JPH04307521A - Wiring structure for thin film transistor device and its production - Google Patents

Wiring structure for thin film transistor device and its production

Info

Publication number
JPH04307521A
JPH04307521A JP3071715A JP7171591A JPH04307521A JP H04307521 A JPH04307521 A JP H04307521A JP 3071715 A JP3071715 A JP 3071715A JP 7171591 A JP7171591 A JP 7171591A JP H04307521 A JPH04307521 A JP H04307521A
Authority
JP
Japan
Prior art keywords
wiring
thin film
film transistor
source
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3071715A
Other languages
Japanese (ja)
Other versions
JP2998255B2 (en
Inventor
Hideki Koike
秀樹 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7171591A priority Critical patent/JP2998255B2/en
Publication of JPH04307521A publication Critical patent/JPH04307521A/en
Application granted granted Critical
Publication of JP2998255B2 publication Critical patent/JP2998255B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To detect and preclude a defect, caused by an electric conductor which drives a thin film transistor(TFT) used for an active matrix liquid crystal display device, in the early stage of a manufacture process. CONSTITUTION:The gate electric conductor 102 and source electric conductor 103 of the TFT are formed on a substrate 101 in the beginning of the manufacture process and in the stage, the defect such as the open circuit, short circuit, etc., of the electric conductors is detected and corrected to form the TFT which is free from the defect caused by the electric conductors. In the early stage of the manufacture process, the electric conductors are inspected, so the cause of the defect is easily narrowed down, a countermeasure is easily taken, and the substantial manufacture cost of each finished article is reducible. Further, the electric conductors are embedded in the substrate, so picture elements are put over the electric conductors, which can be used as light shield belts between the picture elements to eliminate the need for light shield belts on an counter substrate, so panel assembly is facilitated, the aperture rate is improved, and large contrast is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、薄膜トランジスタの配
線構造および製造方法に関し、特に薄膜トランジスタが
マトリックス状に多数配置された液晶表示装置における
配線の断線および配線間の短絡に起因する欠陥を防止す
る技術に関する。
[Field of Industrial Application] The present invention relates to a wiring structure and manufacturing method for thin film transistors, and in particular, a technique for preventing defects caused by disconnections in wiring and short circuits between wirings in a liquid crystal display device in which a large number of thin film transistors are arranged in a matrix. Regarding.

【0002】0002

【従来の技術】従来、マトリックス状に配置された各画
素に薄膜トランジスタの駆動素子をもつアクティブマト
リックス方式の液晶ディスプレイが知られている。この
薄膜トランジスタを駆動するには互いに独立するソース
信号とゲート信号を薄膜トランジスタに入力しなければ
ならないため、同一基板上に互いに絶縁させて3次元的
に配線する必要がある。近年の液晶表示装置の大画面化
、高精細化に伴う構成画素の大幅な増加により欠陥の発
生も増加し完成品の歩留まりを低下させている。歩留ま
りを低下させる欠陥には、大別すると点欠陥と線欠陥が
ある。点欠陥の要因には、薄膜トランジスタの特性の不
良、ITOとソース線がパターン不良によって短絡して
しまうなどがあり、線欠陥は、断線、短絡、ピンホール
などの層間絶縁膜不良によるクロス・ショートがある。 このように薄膜トランジスタの特性不良を除き、歩留ま
りを低下させている原因には配線に起因する欠陥による
ものが多く、配線構造を工夫する必要がある。
2. Description of the Related Art Conventionally, active matrix type liquid crystal displays are known in which each pixel arranged in a matrix has a driving element of a thin film transistor. To drive this thin film transistor, it is necessary to input mutually independent source signals and gate signals to the thin film transistor, so it is necessary to wire them three-dimensionally on the same substrate while insulating them from each other. In recent years, as liquid crystal display devices have become larger and more precise, the number of constituent pixels has increased significantly, resulting in an increase in the occurrence of defects and a decrease in the yield of finished products. Defects that reduce yield can be broadly classified into point defects and line defects. Causes of point defects include poor characteristics of thin film transistors and short circuits between ITO and source lines due to poor patterns. Line defects are caused by cross shorts due to defects in the interlayer insulating film such as wire breaks, short circuits, and pinholes. be. As described above, apart from defective characteristics of thin film transistors, many of the causes of decreased yield are defects caused by wiring, and it is necessary to devise a wiring structure.

【0003】これまでは、これらの欠陥に対してはクロ
ス部の短絡の防止としてゲート配線を先に形成する逆ス
タガ型のトランジスタを採用することにより、ゲート線
・ソース線間のクロス部の構造を図3のように絶縁膜を
多層化して欠陥を低減していた。
Until now, in order to prevent these defects from short-circuiting at the cross section, an inverted staggered transistor was used in which the gate wiring was formed first, and the structure of the cross section between the gate line and the source line was improved. In order to reduce defects, the insulating film was multilayered as shown in Figure 3.

【0004】0004

【発明が解決しようとする課題】しかし、前述の従来技
術ではクロス部の短絡欠陥を大きく低減することはでき
るが、基板製造工程後期のソース配線を形成以降でない
と検査されないため、仮にこの段階で欠陥が多く、修正
が困難な場合はそれまでの製造に要した時間と費用が無
駄となってしまい、また、その後の修正もかなり大変と
なる。そこで本発明のこのような問題点を解決するもの
で、その目的とするところは配線に起因する欠陥を製造
工程初期に検出し、修正できる薄膜トランジスタの配線
構造を提供するところにある。
[Problems to be Solved by the Invention] However, although the above-mentioned conventional technology can greatly reduce short-circuit defects at cross sections, it is not inspected until after the source wiring is formed in the latter half of the board manufacturing process. If there are many defects and it is difficult to correct them, the time and cost required for manufacturing up to that point will be wasted, and subsequent corrections will also be quite difficult. SUMMARY OF THE INVENTION The present invention is intended to solve these problems, and its purpose is to provide a thin film transistor wiring structure in which defects caused by wiring can be detected and corrected at the early stage of the manufacturing process.

【0005】[0005]

【課題を解決するための手段】本発明の薄膜トランジス
タの配線構造は、ゲート配線およびソース配線の形成を
薄膜トランジスタを形成する以前の製造工程初期に行い
、配線に起因する欠陥を工程初期に検出できることを特
徴とする。
[Means for Solving the Problems] In the wiring structure of a thin film transistor of the present invention, gate wiring and source wiring are formed at the beginning of the manufacturing process before forming the thin film transistor, and defects caused by the wiring can be detected at the early stage of the process. Features.

【0006】[0006]

【実施例】(実施例1)図1(a)、(b)は、本発明
の実施例における平面図および断面図である。
Embodiment (Embodiment 1) FIGS. 1(a) and 1(b) are a plan view and a sectional view of an embodiment of the present invention.

【0007】本発明の実施例における薄膜トランジスタ
の配線構造は、図1(b)で示す構造をしている。10
1は絶縁基板、102はゲート配線、103はソース配
線、104は画素ITO、105はゲート電極である。
The wiring structure of the thin film transistor in the embodiment of the present invention is shown in FIG. 1(b). 10
1 is an insulating substrate, 102 is a gate wiring, 103 is a source wiring, 104 is a pixel ITO, and 105 is a gate electrode.

【0008】以下、製造方法について説明する。The manufacturing method will be explained below.

【0009】まず、図1(b)に示したようなガラスや
石英のような絶縁基板101上に層間絶縁膜106を挟
んでゲート配線102およびソース配線103を形成す
る。以下の図1(b)ではゲート配線がソース配線の前
に形成されているがゲート配線をソース配線の後に形成
してもよい。ただし、ゲート配線には絶えず直流成分が
かかるため、液晶ディスプレイに適用した場合、液晶を
劣化させる可能性があり、ゲート配線をソース線よりも
先に形成し、液晶層までの距離をはなす方が液晶の信頼
性の点でよい。また、断線による線欠陥を防ぐため、第
1層の配線の断面形状にテーパーをつける。垂直だと層
間絶縁膜を形成する際にエッジや基板との界面付近で異
常成長しやすく、第2層の配線の被覆性が低下し、断線
に結びつくからである。本実施例ではゲート配線を先に
形成することとし、ゲートおよびソースの配線材料とし
てそれぞれCrおよびAlを用い、層間絶縁膜は、Si
O2 を用いた。なお、ゲート配線とソース配線の材質
を同一にしても良い。その場合、遮光の程度が配線の種
類に依らなくなり、配線を遮光帯に用いるときは極めて
有効である。また、後に説明するような、プロセスの低
温化にともないレーザアニールの技術を採用する際は、
能動層を再結晶化させるための熱が面内で比較的均一に
拡散でき、薄膜トランジスタの特性の面内ばらつきが抑
えられる点から、ソース・ゲートとも同一材料の方が望
ましい。
First, a gate wiring 102 and a source wiring 103 are formed on an insulating substrate 101 made of glass or quartz, with an interlayer insulating film 106 in between, as shown in FIG. 1(b). In FIG. 1B below, the gate wiring is formed before the source wiring, but the gate wiring may be formed after the source wiring. However, since direct current components are constantly applied to the gate wiring, when applied to a liquid crystal display, there is a possibility of deteriorating the liquid crystal, so it is better to form the gate wiring before the source line and leave the distance to the liquid crystal layer. Good in terms of LCD reliability. Further, in order to prevent line defects due to disconnection, the cross-sectional shape of the first layer wiring is tapered. This is because if it is vertical, abnormal growth tends to occur near the edge or the interface with the substrate when forming an interlayer insulating film, reducing the coverage of the second layer wiring and leading to disconnection. In this example, the gate wiring is formed first, Cr and Al are used as wiring materials for the gate and source, respectively, and the interlayer insulating film is made of Si.
O2 was used. Note that the gate wiring and the source wiring may be made of the same material. In this case, the degree of light shielding does not depend on the type of wiring, which is extremely effective when wiring is used as a light shielding zone. In addition, when adopting laser annealing technology to lower the process temperature, as will be explained later,
It is preferable that the source and gate be made of the same material because the heat for recrystallizing the active layer can be diffused relatively uniformly within the plane, and in-plane variations in the characteristics of the thin film transistor can be suppressed.

【0010】次に、図2にそって配線のパターニングに
ついて詳細に説明する。図2は基板上に形成する配線の
製造工程ごとの模式図である。まず、絶縁基板上にゲー
ト配線となるCrをスパッタ法により150nm形成し
、テーパーエッチングによりパターニングする。テーパ
ーエッチングは従来Crのエッチャントとして用いられ
てきたセリュウム硝酸アンモニア((NH4 )2[C
e(NO3 )6 ])に硝酸を加えることにより、パ
ターンエッジでのレジストの密着性を低下させて行った
。また、パターニングは図2(a)のように隣合う配線
間の短絡の検出が容易なように千鳥状にゲート配線をパ
ターニングする。また、薄膜トランジスタがマトリック
ス状に配置し、組立後に実際に絵が表示されるアクティ
ブエリア201の外周について、ゲート配線との交差が
ないので、同時にソース配線側の実装用の引き出し部も
パターニングする。この理由は液晶ディスプレイは対向
基板との間隔(ギャップ)を一定に保って組み立てる必
要があり、その間隔の調整は接着剤中にギャップに相当
する径のガラスファイバを混ぜ、基板周辺の引き出し配
線部上ではり合わせており、引き出し部での膜厚をそろ
えておいたほうが組立が行いやすいため、ソース配線側
の引き出し部もパターニングするのである。202は実
装用の端子で、実装用の端子同志は引き出し方向別に短
絡しておく。引き出し方向の異なる短絡端子間での導通
を検査することにより、配線間に短絡が存在するかどう
かがわかる。203は欠陥検出用の補助端子であり、個
々の配線の断線、短絡はこれを使って行う。次に、モノ
シランと酸素を原料ガスにした常圧化学気相成長(AP
CVD)法により層間絶縁膜となるSiO2 を反応温
度300℃で膜厚300nm成膜する。その後、実装用
端子および補助端子にコンタクトホールを開孔してから
、ソース配線となるAlを膜厚400nmスパッタ法に
より成膜する。続いて、図2(b)のようにAlをパタ
ーニングし、ソース配線およびゲート・ソースの端子部
を形成する。このときのゲート配線の時と同様に千鳥状
にパターニングする。この段階で配線の断線および配線
間の短絡を検査する。検査の方法は、引き出し方向の異
なる3つの短絡された端子と残りの方向の補助端子間の
電気的な導通の有無により検出する。通常は相対する方
向のみに導通があるが、断線した場合は3方向とも導通
がなくなり、また、ゲートおよびソース配線間に短絡が
あると相対する方向以外にもう1方向にも導通が検出さ
れる。 こうした検査の後、欠陥のないものおよび修正可能なも
のについてのみを次工程にまわし、短絡欠陥の多いもの
については、第2層の配線を剥離し再度薄膜形成し基板
再生を行う。この検査工程を入れることにより、次工程
への進行歩留まりを向上できる。
Next, wiring patterning will be explained in detail with reference to FIG. FIG. 2 is a schematic diagram showing each manufacturing process of wiring formed on a substrate. First, 150 nm of Cr, which will become a gate wiring, is formed on an insulating substrate by sputtering and patterned by taper etching. Taper etching is performed using cerium ammonia nitrate ((NH4)2[C
The adhesion of the resist at the pattern edges was reduced by adding nitric acid to e(NO3)6 ]). Furthermore, the gate wiring is patterned in a staggered manner as shown in FIG. 2A so that short circuits between adjacent wirings can be easily detected. Furthermore, since the outer periphery of the active area 201 where thin film transistors are arranged in a matrix and where a picture is actually displayed after assembly does not intersect with the gate wiring, the lead-out portion for mounting on the source wiring side is also patterned at the same time. The reason for this is that liquid crystal displays must be assembled with a constant distance (gap) between them and the opposing substrate, and to adjust this distance, a glass fiber with a diameter corresponding to the gap is mixed in the adhesive, and the lead-out wiring around the substrate is adjusted. They are glued together at the top, and it is easier to assemble if the film thickness is the same at the lead-out part, so the lead-out part on the source wiring side is also patterned. Reference numeral 202 denotes a mounting terminal, and the mounting terminals are short-circuited depending on the drawing direction. By inspecting continuity between short-circuited terminals with different lead-out directions, it can be determined whether a short-circuit exists between wires. Reference numeral 203 is an auxiliary terminal for defect detection, and is used to disconnect or short-circuit individual wirings. Next, atmospheric pressure chemical vapor deposition (AP) using monosilane and oxygen as raw material gases was performed.
A 300 nm thick film of SiO2, which will become an interlayer insulating film, is formed at a reaction temperature of 300° C. using the CVD method. Thereafter, contact holes are opened for the mounting terminals and the auxiliary terminals, and then an Al film, which will become the source wiring, is formed by sputtering to a thickness of 400 nm. Subsequently, as shown in FIG. 2(b), Al is patterned to form source wiring and gate/source terminals. Patterning is performed in a staggered manner in the same way as the gate wiring at this time. At this stage, inspect for wire breaks and short circuits between wires. The inspection method is to detect the presence or absence of electrical continuity between the three short-circuited terminals in different lead-out directions and the auxiliary terminals in the remaining directions. Normally, there is continuity only in opposing directions, but if there is a disconnection, there will be no continuity in all three directions, and if there is a short circuit between the gate and source lines, continuity will be detected in one direction in addition to the opposing direction. . After such inspection, only those with no defects and those that can be corrected are sent to the next process, and those with many short circuit defects are recycled by peeling off the second layer wiring and forming a thin film again. By including this inspection step, the yield for proceeding to the next step can be improved.

【0011】次に、薄膜トランジスタの製造方法につい
て図1(b)に従って説明する。本実施例では、高移動
度の得られる多結晶シリコン膜を能動層に用いたトップ
ゲートコプレーナ型の薄膜トランジスタについて述べる
が、これに限るものではなく、逆スタガ型の薄膜トラン
ジスタにおいても応用できる。まず、前記により進行し
てきた基板上に薄膜トランジスタの下地となるSiO2
 膜107を再度、常圧化学気相成長法(APCVD)
により300nm形成し、その後、プラズマ化学気相成
長法(P−CVD)により300℃でアモルファスSi
膜を50nm形成する。続いて、エキシマレーザを前記
のアモルファスSi膜に照射し、結晶化させる。薄膜ト
ランジスタの製造にあたって注意しなければならないの
は、金属配線をすでに行っているために製造温度を30
0℃以下に抑える必要がある点である。そこで、低温で
アモルファスSiのレーザアニールの技術を採用するこ
とにより、多結晶シリコンを得た。また、エキシマレー
ザを用いたのは、前記のような薄い膜をアニールするの
に極めて有効であるからである。その後、前記の結晶化
させたSi膜をパターニングしてから、ゲート絶縁膜と
なるSiO2 をECRプラズマ化学気相成長法により
150nm形成し、その後、ゲート配線上にコンタクト
ホールを開孔する。続いて、前記のコンタクトホールを
会してゲート電極となるCrを150nm形成しパター
ニングする。その後、ボロンをイオン注入し、ソース・
ドレイン領域108を形成後、再びエキシマレーザーを
照射させ、ソース・ドレイン領域を活性化させる。続い
て、SiO2 膜109をAPCVDにて200nm形
成する。この絶縁膜はなくてもソース配線との結線11
0は可能であるが、パターン不良によるゲート電極との
短絡を防止するために成膜する。その後、ソース・ドレ
イン領域に対してコンタクトホールを開孔し、画素IT
O104を形成する。さらにソース配線にコンタクトホ
ールを開孔後、再度Alをスパッタ法により形成し、1
10のようにソース領域とソース配線をAlで結線する
。 コンタクトホール開孔の工程を2回に分けたのは開孔す
る部分の膜厚が異なるためで、ソース・ドレイン領域の
膜厚が極めて薄いために、ソース・ドレインへのコンタ
クトのエッチングではオーバーエッチできないからであ
る。以上により、事前に配線された基板上に薄膜トラン
ジスタを形成する。
Next, a method for manufacturing a thin film transistor will be explained with reference to FIG. 1(b). In this embodiment, a top-gate coplanar type thin film transistor using a polycrystalline silicon film with high mobility as an active layer will be described, but the present invention is not limited thereto, and can also be applied to an inverted staggered type thin film transistor. First, SiO2, which will become the base of the thin film transistor, is placed on the substrate that has been processed as described above.
The film 107 is again grown using atmospheric pressure chemical vapor deposition (APCVD).
After that, amorphous Si was formed to a thickness of 300 nm by plasma chemical vapor deposition (P-CVD) at 300°C.
A film with a thickness of 50 nm is formed. Subsequently, the amorphous Si film is irradiated with an excimer laser to crystallize it. When manufacturing thin film transistors, it is important to note that since the metal wiring has already been done, the manufacturing temperature must be kept at 30°C.
It is necessary to keep the temperature below 0°C. Therefore, polycrystalline silicon was obtained by employing a technique of laser annealing amorphous Si at a low temperature. Furthermore, an excimer laser was used because it is extremely effective in annealing thin films such as those described above. Thereafter, the crystallized Si film is patterned, and then a 150 nm thick SiO2 film, which will become a gate insulating film, is formed by ECR plasma chemical vapor deposition, and then a contact hole is formed on the gate wiring. Subsequently, 150 nm of Cr, which will become a gate electrode, is formed and patterned in the contact hole. After that, boron ions are implanted and the source
After forming the drain region 108, the excimer laser is irradiated again to activate the source/drain region. Subsequently, a 200 nm thick SiO2 film 109 is formed by APCVD. Connection 11 with the source wiring even without this insulating film
0 is possible, but a film is formed to prevent short circuits with the gate electrode due to pattern defects. After that, contact holes are opened for the source/drain regions, and the pixel IT
Form O104. Furthermore, after opening a contact hole in the source wiring, Al was formed again by sputtering method.
As shown in 10, the source region and source wiring are connected with Al. The reason why the process of forming the contact hole was divided into two steps is because the film thickness of the part to be opened is different.Since the film thickness of the source/drain region is extremely thin, over-etching is required when etching the contact to the source/drain. Because you can't. Through the above steps, a thin film transistor is formed on the substrate that has been wired in advance.

【0012】なお、ここに上げた実施例はあくまでも一
実施例にすぎない。 (実施例2)実施例1で述べた配線構造では第2層の配
線を形成する前に層間絶縁膜をパターニングする工程が
入っていた。絶縁膜のパターニング工程があると、レジ
ストのピンホールによるエッチング液のしみ込みやゴミ
・ケバ等によるパターン不良により、絶縁膜に穴があき
、欠陥となることがある。そこで、層間絶縁膜をエッチ
ングでパターニングせずに第2層配線を形成する製造方
法も発明した。
[0012] The embodiment described here is just one embodiment. (Example 2) The wiring structure described in Example 1 included a step of patterning the interlayer insulating film before forming the second layer wiring. When an insulating film is patterned, holes may be formed in the insulating film, resulting in defects due to penetration of etching solution due to pinholes in the resist, pattern defects due to dust, fluff, etc. Therefore, we also invented a manufacturing method in which the second layer wiring is formed without patterning the interlayer insulating film by etching.

【0013】まず、第1層の配線となるゲート配線Cr
を実施例1同様図2(a)のようにパターニング後、図
2(a)のアクティブエリア201以外を覆い隠してス
パッタ法により層間絶縁膜のSiO2 を形成する。端
子部はアクティブエリア内と比較して設計ルールが緩く
、しかも端子のところのみに絶縁膜が形成されないよう
にすれば良いのでマスクスパッタ法によるパターニング
で十分である。その後、第2層の配線を形成しパターニ
ングする。この方法によると、欠陥が減少すると同時に
、フォトエッチ工程で1回減り、さらに絶縁膜と第2層
配線の成膜が連続化が可能なためスルートップが大きく
向上する。
First, the gate wiring Cr serving as the first layer wiring is
After patterning as in Example 1 as shown in FIG. 2(a), an interlayer insulating film of SiO2 is formed by sputtering, covering areas other than the active area 201 in FIG. 2(a). The design rules for the terminal portion are looser than those for the inside of the active area, and patterning by mask sputtering is sufficient since it is sufficient to prevent the insulating film from being formed only at the terminal. After that, a second layer of wiring is formed and patterned. According to this method, the number of defects is reduced, the number of photoetch steps is reduced by one, and the insulating film and the second layer wiring can be formed continuously, so that the through-top is greatly improved.

【0014】[0014]

【発明の効果】本発明の薄膜トランジスタの配線構造お
よび製造方法は次のような優れた効果を有する。
Effects of the Invention The wiring structure and manufacturing method of a thin film transistor according to the present invention has the following excellent effects.

【0015】まず、ゲート配線およびソース配線を薄膜
トランジスタを形成する以前の製造工程の初期の段階で
行うため、欠陥原因を絞り込みやすくかつ対策が打ちや
すい。また、仮に欠陥が発生してもその基板を次工程に
回さないことにより、完成品あたりの実質的は製造コス
トを低下させる。
First, since the gate wiring and source wiring are formed at an early stage of the manufacturing process before forming the thin film transistor, it is easy to narrow down the cause of the defect and take countermeasures. Further, even if a defect occurs, the substrate is not sent to the next process, thereby substantially reducing the manufacturing cost per finished product.

【0016】第2に、配線が基板内部に埋め込まれたた
めに、画素を構成するITOを配線の上部に重ねて形成
すること可能となり、これまで対向基板上に設けていた
遮光体をゲートおよびソース配線で代用することができ
るため、画素ITO間の間隔が狭くなったことから開口
率を大きく取れると同時に、薄膜トランジスタと対向基
板との組立ズレの制御が比較的緩和されることから、パ
ネル組立時のアライメントが容易となる。
Second, since the wiring is embedded inside the substrate, it is now possible to form the ITO constituting the pixel on top of the wiring, and the light shielding body, which was previously provided on the opposing substrate, can be replaced with the gate and source. Since wiring can be used instead, the spacing between pixel ITOs is narrower, allowing for a larger aperture ratio, and at the same time, the control of assembly misalignment between the thin film transistor and the opposing substrate is relatively relaxed, making it easier to assemble the panel. alignment becomes easy.

【0017】したがって、欠陥が無く、高コントラスト
の液晶ディスプレイが容易に得られる。
[0017] Therefore, a defect-free, high-contrast liquid crystal display can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例における平面図(a)および断
面図(b)である。
FIG. 1 is a plan view (a) and a cross-sectional view (b) of an embodiment of the present invention.

【図2】配線構造の製造工程ごとの模式図である。FIG. 2 is a schematic diagram of each manufacturing process of a wiring structure.

【図3】従来の薄膜トランジスタと配線のクロス部の断
面図である。
FIG. 3 is a cross-sectional view of a cross section between a conventional thin film transistor and wiring.

【符号の説明】[Explanation of symbols]

101  絶縁基板 102  ゲート配線 103  ソース配線 104  画素ITO 105  ゲート電極 106  層間絶縁膜 107  下地SiO2 108  ソース・ドレイン領域 109  SiO2 膜 110  ソース配線との結線(Al)201  アク
ティブエリア 202  実装端子 203  補助端子 301  ソース配線 302  ゲート配線 303  n+アモルファスSi 304  エッチング・ストッパ 305  ゲート(Ta) 306  Ta2 O5 307  SiNx 308  アモルファスSi
101 Insulating substrate 102 Gate wiring 103 Source wiring 104 Pixel ITO 105 Gate electrode 106 Interlayer insulating film 107 Base SiO2 108 Source/drain region 109 SiO2 film 110 Connection with source wiring (Al) 201 Active area 202 Mounting terminal 203 Auxiliary terminal 301 Source Wiring 302 Gate wiring 303 n+ amorphous Si 304 Etching stopper 305 Gate (Ta) 306 Ta2 O5 307 SiNx 308 Amorphous Si

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】マトリックス状に複数個配置された薄膜ト
ランジスタ装置の配線構造において、ゲート配線および
ソース配線の2層の配線を薄膜トランジスタを形成する
以前に形成することを特徴とする薄膜トランジスタ装置
の配線構造。
1. A wiring structure for a thin film transistor device in which a plurality of thin film transistor devices are arranged in a matrix, wherein two layers of wiring, a gate wiring and a source wiring, are formed before forming a thin film transistor.
【請求項2】請求項1の配線構造において第1層の配線
にゲート配線を、第2層の配線にソース配線をとること
により、ソース配線よりもゲート配線を先に形成するこ
とを特徴とする薄膜トランジスタ装置の配線構造。
2. The wiring structure according to claim 1, wherein the gate wiring is formed as the first layer wiring and the source wiring is formed as the second layer wiring, so that the gate wiring is formed before the source wiring. Wiring structure of thin film transistor device.
【請求項3】請求項1の配線構造においてゲート配線お
よびソース配線の配線材料を同一材料とすることを特徴
とする薄膜トランジスタ装置の配線構造。
3. A wiring structure for a thin film transistor device according to claim 1, wherein the gate wiring and the source wiring are made of the same wiring material.
【請求項4】請求項1の配線構造において配線間を絶縁
する層間絶縁膜の成膜後、連続的に第2層の配線を形成
することを特徴とする薄膜トランジスタ装置の配線構造
の製造方法。
4. A method for manufacturing a wiring structure for a thin film transistor device, comprising forming a second layer of wiring continuously after forming an interlayer insulating film for insulating between wirings in the wiring structure according to claim 1.
JP7171591A 1991-04-04 1991-04-04 Thin film transistor device and method of manufacturing the same Expired - Lifetime JP2998255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7171591A JP2998255B2 (en) 1991-04-04 1991-04-04 Thin film transistor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7171591A JP2998255B2 (en) 1991-04-04 1991-04-04 Thin film transistor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04307521A true JPH04307521A (en) 1992-10-29
JP2998255B2 JP2998255B2 (en) 2000-01-11

Family

ID=13468504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7171591A Expired - Lifetime JP2998255B2 (en) 1991-04-04 1991-04-04 Thin film transistor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2998255B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347750A (en) * 1993-06-11 1994-12-22 Kodo Eizo Gijutsu Kenkyusho:Kk Non-light emitting type display device and driving method therefor
EP0780719A3 (en) * 1995-12-18 1997-07-02 General Electric Company Method for repairing a low noise address line for thin film imager devices
US5731855A (en) * 1995-09-27 1998-03-24 Sharp Kabushiki Kaisha Liquid crystal display device having a film for protecting interface between interlayer insulating film and underlying layer and manufacturing method thereof
US5771083A (en) * 1995-10-16 1998-06-23 Sharp Kabushiki Kaisha Active matrix substrate and liquid crystal display device
US5805250A (en) * 1995-10-31 1998-09-08 Sharp Kabushiki Kaisha Liquid crystal display device with contact holes extending through interlayer insulating film between switching elements and pixel electrodes
US5831708A (en) * 1995-09-28 1998-11-03 Sharp Kabushiki Kaisha Liquid crystal display with a scanning line having a ring shaped redundant section and method for fabricating the same
US5859683A (en) * 1995-09-29 1999-01-12 Sharp Kabushiki Kaisha Transmissive liquid crystal display apparatus and method for producing the same
US5870157A (en) * 1995-09-27 1999-02-09 Sharp Kabushiki Kaisha Liquid crystal display device having overlapping color filters
US5877830A (en) * 1995-09-13 1999-03-02 Sharp Kabushiki Kaisha Liquid crystal display device having a light blocking layer in the periphery
US5910829A (en) * 1996-06-04 1999-06-08 Sharp Kabushiki Kaisha Liquid crystal display device
US5953084A (en) * 1995-08-11 1999-09-14 Sharp Kabushiki Kaisha Transmission type liquid crystal display device having capacitance ratio of 10% or less and charging rate difference of 0.6% or less
US5995178A (en) * 1995-10-16 1999-11-30 Sharp Kabushiki Kaisha Active matrix liquid crystal panel and method for repairing defect therein
US6034747A (en) * 1995-09-27 2000-03-07 Sharp Kabushiki Kaisha Active matrix substrate and display device incorporating the same
US6072559A (en) * 1996-03-12 2000-06-06 Sharp Kabushiki Kaisha Active matrix display device having defect repair extension line beneath each pixel
US6175393B1 (en) 1995-09-28 2001-01-16 Sharp Kabushiki Kaisha Active-matrix type liquid crystal display device and method of compensating for defective pixel
US6188458B1 (en) 1995-09-28 2001-02-13 Sharp Kabushiki Kaisha Liquid crystal display device with thick interlayer insulating film under pixel electrode
US6204907B1 (en) * 1995-09-27 2001-03-20 Sharp Kabushiki Kaisha Liquid crystal display device and manufacturing method thereof
US6246453B1 (en) 1996-06-25 2001-06-12 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6268895B1 (en) 1995-10-27 2001-07-31 Sharp Kabushiki Kaisha Liquid crystal display device having light shield in periphery of display
JP2001313397A (en) * 2000-02-22 2001-11-09 Semiconductor Energy Lab Co Ltd Semiconductor device and its forming method
JP2002076352A (en) * 2000-08-31 2002-03-15 Semiconductor Energy Lab Co Ltd Display device and its manufacturing method
JP2002082353A (en) * 2000-05-12 2002-03-22 Semiconductor Energy Lab Co Ltd Portable information equipment
US6700133B1 (en) 1994-03-11 2004-03-02 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6714266B1 (en) 1999-08-04 2004-03-30 Sharp Kabushiki Kaisha Transmission type liquid crystal display device
US6839118B2 (en) 2002-01-18 2005-01-04 Fujitsu Display Technologies Corporation Substrate for LCD having pixel electrode on color filter layers, LCD having the same, and method of manufacturing
US6917394B2 (en) * 2001-08-27 2005-07-12 Lg.Philips Lcd Co., Ltd. Array substrate and method thereof for liquid crystal display device
US7098086B2 (en) 1999-08-31 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing thereof
US7465957B2 (en) 2001-09-26 2008-12-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7541618B2 (en) 1999-09-27 2009-06-02 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal device having a thin film transistor
JP2017072838A (en) * 2016-10-27 2017-04-13 株式会社半導体エネルギー研究所 Display device
US9704996B2 (en) 2000-04-12 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10665610B2 (en) 2000-12-11 2020-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and manufacturing method thereof

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347750A (en) * 1993-06-11 1994-12-22 Kodo Eizo Gijutsu Kenkyusho:Kk Non-light emitting type display device and driving method therefor
US6700133B1 (en) 1994-03-11 2004-03-02 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6433851B2 (en) 1995-08-11 2002-08-13 Sharp Kabushiki Kaisha Transmission type liquid crystal display having a transparent colorless organic interlayer insulating film between pixel electrodes and switching
US6195138B1 (en) 1995-08-11 2001-02-27 Sharp Kabushiki Kaisha Transmission type liquid crystal display having an organic interlayer elements film between pixel electrodes and switching
US6097452A (en) * 1995-08-11 2000-08-01 Sharp Kabushiki Kaishi Transmission type liquid crystal display having an organic interlayer elements film between pixel electrodes and switching
US6052162A (en) * 1995-08-11 2000-04-18 Sharp Kabushiki Kaisha Transmission type liquid crystal display device with connecting electrode and pixel electrode connected via contact hole through interlayer insulating film and method for fabricating
US5953084A (en) * 1995-08-11 1999-09-14 Sharp Kabushiki Kaisha Transmission type liquid crystal display device having capacitance ratio of 10% or less and charging rate difference of 0.6% or less
US5877830A (en) * 1995-09-13 1999-03-02 Sharp Kabushiki Kaisha Liquid crystal display device having a light blocking layer in the periphery
US6441879B2 (en) 1995-09-27 2002-08-27 Sharp Kabushiki Kaisha Liquid crystal display device
US6034747A (en) * 1995-09-27 2000-03-07 Sharp Kabushiki Kaisha Active matrix substrate and display device incorporating the same
US5870157A (en) * 1995-09-27 1999-02-09 Sharp Kabushiki Kaisha Liquid crystal display device having overlapping color filters
US6204907B1 (en) * 1995-09-27 2001-03-20 Sharp Kabushiki Kaisha Liquid crystal display device and manufacturing method thereof
US5731855A (en) * 1995-09-27 1998-03-24 Sharp Kabushiki Kaisha Liquid crystal display device having a film for protecting interface between interlayer insulating film and underlying layer and manufacturing method thereof
US6188458B1 (en) 1995-09-28 2001-02-13 Sharp Kabushiki Kaisha Liquid crystal display device with thick interlayer insulating film under pixel electrode
US6462792B1 (en) 1995-09-28 2002-10-08 Sharp Kabushiki Kaisha Active-matrix liquid crystal display device and method for compensating for defective display lines
US5831708A (en) * 1995-09-28 1998-11-03 Sharp Kabushiki Kaisha Liquid crystal display with a scanning line having a ring shaped redundant section and method for fabricating the same
US6175393B1 (en) 1995-09-28 2001-01-16 Sharp Kabushiki Kaisha Active-matrix type liquid crystal display device and method of compensating for defective pixel
US5859683A (en) * 1995-09-29 1999-01-12 Sharp Kabushiki Kaisha Transmissive liquid crystal display apparatus and method for producing the same
US5995178A (en) * 1995-10-16 1999-11-30 Sharp Kabushiki Kaisha Active matrix liquid crystal panel and method for repairing defect therein
US5771083A (en) * 1995-10-16 1998-06-23 Sharp Kabushiki Kaisha Active matrix substrate and liquid crystal display device
US6268895B1 (en) 1995-10-27 2001-07-31 Sharp Kabushiki Kaisha Liquid crystal display device having light shield in periphery of display
US5805250A (en) * 1995-10-31 1998-09-08 Sharp Kabushiki Kaisha Liquid crystal display device with contact holes extending through interlayer insulating film between switching elements and pixel electrodes
EP0780719A3 (en) * 1995-12-18 1997-07-02 General Electric Company Method for repairing a low noise address line for thin film imager devices
US5834321A (en) * 1995-12-18 1998-11-10 General Electric Company Low noise address line repair method for thin film imager devices
US6072559A (en) * 1996-03-12 2000-06-06 Sharp Kabushiki Kaisha Active matrix display device having defect repair extension line beneath each pixel
US5910829A (en) * 1996-06-04 1999-06-08 Sharp Kabushiki Kaisha Liquid crystal display device
US6914260B2 (en) 1996-06-25 2005-07-05 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6246453B1 (en) 1996-06-25 2001-06-12 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6714266B1 (en) 1999-08-04 2004-03-30 Sharp Kabushiki Kaisha Transmission type liquid crystal display device
US7982267B2 (en) 1999-08-31 2011-07-19 Semiconductor Energy Laboratory Co., Ltd. Projector including display device
US9466622B2 (en) 1999-08-31 2016-10-11 Semiconductor Energy Laboratory Co., Ltd. Display device comprising a thin film transistor and a storage capacitor
US9250490B2 (en) 1999-08-31 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device including light shielding film
JP2015008336A (en) * 1999-08-31 2015-01-15 株式会社半導体エネルギー研究所 Semiconductor device
US8933455B2 (en) 1999-08-31 2015-01-13 Semiconductor Energy Laboratory Co., Ltd. Display device comprising pixel
US8552431B2 (en) 1999-08-31 2013-10-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising pixel portion
US7098086B2 (en) 1999-08-31 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing thereof
US8253140B2 (en) 1999-08-31 2012-08-28 Semiconductor Energy Laboratory Co., Ltd. Display device having capacitor wiring
US7501685B2 (en) 1999-08-31 2009-03-10 Semiconductor Energy Laboratory Co., Ltd. Display device comprising pixel portion
JP2010282216A (en) * 1999-08-31 2010-12-16 Semiconductor Energy Lab Co Ltd Semiconductor device and method for producing the same
US7541618B2 (en) 1999-09-27 2009-06-02 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal device having a thin film transistor
US9318610B2 (en) 2000-02-22 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP2001313397A (en) * 2000-02-22 2001-11-09 Semiconductor Energy Lab Co Ltd Semiconductor device and its forming method
JP2017123482A (en) * 2000-02-22 2017-07-13 株式会社半導体エネルギー研究所 Semiconductor device
US8399884B2 (en) 2000-02-22 2013-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP2016029729A (en) * 2000-02-22 2016-03-03 株式会社半導体エネルギー研究所 Semiconductor device
US9869907B2 (en) 2000-02-22 2018-01-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US9704996B2 (en) 2000-04-12 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2002082353A (en) * 2000-05-12 2002-03-22 Semiconductor Energy Lab Co Ltd Portable information equipment
JP2002076352A (en) * 2000-08-31 2002-03-15 Semiconductor Energy Lab Co Ltd Display device and its manufacturing method
US10665610B2 (en) 2000-12-11 2020-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and manufacturing method thereof
US6917394B2 (en) * 2001-08-27 2005-07-12 Lg.Philips Lcd Co., Ltd. Array substrate and method thereof for liquid crystal display device
US7041521B2 (en) 2001-08-27 2006-05-09 Lg.Philips Lcd Co., Ltd. Array substrate and method thereof for liquid crystal display device
US8502231B2 (en) 2001-09-26 2013-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8183569B2 (en) 2001-09-26 2012-05-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7939827B2 (en) 2001-09-26 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7465957B2 (en) 2001-09-26 2008-12-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6839118B2 (en) 2002-01-18 2005-01-04 Fujitsu Display Technologies Corporation Substrate for LCD having pixel electrode on color filter layers, LCD having the same, and method of manufacturing
JP2017072838A (en) * 2016-10-27 2017-04-13 株式会社半導体エネルギー研究所 Display device

Also Published As

Publication number Publication date
JP2998255B2 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
JPH04307521A (en) Wiring structure for thin film transistor device and its production
JP3579492B2 (en) Method for manufacturing display device
US8546812B2 (en) Display panel
JPH10133216A (en) Active matrix type liquid crystal display device
JPH06160904A (en) Liquid crystal display device and its production
WO2020015071A1 (en) Array substrate and method for manufacturing same
JPH0380226A (en) Active matrix substrate for liquid crystal display element and production thereof
US4961629A (en) Liquid crystal display device
WO2018030298A1 (en) Active-matrix substrate and display device
US5995174A (en) Liquid crystal display apparatus with source/drain electrodes and pixel electrode formed by the same material
JPH04280637A (en) Manufacture of thin film transistor
JPH01217423A (en) Amorphous silicon thin film transistor array substrate
JPS63222443A (en) Thin film transistor matrix array
JPH06175158A (en) Liquid crystal display
JPH02157827A (en) Thin film transistor array device
KR100599961B1 (en) Thin film transistor liquid crystal display
JPH04111323A (en) Manufacture of thin film transistor
JPH04106938A (en) Thin film field-effect transistor
KR100304824B1 (en) Polysilicon thin film transistor liquid crystal display
JPS6139579A (en) Thin film transistor matrix array and manufacture thereof
JP2550692B2 (en) Method of manufacturing thin film transistor array
KR100289370B1 (en) Tft array of lcd
JPH03174517A (en) Production of liquid crystal display with thin film transistor
JPS62169125A (en) Preparation of liquid crystal display panel
JPH07112068B2 (en) Manufacturing method of active matrix array

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12