JPH04297591A - Ion exchange membrane for electrolysis of alkali metal chloride - Google Patents

Ion exchange membrane for electrolysis of alkali metal chloride

Info

Publication number
JPH04297591A
JPH04297591A JP3063068A JP6306891A JPH04297591A JP H04297591 A JPH04297591 A JP H04297591A JP 3063068 A JP3063068 A JP 3063068A JP 6306891 A JP6306891 A JP 6306891A JP H04297591 A JPH04297591 A JP H04297591A
Authority
JP
Japan
Prior art keywords
exchange membrane
membrane
ion exchange
alkali metal
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3063068A
Other languages
Japanese (ja)
Inventor
Hisatsugu Wakamatsu
若松 久嗣
Hiroshi Sagami
佐上 寛志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3063068A priority Critical patent/JPH04297591A/en
Publication of JPH04297591A publication Critical patent/JPH04297591A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To prevent reduction of strength of a cation exchange membrane and to prolong its life by depositing a specified amt. of inorg. particle layer on the anode surface of the cation exchange membrane in the area where chlorine gas in an electrolytic bath is apt to remain and then effecting electrolysis. CONSTITUTION:An alkali metal chloride is subjected to electrolysis in an electrolytic cell which is divided into an anode room and cathode room by a cation exchange membrane 3 supported by gaskets 2 provided on the frame of the electrolytic cell. During electrolysis, chlorine gas is apt to remain in the area (A) where the ion exchange membrane 3 is not pressed by the frame 1 of the electroytic cell and also in a zone (B) within about 10mm distance from the area (A). Therefore, the surface of the anode side of the cation exchange membrane 3 corresponding to the area (A) and (B) where chlorine gas is apt to remain is coated with a layer containing 0.2-5mg/cm<2> inorg. particles. This coating layer consists of 5-70wt.% of fluorine-contg. polymer containing ZrO2 of 0.01-0.20mum particle size, etc., and is preferably a porous layer having about >=15% porosity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はアルカリ金属塩化物電解
用の陽イオン交換膜及びこれを用いたアルカリ金属塩化
物の電解方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cation exchange membrane for electrolyzing alkali metal chlorides and a method for electrolyzing alkali metal chlorides using the same.

【0002】0002

【従来の技術】アルカリ金属水酸化物の製造に使用され
るイオン交換膜としては、高い電流効率と低い電気抵抗
を有し、且つ大きな機械強度を有することが必須である
。主流となっているフィルタ−プレス型電解槽において
は、イオン交換膜をガスケットを介して電解槽枠で締め
つけ、イオン交換膜により陽極室と陰極室に分離する構
造が採られている。
BACKGROUND OF THE INVENTION Ion exchange membranes used in the production of alkali metal hydroxides must have high current efficiency, low electrical resistance, and high mechanical strength. In the mainstream filter-press type electrolytic cell, an ion exchange membrane is fastened to an electrolytic cell frame via a gasket, and the ion exchange membrane separates the cell into an anode chamber and a cathode chamber.

【0003】このような電解槽においてアルカリ金属塩
化物の電解を実施した場合、イオン交換膜は電解槽枠の
全周囲、即ちガスケットに近い部分は通常の電解面であ
る中央部に比して機械強度の劣化が大きく、この僅かの
部分の強度低下ひいては破損により短期間で取りかえね
ばならない。又、この部分の破損による電解槽の損傷、
電解槽とイオン交換膜の更新のための電解停止によるア
ルカリ金属水酸化物生産性の低下等の問題も起きている
When electrolysis of alkali metal chlorides is carried out in such an electrolytic cell, the ion-exchange membrane is placed around the entire periphery of the electrolytic cell frame, that is, the part near the gasket, compared to the central part, which is the normal electrolytic surface. The deterioration in strength is significant, and due to the decrease in strength of this small portion and even breakage, it must be replaced in a short period of time. In addition, damage to the electrolytic cell due to damage to this part,
Problems such as a decline in alkali metal hydroxide productivity are also occurring due to suspension of electrolysis for renewal of electrolyzers and ion exchange membranes.

【0004】膜の機械強度の劣化や損傷が起こりやすい
部分は、陽極液の塩素ガスが滞留し易い部分に相当し、
その理由としては以下のごとく考えられる。即ち、塩素
ガスがイオン交換膜の陽極面側から膜中に拡散していき
、一方、陰極面側からはアルカリ金属水酸化物も膜中に
拡散していき、膜中で両者が出合い、次のような反応(
化1)によって、イオン交換膜中に溶解度の小さいアル
カリ金属塩化物が生成、析出し、又発生期の酸素が発生
することによってイオン交換膜の組織が破壊され、前述
の如き機械強度の低下が起こると考えられる。
[0004] The parts where the mechanical strength of the membrane is likely to deteriorate or be damaged correspond to the parts where chlorine gas in the anolyte tends to stay.
The reason may be as follows. In other words, chlorine gas diffuses into the membrane from the anode side of the ion exchange membrane, while alkali metal hydroxide also diffuses into the membrane from the cathode side, where they meet in the membrane and the next Reactions like (
Due to chemical reaction 1), alkali metal chlorides with low solubility are generated and precipitated in the ion exchange membrane, and the nascent oxygen is generated, which destroys the structure of the ion exchange membrane, resulting in the decrease in mechanical strength as described above. It is thought that it will happen.

【0005】[0005]

【化1】[Chemical formula 1]

【0006】従来このようなイオン交換膜の局部的な強
度低下を防ぐ方法として、電解槽内の塩素ガス滞留部分
にイオン交換膜の片面または両面をガス不透過物質で被
覆する方法(特開昭52−144399号公報、特開昭
54−71780号公報)、陰極面側を多孔質フィルム
で被覆し、陽極面側にガス解放層と気孔内部が親水性を
有する多孔体層で被覆する方法(特開昭63−1180
82号公報)等が提案されているが、これらフィルムや
多孔質体を異質のイオン交換膜に接合するには加熱加圧
が必要で作業性が悪く、接合した周囲は寸法変化が起こ
りフラットな膜が得にくく、大型電槽への装着が困難で
且つ電解液の槽外リ−クが発生し易い。又、接合力が不
充分で、電解使用中に剥離が生じ易いなどの欠点を有し
ている。
[0006] Conventionally, as a method for preventing such local strength reduction of the ion exchange membrane, a method has been proposed in which one or both sides of the ion exchange membrane is coated with a gas-impermeable material in the area where chlorine gas is retained in the electrolytic cell (Japanese Patent Laid-Open Publication No. 52-144399, JP-A-54-71780), a method in which the cathode side is covered with a porous film and the anode side is covered with a gas release layer and a porous layer whose pores are hydrophilic ( JP-A-63-1180
However, bonding these films and porous bodies to different ion exchange membranes requires heating and pressure, which is difficult to work with, and the area around the bonded area changes in size and becomes flat. It is difficult to obtain a membrane, difficult to attach to a large battery tank, and leakage of the electrolyte to the outside of the tank is likely to occur. Further, it has drawbacks such as insufficient bonding force and easy peeling during electrolytic use.

【0007】[0007]

【発明が解決しようとする課題】本発明は電解槽内の塩
素ガスの滞留し易い部分に当たるイオン交換膜の強度低
下を防止し、特定の部分のみの強度低下によって膜その
ものの寿命が短くなることがない、新規なアルカリ金属
塩化物の電解用イオン交換膜を提供することを課題とす
るものである。
[Problems to be Solved by the Invention] The present invention prevents a decrease in the strength of the ion exchange membrane in areas where chlorine gas tends to accumulate in an electrolytic cell, and prevents the life of the membrane itself from being shortened due to the decrease in strength only in specific areas. It is an object of the present invention to provide a novel ion exchange membrane for electrolysis of alkali metal chlorides, which is free from the above.

【0008】[0008]

【課題を解決するための手段】本発明はイオン交換膜に
よって陽極室と陰極室とに分離された電解槽を用い、ア
ルカリ金属塩化物を電解するに際し電解槽の塩素ガスの
滞留する部分に相当するイオン交換膜の陽極面側表面に
、0.2mg/cm2乃至5mg/cm2の無機物粒子
を被覆してなるアルカリ金属塩化物電解用の陽イオン交
換膜である。ここに電解槽の塩素ガスが滞留し易い部分
に相当するイオン交換膜の部分とは、イオン交換膜がガ
スケットを介して電解槽枠で締めつけられているフィル
タ−プレス型電解槽の場合は、ガスケットに挟まれてお
り、電解槽枠によってプレスされていない部分(図1A
の部分)及び周辺、即ちガスケットより通電部側へ少な
くとも幅10mm以内のゾ−ン(図1Bの部分)である
。なぜこのような部分にCl2ガスケットが滞留するの
かは明確ではないが、ガスケットと膜の段差による微妙
な凸凹によって、あるいはガスケット劣化によってCl
2ガスが滞留すると考えられる。
[Means for Solving the Problems] The present invention uses an electrolytic cell separated into an anode chamber and a cathode chamber by an ion exchange membrane, which corresponds to the part of the electrolytic cell where chlorine gas stays when electrolyzing alkali metal chlorides. This is a cation exchange membrane for alkali metal chloride electrolysis, in which the anode side surface of the ion exchange membrane is coated with inorganic particles of 0.2 mg/cm2 to 5 mg/cm2. The part of the ion exchange membrane that corresponds to the part of the electrolytic cell where chlorine gas tends to stay is the gasket in the case of a filter press type electrolytic cell where the ion exchange membrane is tightened with the electrolytic cell frame via a gasket. The part that is not pressed by the electrolytic cell frame (Figure 1A
) and the periphery, that is, a zone having a width of at least 10 mm from the gasket to the current-carrying part side (the part shown in FIG. 1B). It is not clear why Cl2 gasket stays in such areas, but Cl2 gaskets accumulate due to subtle irregularities due to the difference in level between the gasket and the membrane, or due to gasket deterioration.
It is thought that two gases remain.

【0009】また、ガスケットの上下左右の4辺につい
て、どの辺においてもCl2ガスが滞留するが、上辺、
下辺そして左右辺の順でCl2ガスの滞留頻度は大きく
なる。この部分で塩素ガスとアルカリ金属水酸化物が膜
中で反応しアルカリ塩化物の生成、析出、酸素の生成に
よって膜組織が破壊されると考えられるが、この反応を
防ぐ方法として我々はさきに以下の発明を特許出願した
。すなわち、電解槽の塩素ガスが滞留し易い部分に相当
する陽イオン交換膜の陰極面側表面に、アルカリ金属水
酸化物の拡散が陽イオン交換膜の陰極側表層のそれより
大きい層を被覆した膜、および陰極面側表面にアルカリ
金属水酸化物の拡散が陰極側表層のそれより大きい層を
被覆すると共に陽極側表面にも無機物粒子を被覆した膜
である。しかしながらこのような膜を製造する場合、例
えば、膜性能上効率的なスプレイ法をもちいて、膜の陰
極側面を被覆する場合、被覆する予定でない部分をマス
キングして、極めて厳格なコントロールをしないとマス
キング部分に0.01mg/cm2 程度の被覆物が被
覆されるところとなる。このように陰極側通電面に拡散
の大きな被覆組成物が0.01mg/cm2 より多量
に付着していると、電流効率は膜陰極面表層の性質によ
って決定されるので、電流効率が低下し、性能面で大き
な短所となる。また塩素ガスの滞留しやすい部分の膜の
強度低下を防止しうる理由は明確ではないが、陰極側に
拡散層の大きな被覆物を被覆することによりアルカリ金
属水酸化物の拡散を大きくすることで塩素ガスとアルカ
リ金属水酸化物の反応が膜中ではなく膜外即ち陽極側で
生じるためであり、陽極面への無機物粒子層の効果によ
る強度低下防止作用は小さく、当該部分の陰極面に拡散
の大きな層が被覆されることが充分な強度を維持するた
めに必要と考えていた。
[0009] Furthermore, although Cl2 gas remains on all four sides of the gasket, including the top, bottom, left and right sides,
The frequency of Cl2 gas retention increases in the order of the bottom side and the left and right sides. At this point, chlorine gas and alkali metal hydroxide react in the membrane, and the membrane structure is thought to be destroyed by the production and precipitation of alkali chloride and the production of oxygen. A patent application was filed for the following invention. That is, the cathode side surface of the cation exchange membrane, which corresponds to the part where chlorine gas tends to accumulate in the electrolytic cell, is coated with a layer in which the diffusion of alkali metal hydroxide is greater than that of the cathode side surface layer of the cation exchange membrane. This is a film in which the diffusion of alkali metal hydroxide is greater on the cathode side surface than on the cathode side surface layer, and the anode side surface is also coated with inorganic particles. However, when manufacturing such a membrane, for example, when coating the cathode side of the membrane using a spray method that is efficient in terms of membrane performance, extremely strict control is required by masking the areas that are not intended to be coated. The masking portion will be coated with a coating material of about 0.01 mg/cm2. If more than 0.01 mg/cm2 of a highly diffusive coating composition adheres to the current-carrying surface on the cathode side, the current efficiency is determined by the properties of the surface layer of the membrane cathode surface, so the current efficiency decreases. This is a major drawback in terms of performance. Furthermore, although it is not clear why it is possible to prevent a decrease in the strength of the membrane in areas where chlorine gas tends to accumulate, it is possible to increase the diffusion of alkali metal hydroxide by coating the cathode side with a coating with a large diffusion layer. This is because the reaction between chlorine gas and alkali metal hydroxide occurs not inside the membrane but outside the membrane, that is, on the anode side, and the effect of the inorganic particle layer on the anode surface to prevent strength reduction is small, and the reaction occurs on the cathode surface in that area. It was believed that a large layer of coating was necessary to maintain sufficient strength.

【0010】かかる状況下にあって、意外にもイオン交
換膜の塩素ガスの滞留しやすい部分の陽極側のみに特定
量の無機物粒子を含む層を被覆することによって膜の強
度低下を防止しうることをみいだした。本発明において
は、無機物粒子の被覆量としては、0.2mg/cm2
 乃至5mg/cm2 である。コストの面からはでき
るだけ少量であることが好ましいが、0.2mg/cm
2 より小さいとその効果がなく、強度低下を防ぐため
には0.2mg/cm2 以上の被覆量が必要である。 被覆量が5mg/cm2 を越えると膜取扱時被覆層が
剥離するという問題が生じるうえに、また被覆操作上被
覆する予定でない部分への被覆物が0.05mg/cm
2 以上になることがあり好ましくない。
Under such circumstances, it is surprisingly possible to prevent the strength of the membrane from decreasing by coating only the anode side of the ion-exchange membrane where chlorine gas tends to accumulate with a layer containing a specific amount of inorganic particles. I discovered something. In the present invention, the coating amount of inorganic particles is 0.2 mg/cm2.
The concentration ranges from 5 mg/cm2 to 5 mg/cm2. From a cost perspective, it is preferable to use as little as possible, but 0.2 mg/cm
If it is less than 2, there is no effect, and in order to prevent a decrease in strength, a coating amount of 0.2 mg/cm2 or more is required. If the coating amount exceeds 5 mg/cm2, there will be a problem that the coating layer will peel off when handling the membrane, and in addition, if the coating amount exceeds 0.05 mg/cm
2 or more, which is not desirable.

【0011】その被覆層は無機物粒子と高含水率の含フ
ッ素重合体及び、又は無機物粒子とポリテトラフルオロ
エチレン等のフッ素重合体よりなる液及びガス透過性の
多孔度15%以上の多孔質層である。無機物粒子として
はジルコニウム、ケイ素、チタンの酸化物、窒化物、ま
たは炭化物が用いられる。これらの無機物の粒子径は0
.01乃至0.20μm、好しくは0.02乃至0.0
8μmである。
The coating layer is a liquid and gas permeable porous layer having a porosity of 15% or more and made of inorganic particles and a fluorine-containing polymer with a high water content, and/or inorganic particles and a fluorine polymer such as polytetrafluoroethylene. It is. As the inorganic particles, oxides, nitrides, or carbides of zirconium, silicon, and titanium are used. The particle size of these inorganic substances is 0
.. 01 to 0.20 μm, preferably 0.02 to 0.0
It is 8 μm.

【0012】含水率の含フッ素重合体とは、例えばスル
ホニルフルオロライド基及び/又はカルボン酸基を有す
る含フッ素重合体で、その具体例としては、化2で示さ
れる共重合体等がある。
The fluorine-containing polymer having a water content is, for example, a fluorine-containing polymer having a sulfonyl fluoride group and/or a carboxylic acid group, and a specific example thereof includes a copolymer shown in Chemical Formula 2.

【0013】[0013]

【化2】[Case 2]

【0014】陽極面側の被覆層として用いられる無機物
粒子と含フッ素重合体の混合物において、含フッ素重合
体の混合物中の割合は5〜70wt%の範囲で、Hg圧
入法で多孔度15%以上であることが好ましい。本発明
における陽イオン交換膜の陽極面とは、多層構造の陽イ
オン交換膜の場合、被覆層が無い部分において表層に存
在する層の含水率が大きい面であり、陰極面とは含水率
が小さい面をいう。
In the mixture of inorganic particles and fluorine-containing polymer used as the coating layer on the anode surface side, the proportion of the fluorine-containing polymer in the mixture is in the range of 5 to 70 wt%, and the porosity is 15% or more by Hg injection method. It is preferable that In the case of a multi-layered cation exchange membrane, the anode surface of the cation exchange membrane in the present invention is the surface where the water content of the layer existing on the surface layer is high in the part where there is no coating layer, and the cathode surface is the surface where the water content is high. Refers to a small side.

【0015】これらの被覆層は、装着しようとする電解
槽の塩素ガスが滞留し易い部分すなわちガスケットに挟
まれており、電解槽枠によってプレスされていない部分
及びガスケットより通電部側へ少なくとも幅10mm以
内のゾ−ンに相当する膜表面にのみ塗布すれば良い。し
かしながら工業的に実施するためには、装着時のズレ等
も考慮して幅20乃至300mmで被覆することが好ま
しい。又、膜の有効利用の観点から及びこれらの被覆層
を設けた部分が、できるだけ通電部に入らないようにす
ることが重要であるため、膜の端からの被覆層の占める
距離は好ましくは300mm以内、更に好ましくは15
0mm以内にすることが必要である。
These coating layers are sandwiched between the parts of the electrolytic cell to be installed where chlorine gas tends to accumulate, that is, the gaskets, and are at least 10 mm wide from the part not pressed by the electrolytic cell frame and the gasket toward the current-carrying part. It is sufficient to apply the coating only to the film surface corresponding to the zone within the range. However, for industrial implementation, it is preferable to cover with a width of 20 to 300 mm, taking into consideration misalignment during installation. In addition, from the viewpoint of effective use of the membrane and because it is important to prevent the parts provided with these coating layers from entering current-carrying parts as much as possible, the distance occupied by the coating layers from the edge of the membrane is preferably 300 mm. within, more preferably 15
It is necessary to keep it within 0 mm.

【0016】これらの被覆層は、上下左右の各4辺に設
けることが好ましいが、Cl2 ガスが特に滞留し易い
上辺及び下辺にのみ設けることが効果的であり、工業的
に有利である。イオン交換膜全面にこれらの被覆層を設
けると運転時のトラブルで陽極液濃度が低下した場合、
膜性能が劣化しやすい。又生産コストも上昇するため通
電面を避け周囲のみ被覆層を設けることが必要であり、
全体の膜面積の40%以下であることが好ましく、更に
好ましくは、20%以下である。
[0016] These coating layers are preferably provided on each of the four sides (top, bottom, left and right), but it is effective and industrially advantageous to provide them only on the top and bottom sides where Cl2 gas is particularly likely to accumulate. By providing these coating layers over the entire surface of the ion exchange membrane, if the anolyte concentration decreases due to trouble during operation,
Membrane performance deteriorates easily. In addition, production costs also increase, so it is necessary to avoid current-carrying surfaces and provide a coating layer only around the surroundings.
It is preferably 40% or less of the total membrane area, more preferably 20% or less.

【0017】本発明の陽イオン交換膜のベ−ス膜として
用いられる陽イオン交換膜は、それ自体公知であって当
業者には明かであるが、スルホン酸及び/又はカルボン
酸イオン交換基をもつイオン交換樹脂膜であって、フッ
素炭化水素の主鎖より成り、スルホニル基及び/又はカ
ルボキシル基を含む側鎖を溶融可能形で有する重合体を
加水分解したものである。次にこのフッ素化重合体の一
般的製造方法につき詳細に説明するが、これは本発明の
範囲を限定するものではない。
The cation exchange membrane used as the base membrane of the cation exchange membrane of the present invention is known per se and is clear to those skilled in the art, but it contains sulfonic acid and/or carboxylic acid ion exchange groups. This is an ion exchange resin membrane obtained by hydrolyzing a polymer consisting of a fluorocarbon main chain and having a meltable side chain containing a sulfonyl group and/or a carboxyl group. Next, a general method for producing this fluorinated polymer will be explained in detail, but this is not intended to limit the scope of the present invention.

【0018】フッ素化重合体は、以下に述べる第1群よ
り選ばれる少なくとも1種の単量体と、第2群及び/又
は第3群より選ばれる少なくとも1種の単量体を共重合
することにより製造することができる。第1群の単量体
はフッ素化ビニル化合物、例えばフッ化ビニル、ヘキサ
フロロプロピレン、フッ化ビニリデン、パ−フロロ(ア
ルキルビニルエ−テル)、テトラフロロエチレンの少な
くとも1種である。
The fluorinated polymer is a copolymer of at least one monomer selected from the first group described below and at least one monomer selected from the second group and/or the third group. It can be manufactured by The first group of monomers is at least one fluorinated vinyl compound, such as vinyl fluoride, hexafluoropropylene, vinylidene fluoride, perfluoro(alkyl vinyl ether), and tetrafluoroethylene.

【0019】第2群の単量体は、カルボン酸型イオン交
換基に変換し得る官能基を有するビニル化合物である。 即ち、一般的には(化3)式で表される単量体が用いら
れる。
The second group of monomers is a vinyl compound having a functional group that can be converted into a carboxylic acid type ion exchange group. That is, a monomer represented by formula (3) is generally used.

【0020】[0020]

【化3】[Chemical formula 3]

【0021】好ましい単量体の具体例としては、(化4
)式のものが挙げられる。
Specific examples of preferred monomers include (Chemical formula 4)
) formula can be mentioned.

【0022】[0022]

【化4】[C4]

【0023】第3群の単量体は、スルホン酸型イオン交
換基に交換し得る官能基を有するビニル化合物である。 これは一般式(化5)で表すことができるビニル化合物
である。
The third group of monomers is a vinyl compound having a functional group that can be exchanged with a sulfonic acid type ion exchange group. This is a vinyl compound that can be represented by the general formula (Formula 5).

【0024】[0024]

【化5】[C5]

【0025】上記式のT基は分岐していても分岐してい
なくても(即ち直鎖状でも)良く、1つ又はそれ以上の
エーテル結合を有していても良い。ビニル基はエーテル
結合を介してT基に結合するものが好ましい。即ち単量
体が式CF2 =CFOTCF2 −SO2 Fのもの
が好適である。好適なスルホニルフロライドを含有する
単量体の具体例は、(化6)で示される。
The T group in the above formula may be branched or unbranched (ie, linear) and may have one or more ether bonds. Preferably, the vinyl group is bonded to the T group via an ether bond. That is, monomers of the formula CF2=CFOTCF2-SO2F are preferred. A specific example of a suitable sulfonyl fluoride-containing monomer is shown in (Chemical formula 6).

【0026】[0026]

【化6】[C6]

【0027】共重合するに当り、前記3つの群より選ば
れる単量体の種類及び割合は、フッ素化重合体に希望す
る官能基の種類及び量により選択決定される。例えば、
カルボン酸エステル官能基のみを含有する重合体を必要
とする場合、第1群及び第2群の単量体より夫々少なく
とも1種を選択して共重合すれは良い。又各単量体の混
合割合は、単位重合体当りに要求される官能基の量によ
り決定される。官能基の量を増やす場合、第2,第3群
より選ばれる単量体の割合を増加させればよい。一般的
には全官能基の量が交換基に添加された後0.5〜2.
0ミリ当量/g、好ましくは0.6〜1.5ミリ当量/
gのイオン交換容量の範囲で用いられる。
In copolymerization, the type and proportion of monomers selected from the three groups mentioned above are determined depending on the type and amount of functional groups desired in the fluorinated polymer. for example,
When a polymer containing only carboxylic acid ester functional groups is required, at least one monomer from the first group and the second group may be selected and copolymerized. The mixing ratio of each monomer is determined by the amount of functional groups required per unit polymer. When increasing the amount of functional groups, the proportion of monomers selected from the second and third groups may be increased. Generally, the amount of total functional groups added to the exchange group is between 0.5 and 2.
0 meq/g, preferably 0.6-1.5 meq/g
It is used within the range of ion exchange capacity of 1.5 g.

【0028】当業者にとっては明かに公知であるが、電
力原単位性能の良い陽イオン交換膜とするには、多層構
造の陽イオン交換膜であることが好ましく、又このよう
な膜を用いて運転するときは、バリヤ−性の高い層を陰
極面側にするために製造する水酸化アルカリ濃度(陰極
液濃度)において、含水率の小さい層を陰極面側にして
運転することによって高性能が発揮できる。
As is clearly known to those skilled in the art, in order to obtain a cation exchange membrane with good power consumption performance, it is preferable to use a cation exchange membrane with a multilayer structure. During operation, high performance can be achieved by placing a layer with a low water content on the cathode side at the alkali hydroxide concentration (cathode solution concentration) produced in order to place the layer with high barrier properties on the cathode side. I can demonstrate it.

【0029】フッ素系イオン交換樹脂において、含水率
は同一官能基の場合、交換容量が大きい程大きく、又同
一交換容量で比較すれば、側鎖構造が長いほど官能基が
強酸基である方が含水率は大きいことが公知であり、こ
れらの事を勘案して陽イオン交換膜は設計される。本発
明に用いられる強化織布は、フッ素化重合体のモノフィ
ラメント糸又はマルチフィラメント糸である強化糸と、
必要によりハイドロカ−ボンのモノフィラメント糸また
はマルチフィラメント糸である犠牲糸を用いた実質的に
縦糸及び横糸より成る織布である。
In fluorine-based ion-exchange resins, when the functional groups are the same, the water content increases as the exchange capacity increases, and when comparing the same exchange capacity, the longer the side chain structure, the stronger the functional group is. It is known that the water content is high, and cation exchange membranes are designed with these factors in mind. The reinforced woven fabric used in the present invention includes a reinforced yarn that is a monofilament yarn or a multifilament yarn of a fluorinated polymer;
It is a woven fabric consisting essentially of warp and weft yarns, optionally using sacrificial yarns that are hydrocarbon monofilament yarns or multifilament yarns.

【0030】本発明の膜は、上記したフッ素化重合体フ
ィルム及び強化織布よりなるものが好ましい。また、陽
イオン交換膜の陽極側に被覆する無機物の被覆方法とし
ては、ポリテトラフルオロエチレンなどの含フッ素重合
体の懸濁液に無機物粒子を加えて均一に分散した後、ス
クリ−ン印刷法、熱融着プレス法等によって塗布する方
法あるいは、20wt%以上のアルコ−ル系溶剤を含む
水溶液に高含水率の含フッ素重合体を1〜20wt%に
なるように加熱溶解した液に無機物粒子を加え、ボ−ル
ミル等によって均一に分散させ、スプレ−法、ロ−ル法
等によって塗布する方法等があるが、本発明はこれに限
定されるものではない。
The membrane of the present invention is preferably composed of the above-described fluorinated polymer film and reinforced woven fabric. In addition, as a method for coating inorganic materials on the anode side of a cation exchange membrane, inorganic particles are added to a suspension of a fluorine-containing polymer such as polytetrafluoroethylene, uniformly dispersed, and then screen printing is performed. Inorganic particles are applied by heating and dissolving a fluoropolymer with a high water content in an aqueous solution containing 20 wt% or more of an alcoholic solvent to a concentration of 1 to 20 wt%. There is a method in which the composition is added, uniformly dispersed using a ball mill, etc., and applied by a spray method, a roll method, etc., but the present invention is not limited thereto.

【0031】水酸化アルカリ製造用の膜とするためには
、側鎖を溶融可能形で有する重合体(イオン交換基前駆
体膜)を酸または塩基を用いて加水分解処理して、全て
の官能基をイオン化可能な官能基に変換しなければなら
ないが、被覆層を塗布する際には加水分解処理後の膜に
実施しても良いが、未加水分解のイオン交換基前駆体膜
に処理した方が工業的には有利である。
In order to obtain a membrane for producing alkali hydroxide, a polymer having meltable side chains (ion exchange group precursor membrane) is hydrolyzed using an acid or base to remove all functionalities. It is necessary to convert the group into an ionizable functional group, but when applying the coating layer, it can be carried out on the membrane after hydrolysis treatment, but it can be carried out on the membrane after hydrolysis treatment, but it is not necessary to convert It is industrially advantageous.

【0032】本発明のアルカリ金属塩化物を電解する条
件としては既知の条件が適用できる。例えば、陽極室の
アルカリ金属塩化物水溶液の濃度は2.5〜5N、陰極
室のアルカリ金属水酸化物の濃度は20〜50%に保ち
、温度50〜100℃、電流密度10〜60A/dm2
 で運転される。
Known conditions can be applied to electrolyze the alkali metal chloride of the present invention. For example, the concentration of the alkali metal chloride aqueous solution in the anode chamber is maintained at 2.5 to 5N, the concentration of the alkali metal hydroxide in the cathode chamber is maintained at 20 to 50%, the temperature is 50 to 100℃, and the current density is 10 to 60A/dm2.
It is driven by.

【0033】[0033]

【実施例】以下に本発明の実施例を示すが、これによっ
て本発明が限定されるものではない。
[Examples] Examples of the present invention are shown below, but the present invention is not limited thereto.

【0034】[0034]

【実施例1,2,3  】CF2 =CF2 とCF2
 =CFOCF2 CF(CF3 )O(CF2 )2
 COOCH3 との共重合で得られた当量重量110
0の重合体Aを押出成型で厚さ25μのフィルムに成型
した。一方、CF2 =CF2 とCF2 =CFOC
F2 CFと(CF3 )O(CF2 )3 SO2 
Fとの共重合で得られた当量重量1050重合体Bを押
出成型で100μのフィルムに成型した。更にAのフィ
ルムとBのフィルムそして補強剤のPTFE製100デ
ニール糸の50メッシュ平織布を上記順番で重ねたのち
、加熱成型して積層フィルムを作製した。
[Example 1, 2, 3] CF2 = CF2 and CF2
=CFOCF2 CF(CF3)O(CF2)2
Equivalent weight obtained by copolymerization with COOCH3: 110
Polymer A of No. 0 was extrusion molded into a film with a thickness of 25 μm. On the other hand, CF2 = CF2 and CF2 = CFOC
F2 CF and (CF3 )O(CF2 )3 SO2
Polymer B having an equivalent weight of 1050 obtained by copolymerization with F was extrusion molded into a 100 μm film. Further, the film A, the film B, and a 50-mesh plain woven fabric made of 100-denier PTFE yarn as a reinforcing agent were layered in the above order, and then heated and molded to produce a laminated film.

【0035】また、CF2 =CF2 とCF2 =C
FOCF2 CF(CF3 )O(CF2 )3 SO
2 Fとの共重合で得られた当量重量1000の重合体
を加水分解して酸型したものを200g、エタノール4
500g/水4500gの混合得た。次いで加熱成型し
て作成した積層フィルムを加水分解して陽イオン交換膜
を得て、このイオン交換膜陽極側に面する層(Bフィル
ムの加水分解後の層:B層)の表面の周囲、ガスケット
付近に当たる部分に被覆用組成物をスプレー法で塗布・
乾燥して、1cm2 当り無機物粒子の量が0.2mg
、0.5mg、1mgの被覆を有するイオン交換膜を得
た。なお、当該部分以外の陽極面に付着している付着組
成物の量は0.05mg/cm2 以下であった。
[0035] Also, CF2 = CF2 and CF2 = C
FOCF2 CF(CF3)O(CF2)3SO
200 g of a polymer with an equivalent weight of 1000 obtained by copolymerization with F was hydrolyzed into an acid form, and ethanol 4
A mixture of 500 g/4500 g of water was obtained. Next, the laminated film created by heat molding is hydrolyzed to obtain a cation exchange membrane, and the periphery of the surface of the layer facing the anode side of this ion exchange membrane (layer after hydrolysis of B film: B layer), Apply the coating composition to the area near the gasket using a spray method.
When dried, the amount of inorganic particles is 0.2 mg per 1 cm2.
, 0.5 mg, and 1 mg of ion exchange membranes were obtained. Note that the amount of the adhering composition adhering to the anode surface other than the part concerned was 0.05 mg/cm2 or less.

【0036】膜の大きさは1270mm×2455mm
であり、被覆層は125mmの幅で周囲に施したので、
非塗布面の大きさは1020×2205mmであった。 このイオン交換膜のB層側に被覆層を有する面が陰極面
になるように、通電面1154mm×2354mmのフ
ィルタープレス型電解槽に組込み、陽極室の塩化ナトリ
ウム濃度を3. 5Nに、陰極室の水酸化ナトリウム濃
度を35%に保ちつつ温度90℃、電流密度40A/d
m2 で180日間電解を行った。
[0036] The size of the membrane is 1270 mm x 2455 mm.
, and the coating layer was applied around the periphery with a width of 125 mm, so
The size of the non-coated surface was 1020 x 2205 mm. This ion exchange membrane was assembled into a filter press type electrolytic cell with a conductive surface of 1154 mm x 2354 mm so that the surface with the coating layer on the B layer side became the cathode surface, and the sodium chloride concentration in the anode chamber was adjusted to 3. 5N, while maintaining the sodium hydroxide concentration in the cathode chamber at 35%, at a temperature of 90°C and a current density of 40A/d.
Electrolysis was carried out at m2 for 180 days.

【0037】電解を停止し、取り出した膜の電槽上部の
ガスケット付近の膜断面を観察した結果、塩化ナトリウ
ムの結晶の析出はほとんどなく膜組織の破壊も微少であ
った。同様の部分の機械強度測定結果及び180日間の
平均電流効率を表1に示す。
When the electrolysis was stopped and the cross section of the membrane near the gasket at the top of the container was observed, it was found that there was almost no precipitation of sodium chloride crystals and there was only slight destruction of the membrane structure. Table 1 shows the mechanical strength measurement results of similar parts and the average current efficiency for 180 days.

【0038】[0038]

【比較例1】実施例−1においてBそうの表面の周囲、
ガスケット付近の当たる部分に被覆層を設けない以外は
実施例1と同様のイオン交換膜を実施例1と同様の電解
を行った。電解を停止し、取出した膜の電槽上部のガス
ケット付近の膜断面を観察した結果、塩化ナトリウムの
結晶の析出が認められた。水洗して塩化ナトリウムを除
去した後は空洞となっており、膜組織の破壊が起きてい
た。
[Comparative Example 1] Around the surface of B in Example-1,
The same ion exchange membrane as in Example 1 was subjected to electrolysis in the same manner as in Example 1 except that the coating layer was not provided in the area near the gasket. After stopping the electrolysis, the cross section of the membrane near the gasket at the top of the container was observed, and as a result, precipitation of sodium chloride crystals was observed. After washing with water to remove the sodium chloride, it was found to be hollow, indicating that the membrane structure had been destroyed.

【0039】同様の部分の機械強度測定結果及び180
日間の平均電流効率を表1に示す。
Mechanical strength measurement results of similar parts and 180
The daily average current efficiency is shown in Table 1.

【0040】[0040]

【比較例2,3】実施例1において、無機物粒子の被覆
量を0.05mg/cm2 、0.1mg/cm2 に
した以外は、実施例1と同様のイオン交換膜を実施例−
1と同様の電解を行った。電解を停止し、取出した膜の
電槽上部のガスケット付近の膜断面を観察した結果、塩
化ナトリウムの結晶の析出が認められた。水洗して塩化
ナトリウムを除去した後は空洞となっており、膜組織の
破壊が起きていた。
[Comparative Examples 2 and 3] The same ion exchange membrane as in Example 1 was used in Example 1, except that the amount of inorganic particles coated was 0.05 mg/cm2 and 0.1 mg/cm2.
Electrolysis similar to 1 was performed. After stopping the electrolysis, the cross section of the membrane near the gasket at the top of the container was observed, and as a result, precipitation of sodium chloride crystals was observed. After washing with water to remove the sodium chloride, it was found to be hollow, indicating that the membrane structure had been destroyed.

【0041】同様の部分の機械強度測定結果及び180
日間の平均電流効率を表1に示す。
Mechanical strength measurement results of similar parts and 180
The daily average current efficiency is shown in Table 1.

【0042】[0042]

【比較例4】実施例1において、無機物粒子の被覆量を
5mg/cm2 にした以外は実施例1と同様のイオン
交換膜を作製したが、装着前の膜取扱時に被覆層が剥離
した。
[Comparative Example 4] An ion exchange membrane was prepared in the same manner as in Example 1 except that the amount of inorganic particles coated was 5 mg/cm2, but the coating layer peeled off when the membrane was handled before installation.

【0043】[0043]

【実施例4】CF2 =CF2 とCF2 =CFOC
F2 CF(CF3 )O(CF2 )2COOCH3
 との共重合で得られた当量重量1100の重合体Aと
、CF2 =CF2 とCF2 =CFOCF2 CF
(CF3 )O(CF2 )2 SO2 Fとの共重合
で得られた当量重量1030の重合体Bを共押出成型し
、重合体Aの厚みが25μで、重合体Bの厚みが75μ
、合わせて100μのフィルムCを作製した。更に重合
体Bを押出成型して40μのフィルムDを作製した。フ
ィルムCとフィルムDの間に補強剤として、PTFE製
200デニール糸の18メッシュ平織布を加え積層フィ
ルムを作製した。但しフィルムCの平織布が接する側は
重合体Bの側である。重合体Bを加水分解して酸型した
もの200gをエタノール4500g/水4500gの
混合液に溶解し、これに酸化ジルコニウム800gを分
解させ被覆用組成物を得た。
[Example 4] CF2 = CF2 and CF2 = CFOC
F2 CF(CF3)O(CF2)2COOCH3
Polymer A with an equivalent weight of 1100 obtained by copolymerization with CF2 = CF2 and CF2 = CFOCF2 CF
Polymer B with an equivalent weight of 1030 obtained by copolymerization with (CF3)O(CF2)2SO2F was coextruded, and the thickness of polymer A was 25μ and the thickness of polymer B was 75μ.
, a film C having a total thickness of 100 μm was produced. Furthermore, Polymer B was extrusion molded to produce a 40μ film D. An 18 mesh plain woven fabric made of 200 denier PTFE yarn was added as a reinforcing agent between Film C and Film D to produce a laminated film. However, the side of film C that comes into contact with the plain woven fabric is the polymer B side. 200 g of the acid form obtained by hydrolyzing Polymer B was dissolved in a mixture of 4,500 g of ethanol/4,500 g of water, and 800 g of zirconium oxide was decomposed in this to obtain a coating composition.

【0044】積層フィルムで重合体Aが表層に存在する
面をA面、重合体Bが表層に存在する面をB面とする。 積層フィルムのB面に、電槽に組み込んだ場合、上下の
ガスケット付近に当たる部分に被覆用組成物を1cm2
 当り0.3mg(無機物粒子として0.24mg/c
m2 )になるようにスプレー法で塗布、乾燥した後、
加水分解してイオン交換膜を得た。膜の大きさは127
0mm×2455mmであり、陰極側、陽極側共に被覆
層を上下に125mmの幅で施したので、非塗装面の大
きさは1020mm×2455mmであった。非塗布面
はマスキング法によって塗布されないように工夫したが
、非塗装陽極面に付着していた被覆物の量は平均0.0
2mg/cm2 であった。
[0044] In the laminated film, the side on which polymer A is present in the surface layer is referred to as side A, and the side on which polymer B is present on the surface layer is referred to as side B. Apply 1 cm2 of coating composition to the B side of the laminated film in the area near the upper and lower gaskets when it is assembled into a battery case.
0.3mg per unit (0.24mg/c as inorganic particles)
m2) by spraying, and after drying,
An ion exchange membrane was obtained by hydrolysis. The size of the membrane is 127
The size of the non-painted surface was 1020 mm x 2455 mm because the coating layer was applied to both the cathode side and the anode side with a width of 125 mm on the top and bottom. Although we tried to prevent the uncoated surface from being coated by masking, the amount of coating that adhered to the uncoated anode surface was 0.0 on average.
It was 2 mg/cm2.

【0045】このイオン交換膜のA面が陰極側になるよ
うに実施例1と同様のフィルタープレス型電解槽に組み
込み、陽極室の塩化ナトリウム濃度を200g/lに、
陰極室の水酸化ナトリウム濃度を33%に保ちつつ温度
85〜90℃、電流密度15A/dm2 〜40A/d
m2 で180日間電解を行った。電解を停止し、取り
出した膜の電槽上部のガスケット付近の膜断面を観察し
た結果、塩化ナトリウムの結晶の析出は微量で膜組織の
破壊はほとんど起こっていなかった。
[0045] This ion exchange membrane was assembled into a filter press type electrolytic cell similar to that in Example 1 so that the A side was on the cathode side, and the sodium chloride concentration in the anode chamber was adjusted to 200 g/l.
While maintaining the sodium hydroxide concentration in the cathode chamber at 33%, the temperature is 85 to 90°C, and the current density is 15 A/dm2 to 40 A/d.
Electrolysis was carried out at m2 for 180 days. After stopping the electrolysis and observing the cross section of the membrane near the gasket at the top of the cell, we found that only a small amount of sodium chloride crystals had been deposited and there was almost no destruction of the membrane structure.

【0046】同様の部分の機械的強度測定結果及び18
0日間の平均電流効率を表2に示す。
Mechanical strength measurement results of similar parts and 18
Table 2 shows the average current efficiency for 0 days.

【0047】[0047]

【比較例5、6】A面及びA面とB面の両面の周辺部、
ガスケット付近に当たる部分に被覆用組成物を1cm2
 当り0.3mgになるように塗布した以外実施例4と
同様のイオン交換膜を用いて、実施例4と同様の電解を
行った。A面の非塗布面の付着物は平均0.02mg/
cm2 だった。取り出した膜の電槽上部のガスケット
付近の機械的強度及び180日間の平均電流効率を表2
に示す。
[Comparative Examples 5 and 6] Peripheral areas of side A and both sides of side A and side B,
Apply 1cm2 of coating composition to the area near the gasket.
Electrolysis was carried out in the same manner as in Example 4 using the same ion exchange membrane as in Example 4, except that the ion exchange membrane was applied in an amount of 0.3 mg per sample. The average amount of deposits on the non-coated side of A side is 0.02 mg/
It was cm2. Table 2 shows the mechanical strength of the removed membrane near the gasket at the top of the battery case and the average current efficiency for 180 days.
Shown below.

【0048】[0048]

【比較例7】周辺部、ガスケット付近に当たる部分に被
覆層を設けない以外は実施例4と同様のイオン交換膜を
用いて、実施例4と同様の電解を行った。取り出した膜
の電槽上部のガスケット付近の機械的強度及び180日
間の平均電流効率を表2に示す。
[Comparative Example 7] Electrolysis was performed in the same manner as in Example 4 using the same ion exchange membrane as in Example 4 except that the coating layer was not provided in the peripheral area and the area near the gasket. Table 2 shows the mechanical strength of the membrane taken out near the gasket at the top of the battery case and the average current efficiency for 180 days.

【0049】[0049]

【表1】[Table 1]

【0050】[0050]

【表2】[Table 2]

【0051】[0051]

【発明の効果】本発明は電解槽の塩素ガスの滞留し易い
部分に当たるイオン交換膜の陽極側に面する層に無機物
粒子層を被覆することによってイオン交換膜の局部的な
機械強度の低下を防ぐことができ、その結果イオン交換
膜の寿命か延長され安定した長期間の運転が可能となる
という効果を有している。
[Effects of the Invention] The present invention prevents the local mechanical strength of the ion exchange membrane from decreasing by coating the layer facing the anode side of the ion exchange membrane, which is the part of the electrolytic cell where chlorine gas tends to accumulate, with an inorganic particle layer. This has the effect of extending the life of the ion exchange membrane and enabling stable long-term operation.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施態様をしめすための、フィルター
プレス型電解槽においてイオン交換膜がガスケットを介
して電解槽枠で締め付けられている断面図である。図に
おいて、1電解槽枠、2ガスケット、3陽イオン交換膜
である。Aの部分はガスケットに挟まれており、電解槽
枠によってプレスされていない部分である。Bの部分は
周辺部、即ちガスケットより通電部側へ少なくとも幅1
0mm以内のゾーンである。
FIG. 1 is a cross-sectional view of an ion exchange membrane in a filter press type electrolytic cell that is fastened to an electrolytic cell frame via a gasket, showing an embodiment of the present invention. In the figure, there are 1 electrolytic cell frame, 2 gaskets, and 3 cation exchange membranes. Part A is sandwiched between the gaskets and is not pressed by the electrolytic cell frame. The part B is the peripheral part, that is, at least 1 width from the gasket to the current-carrying part side.
This is a zone within 0 mm.

【図2】図2は、実施例1〜3,比較例1〜3について
、180日通電後のA及びBの部分の引張伸度と陽極面
への被覆量との関係を示している。
FIG. 2 shows the relationship between the tensile elongation of portions A and B after 180 days of energization and the amount of coating on the anode surface for Examples 1 to 3 and Comparative Examples 1 to 3.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】陽イオン交換膜により陽極室と陰極室に分
離された電解槽において、アルカリ金属塩化物を電解す
るに際して電解槽の塩素ガスが滞留し易い部分に相当す
る陽イオン交換膜の陽極面側表面に、0.2〜5mg/
cm2以下の無機物粒子を含む層を被覆してなるアルカ
リ金属塩化物電解用陽イオン交換膜。
Claim 1: In an electrolytic cell separated into an anode chamber and a cathode chamber by a cation exchange membrane, the anode of the cation exchange membrane corresponds to a portion of the electrolytic cell where chlorine gas tends to remain when electrolyzing alkali metal chlorides. On the side surface, 0.2 to 5 mg/
A cation exchange membrane for alkali metal chloride electrolysis, which is coated with a layer containing inorganic particles of cm2 or less.
【請求項2】請求項1記載の膜を用いるアルカリ金属塩
化物電解方法。
2. An alkali metal chloride electrolysis method using the membrane according to claim 1.
JP3063068A 1991-03-27 1991-03-27 Ion exchange membrane for electrolysis of alkali metal chloride Withdrawn JPH04297591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3063068A JPH04297591A (en) 1991-03-27 1991-03-27 Ion exchange membrane for electrolysis of alkali metal chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3063068A JPH04297591A (en) 1991-03-27 1991-03-27 Ion exchange membrane for electrolysis of alkali metal chloride

Publications (1)

Publication Number Publication Date
JPH04297591A true JPH04297591A (en) 1992-10-21

Family

ID=13218660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3063068A Withdrawn JPH04297591A (en) 1991-03-27 1991-03-27 Ion exchange membrane for electrolysis of alkali metal chloride

Country Status (1)

Country Link
JP (1) JPH04297591A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668319A (en) * 2012-09-14 2014-03-26 旭化成化学株式会社 Ion exchange membrane, manufacturing method of ion exchange membrane, and electrolytic cell
WO2015184569A1 (en) * 2014-06-06 2015-12-10 山东东岳高分子材料有限公司 Ion-conducting membrane used in chlor-alkali industry and preparation method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668319A (en) * 2012-09-14 2014-03-26 旭化成化学株式会社 Ion exchange membrane, manufacturing method of ion exchange membrane, and electrolytic cell
CN103668319B (en) * 2012-09-14 2016-09-07 旭化成株式会社 Amberplex, the manufacture method of amberplex and electrolytic cell
WO2015184569A1 (en) * 2014-06-06 2015-12-10 山东东岳高分子材料有限公司 Ion-conducting membrane used in chlor-alkali industry and preparation method therefor

Similar Documents

Publication Publication Date Title
RU2385970C2 (en) Cation-exchange fluorinated membrane for electrolysis and method of making said membrane
US5183545A (en) Electrolytic cell with composite, porous diaphragm
US5168005A (en) Multiaxially reinforced membrane
RU1823884C (en) Method of preparing of alkaline metal hydroxide
EP3216896B1 (en) Ion exchange membrane for alkali chloride electrolysis and alkali chloride electrolysis apparatus
US4437952A (en) Coextruded multilayer cation exchange membranes
US4990228A (en) Cation exchange membrane and use
JP2688902B2 (en) Reinforced ion exchange membrane and method of making the same
US4969982A (en) Method for producing an alkali metal hydroxide and electrolytic cell useful for the method
EP0192261B1 (en) Multilayer cation exchange membrane
US4988364A (en) Coated cation exchange yarn and process
JP2533778B2 (en) Reinforced ion exchange membrane and method for producing the same
EP0094587B2 (en) Improved electrolytic cation exchange membrane
EP0388670B1 (en) Cation exchange reinforced membrane and process
JP3214571B2 (en) Fluorine ion exchange membrane
US4686120A (en) Multilayer cation exchange membrane
EP0327313B1 (en) Membrane electrolytic process for producing concentrated caustic
US4996098A (en) Coated cation exchange fabric and process
JP2504135B2 (en) Cation exchange membrane for electrolysis
JPH04297591A (en) Ion exchange membrane for electrolysis of alkali metal chloride
KR930005659B1 (en) Cation exchange membrane for electrolysis of alkali metal chloride
US4900408A (en) Membrane electrolytic process for producing concentrated caustic
EP0097646B1 (en) Coextruded multilayer cation exchange membranes
EP0069772B1 (en) Sacrificial reinforcement in cation exchange membrane
EP0385427A2 (en) Cation exchange membrane reinforced with a cation exchange fabric

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514