into a conductive layer and becomes the lower electrode region 102' of the capacitor. After ion implantation, the resist is removed. Next, as shown in FIG. 1C, a second polycrystalline silicon film having a thickness of 350 nm is formed to form the gate electrode 105 and the capacitor upper electrode 105'. Here, the distance between the ion-implanted region 102' and the gate electrode 105 must be set so that the implanted impurities do not diffuse and reach the channel region under the influence of all the heat treatment steps after the ion implantation. be. The value required for this setting may be 1 to 2 μm, and the TFT and capacitor can be made close to each other. Next, using the second polycrystalline silicon that constitutes the gate electrode and the upper electrode of the capacitor as a mask, second phosphorus ions are implanted at an energy of 90 KeV and an implantation amount of 2×1015/cm2.
Then, source and drain regions are formed. Further, the necessary electrical connection between the lower electrode of the capacitor and the TFT is also performed by the second ion implantation. Next, as shown in FIG. 1(d), a 500 nm thick SiO2 film 106 is formed by CVD to serve as an interlayer insulating film. Next, the implanted ions, which have been performed twice, are activated by a method such as lamp annealing. Next, contact holes are opened, and then electrode wirings 107 and 107' are connected to A.
Do it with l.

【0007】上記実施例はガラス基板上に形成するTF
Tをベースにしたが、シリコンウェファを基板とするV
LSIデバイスや3次元回路素子にも容易に適用できる
The above embodiment is a TF formed on a glass substrate.
V is based on T, but uses a silicon wafer as a substrate.
It can also be easily applied to LSI devices and three-dimensional circuit elements.

【0008】[0008]

【発明の効果】以上説明したように本発明に依れば、T
FTと容量を含むデバイスを少ない工程で効率よく且つ
高集積に形成することができる。
[Effects of the Invention] As explained above, according to the present invention, T
A device including an FT and a capacitor can be efficiently and highly integrated with a small number of steps.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明によるTFTと容量を同時に形成する方
法を示した説明図である。
FIG. 1 is an explanatory diagram showing a method of simultaneously forming a TFT and a capacitor according to the present invention.

【図2】従来技術によるTFTと容量の構造を示す断面
図である。
FIG. 2 is a cross-sectional view showing the structure of a TFT and a capacitor according to the prior art.

【図3】アクティブマトリックス方式のLCDの1画素
を示す図である。
FIG. 3 is a diagram showing one pixel of an active matrix LCD.

【符号の説明】[Explanation of symbols]

101、201  ガラス基板 102、202  多結晶シリコン 102’、202’  容量の下電極 103、203  絶縁膜 104  フォトレジスト 105、105’、205、205’  多結晶シリコ
ン106、206  絶縁膜
101, 201 Glass substrate 102, 202 Polycrystalline silicon 102', 202' Capacitor lower electrode 103, 203 Insulating film 104 Photoresist 105, 105', 205, 205' Polycrystalline silicon 106, 206 Insulating film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  絶縁基板乃至絶縁膜上に形成されるM
OS型TFTと該MOS型TFTと電気的に接続される
容量を持つ構造を有する半導体装置において、前記TF
Tのソース、ドレイン及びチャネルを形成する半導体層
と前記容量の下電極となる半導体層を同一材料で同時に
形成し、且つ前記TFTのゲート絶縁膜と前記容量を構
成する絶縁膜を同一材料で同時に形成し、且つ前記絶縁
膜形成後に前記容量の下電極領域となる半導体層にイオ
ン打ち込み法により不純物を導入する工程と、且つ前記
TFTのゲート電極と前記容量の上電極を同一材料で同
時に形成することを特徴とする半導体装置とその製造方
法。
Claim 1: M formed on an insulating substrate or an insulating film
In a semiconductor device having a structure having a capacitance electrically connected to an OS type TFT and the MOS type TFT, the TF
The semiconductor layer forming the source, drain, and channel of the TFT and the semiconductor layer forming the lower electrode of the capacitor are simultaneously formed using the same material, and the gate insulating film of the TFT and the insulating film forming the capacitor are simultaneously formed using the same material. and introducing impurities by ion implantation into the semiconductor layer that will become the lower electrode region of the capacitor after forming the insulating film, and simultaneously forming the gate electrode of the TFT and the upper electrode of the capacitor from the same material. A semiconductor device and its manufacturing method characterized by the following.
【請求項2】  絶縁基板乃至絶縁膜上にソース、ドレ
イン、チャネル及び容量の下電極となるべき第1の多結
晶シリコンを形成する工程と、次にゲート絶縁膜と容量
を構成する絶縁膜を前記第1の多結晶シリコンの熱酸化
またはCVD法により同時に形成する工程と、次にレジ
ストなどによりイオン打ち込みのマスクを形成する工程
と、次に前記レジストをマスクとして前記容量の下電極
となる前記第1の多結晶シリコンにイオン打ち込み法に
より不純物を導入する工程と、次に前記レジストを除去
する工程と、次にゲート電極と前記容量の上電極を第2
の多結晶シリコンにより形成し、次に前記容量の下電極
に導入された不純物と同一導電型の不純物を前記ゲート
電極と前記容量の上電極をマスクとしてイオン打ち込み
法により前記ソース、ドレイン領域に導入する工程と、
次に層間絶縁膜を形成する工程と、次にイオン打ち込み
された不純物を活性化する熱処理工程と、次に電極取り
出しのためのコンタクトホールを開口する工程と、次に
Al等により電極配線を形成することを特徴とする半導
体装置の製造方法。
2. A step of forming a first polycrystalline silicon layer on an insulating substrate or an insulating film to become a source, drain, channel, and capacitor lower electrode, and then forming a gate insulating film and an insulating film constituting the capacitor. A step of simultaneously forming the first polycrystalline silicon by thermal oxidation or CVD, a step of forming a mask for ion implantation using a resist, and a step of forming the first polycrystalline silicon, which will become the lower electrode of the capacitor, using the resist as a mask. A step of introducing impurities into the first polycrystalline silicon by ion implantation, a step of removing the resist, and then a step of implanting the gate electrode and the upper electrode of the capacitor into the second polycrystalline silicon.
Next, an impurity of the same conductivity type as the impurity introduced into the lower electrode of the capacitor is introduced into the source and drain regions by ion implantation using the gate electrode and the upper electrode of the capacitor as a mask. The process of
Next, there is a step of forming an interlayer insulating film, a heat treatment step to activate the ion-implanted impurities, a step of opening a contact hole for taking out the electrode, and then forming an electrode wiring using Al, etc. A method for manufacturing a semiconductor device, characterized in that:
JP3076422A 1991-04-09 1991-04-09 Semiconductor device and manufacture thereof Pending JPH04311066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3076422A JPH04311066A (en) 1991-04-09 1991-04-09 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3076422A JPH04311066A (en) 1991-04-09 1991-04-09 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04311066A true JPH04311066A (en) 1992-11-02

Family

ID=13604750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3076422A Pending JPH04311066A (en) 1991-04-09 1991-04-09 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04311066A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0875925A2 (en) * 1997-04-30 1998-11-04 Samsung Electronics Co., Ltd. Method of manufacturing capacitors in integrated circuits
GB2451116A (en) * 2007-07-20 2009-01-21 X Fab Uk Ltd Polysilicon devices
US8154199B2 (en) 1997-02-17 2012-04-10 Seiko Epson Corporation Display apparatus
US8188647B2 (en) * 1997-02-17 2012-05-29 Seiko Epson Corporation Current-driven light-emitting display apparatus and method of producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8154199B2 (en) 1997-02-17 2012-04-10 Seiko Epson Corporation Display apparatus
US8188647B2 (en) * 1997-02-17 2012-05-29 Seiko Epson Corporation Current-driven light-emitting display apparatus and method of producing the same
US8247967B2 (en) 1997-02-17 2012-08-21 Seiko Epson Corporation Display apparatus
US8354978B2 (en) 1997-02-17 2013-01-15 Seiko Epson Corporation Display apparatus
US8362489B2 (en) 1997-02-17 2013-01-29 Seiko Epson Corporation Current-driven light-emitting display apparatus and method of producing the same
EP0875925A2 (en) * 1997-04-30 1998-11-04 Samsung Electronics Co., Ltd. Method of manufacturing capacitors in integrated circuits
EP0875925A3 (en) * 1997-04-30 2000-12-27 Samsung Electronics Co., Ltd. Method of manufacturing capacitors in integrated circuits
GB2451116A (en) * 2007-07-20 2009-01-21 X Fab Uk Ltd Polysilicon devices

Similar Documents

Publication Publication Date Title
KR100205373B1 (en) Manufacturing method of liquid crystal display element
JPH10189998A (en) Thin-film semiconductor device for display and its manufacture
JPH0897435A (en) Semiconductor device and its manufacture
JP2618534B2 (en) Method for manufacturing active matrix display device
US20050082537A1 (en) Semiconductor device and method for manufacturing the same
JPH04311066A (en) Semiconductor device and manufacture thereof
JP2690067B2 (en) Active matrix substrate
JPH08122813A (en) Liquid crystal display element and its manufacture
JP2884723B2 (en) Thin film semiconductor device and method of manufacturing the same
JPH11354808A (en) Manufacture of thin-film transistor
JPH0682834A (en) Active matrix panel
US6677612B2 (en) Method for fabricating a simplified CMOS polysilicon thin film transistor and resulting structure
JP2000036602A (en) Thin-film transistor, manufacture of it, and display device
JP2917925B2 (en) Method of manufacturing thin film transistor and active matrix array for liquid crystal display device
JPH04367828A (en) Production of active matrix board
JP3326929B2 (en) Manufacturing method of liquid crystal display device
JPH0794721A (en) Semiconductor device and manufacture thereof
JP2003298058A (en) Thin film transistor and its manufacturing method
JPH10133231A (en) Multilayered wiring structure and its production, thin-film transistor array and its production as well as liquid crystal display device
JPH10229195A (en) Non-photosensitive vertical redundant two channel thin film transistor and manufacture thereof
JP2911255B2 (en) Semiconductor device and manufacturing method thereof
JP2001042354A (en) Tft type liquid crystal display device and its production
JPH043966A (en) Semiconductor integrated circuit device and its manufacture
JPH04167555A (en) Manufacture of semiconductor device
JPH11340470A (en) Fabrication of tft type liquid crystal display