JPH04297002A - Superconducting coil - Google Patents

Superconducting coil

Info

Publication number
JPH04297002A
JPH04297002A JP62160880A JP16088087A JPH04297002A JP H04297002 A JPH04297002 A JP H04297002A JP 62160880 A JP62160880 A JP 62160880A JP 16088087 A JP16088087 A JP 16088087A JP H04297002 A JPH04297002 A JP H04297002A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid reservoir
internal
bubbles
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62160880A
Other languages
Japanese (ja)
Inventor
Hideshige Moriyama
英重 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62160880A priority Critical patent/JPH04297002A/en
Priority to JP62168027A priority patent/JPH0192800A/en
Publication of JPH04297002A publication Critical patent/JPH04297002A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To remove the bubbles of a refrigerant generated in an internal path quickly by interrupting a liquid reservoir formed to the side section of a superconducting wire and an outlet. CONSTITUTION:A liquid reservoir 10 as a plurality of grooves is formed to an insulating member 4b. The liquid reservoir 10 is connected to inlets 6 and internal paths 8, but it is interrupted previously from outlets 6. When a refrigerant is fed from the inlets 6, it flows into the internal paths 8 and the liquid reservoir 10. The refrigerant flowing into the liquid reservoir 10 cannot flow into outlets 9 directly, but advances toward the outputs 9 through the internal paths 8. The flow rate of the refrigerant in the internal paths 8 is increased. Accordingly, bubbles are easy to move together with the refrigerant and do not stay at one position even when the bubbles of the refrigerant are generated in the internal paths 8, thus stably maintaining a superconductive state.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は冷媒を強制循環させることにより、もしくは熱
対流させることにより冷却する超電導コイルに係り、例
えば超電導発電機の回転子コイルに関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a superconducting coil that is cooled by forced circulation of a refrigerant or by heat convection, and is used, for example, in a rotor of a superconducting generator. Regarding the coil.

(従来の技術) 上記超電導コイルについては例えば特公昭59−351
62が知られている。この種の超電導コイルについて第
3図を参照して説明する。第3図はドーナツ形の超電導
コイルの部分断面図を示す。(1a)(1b)は非磁性
金属の保持部材である。保持部材(1a)には溝状の空
間(2)が設けてあり、空間(2)は保持部材(1b)
によってふさがれている。この空間(2)には多重巻き
した超電導線(3)が納めてある。図の上部の超電導線
(3)と保持部材(1b)の間には絶縁部材(4a)が
装着してある。図の左右の超電導線(3)と保持部材(
1a)の間には絶縁部材(4b)が装着してある。図の
下部の超電導線(3)と保持部材(1a)の間には絶縁
部材(4c)が装着してある。隣接する超電導線(3)
の間には絶縁スペーサ(5)が装着してある。
(Prior art) Regarding the above-mentioned superconducting coil, for example, Japanese Patent Publication No. 59-351
62 are known. This type of superconducting coil will be explained with reference to FIG. FIG. 3 shows a partial cross-sectional view of a donut-shaped superconducting coil. (1a) and (1b) are holding members made of non-magnetic metal. A groove-shaped space (2) is provided in the holding member (1a), and the space (2) is provided in the holding member (1b).
is blocked by This space (2) houses a multi-wound superconducting wire (3). An insulating member (4a) is installed between the superconducting wire (3) and the holding member (1b) in the upper part of the figure. The superconducting wires (3) on the left and right in the figure and the holding members (
An insulating member (4b) is installed between 1a). An insulating member (4c) is installed between the superconducting wire (3) and the holding member (1a) at the bottom of the figure. Adjacent superconducting wire (3)
An insulating spacer (5) is installed between them.

次に冷媒を流すための構成について図の中央部および右
側部を参照して説明する、下部の保持部材(1a)およ
び絶縁部材(4c)には複数の孔および溝である入口(
6)が設けてある、絶縁部材(4c)には複数の溝であ
る側部通路(7)が設けてある。隣接する超電導線(3
)の間には、絶縁スペーサ(5)を装着したことにより
、複数の間隙である内部通路(8)が構成されている。
Next, the configuration for flowing the refrigerant will be explained with reference to the center and right side of the figure.The lower holding member (1a) and insulating member (4c) have a plurality of holes and grooves (
6), the insulating member (4c) is provided with side passages (7) in the form of a plurality of grooves. Adjacent superconducting wire (3
), internal passages (8), which are a plurality of gaps, are formed by installing insulating spacers (5).

この内部通路(8)は超電導線(3)の占積率を高める
ために狭くしてある。上部の保持部材(1b)および絶
縁部材(4a)には複数の孔および溝である出口(9)
が設けてある。
This internal passage (8) is narrowed to increase the space factor of the superconducting wire (3). The upper holding member (1b) and the insulating member (4a) are provided with a plurality of holes and grooves (9).
is provided.

(発明が解決しようとする問題点) 上記構成の従来の超電導コイルにおいては、図中に矢印
で示すように液体ヘリウムなどの冷媒を入口(6)より
供給し、出口(9)より回収すると、冷媒のほとんどが
広い側部通路(7)を素通りしてしまう。
(Problems to be Solved by the Invention) In the conventional superconducting coil having the above configuration, when a refrigerant such as liquid helium is supplied from the inlet (6) and recovered from the outlet (9) as shown by the arrow in the figure, Most of the refrigerant passes through the wide side passage (7).

狭い内部通路(8)には冷媒があまり流れないため、内
部通路(8)に冷却の妨げとなる気泡が発生すると、気
泡は一箇所に留まり易く、この気泡と接する超電導線(
3)は十分冷却されなくなることが問題になる。
Since not much refrigerant flows through the narrow internal passageway (8), if air bubbles that impede cooling occur in the internal passageway (8), the air bubbles tend to stay in one place, and the superconducting wire (
The problem with 3) is that it is not sufficiently cooled.

本発明は多重巻きした超電導線(3)の内部通路(8)
に冷媒の気泡が発生しても、気泡が速やかに除去される
ように構成した超電導コイルを提供することを目的とす
る。
The present invention provides an internal passageway (8) of a multi-wound superconducting wire (3).
An object of the present invention is to provide a superconducting coil configured such that even if air bubbles are generated in a refrigerant, the air bubbles are quickly removed.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明においては、第1図に示すように超電導線(3)
の側部に液溜め(10)を形成し、この液溜め(10)
と出口(9)とを遮断する。
(Means for solving the problem) In the present invention, as shown in FIG.
A liquid reservoir (10) is formed on the side of the liquid reservoir (10).
and the exit (9).

(作用) 上記のように構成することにより、冷媒は液溜め(10
)を素通りすることができなくなり、内部通路(8)を
流れるので、内部通路(8)に発生する気泡を動き易く
することができる。
(Function) By configuring as above, the refrigerant is transferred to the liquid reservoir (10
) and instead flows through the internal passageway (8), the bubbles generated in the internal passageway (8) can be made easier to move.

(実施例) 以下、本発明の一実施例について第1図を参照して説明
する。第1図は第3図と同様に超電導コイルの部分断面
図を示す。絶縁部材(4b)には複数の溝である液溜め
(10)が設けてる。液溜め(10)は入口(6)およ
び内部通路(8)に接続しているが、出口(9)とは遮
断してある。
(Example) Hereinafter, an example of the present invention will be described with reference to FIG. FIG. 1, like FIG. 3, shows a partial cross-sectional view of a superconducting coil. The insulating member (4b) is provided with a plurality of liquid reservoirs (10) which are grooves. The reservoir (10) is connected to the inlet (6) and the internal passageway (8), but is isolated from the outlet (9).

次に上記構成の作用について説明する。図中に矢印で示
すように、冷媒を入口(6)より供給すると、冷媒は内
部通路(8)および液溜め(10)に流れ込む。
Next, the operation of the above configuration will be explained. As shown by the arrow in the figure, when refrigerant is supplied from the inlet (6), the refrigerant flows into the internal passage (8) and the reservoir (10).

液溜め(10)に流れ込んだ冷媒は出口(9)へ直接流
れることができないため、内部通路(8)を経由して出
口(9)に向かう。すなわち、入口(6)より供給した
冷媒は必ず内部通路(8)を通る。
Since the refrigerant that has flowed into the liquid reservoir (10) cannot flow directly to the outlet (9), it heads to the outlet (9) via the internal passage (8). That is, the refrigerant supplied from the inlet (6) always passes through the internal passage (8).

以上説明したように冷媒は必ず内部通路(8)を通るこ
とから、内部通路(8)の冷媒流量が多くなるため、内
部通路(8)に冷媒の気泡が発生しても、気泡は冷媒と
共に動き易くなり、一箇所に留まることがない。
As explained above, since the refrigerant always passes through the internal passage (8), the flow rate of the refrigerant in the internal passage (8) increases. You become more mobile and don't stay in one place.

次に本発明の他の実施例について第2図を参照して説明
する。液溜め(10)については入口(6)に近い部分
を広くしてあり、出口(9)に近い部分を狭くしてある
。このように構成することにより、液溜め(10)の入
口(6)の近傍と出口(9)の近傍とより内部通路(8
)に流れ込むそれぞれの冷媒量を調整することができる
Next, another embodiment of the present invention will be described with reference to FIG. Regarding the liquid reservoir (10), the part near the inlet (6) is made wide, and the part near the outlet (9) is made narrow. With this configuration, the inner passageway (8) is closer to the vicinity of the inlet (6) and the vicinity of the outlet (9) of the liquid reservoir (10).
) can adjust the amount of refrigerant flowing into each.

なお、冷媒を入口(6)より供給し、出口(9)より空
間(2)の外(図に示していない)に流すためには、冷
媒を強制循環させるか熱対流させる。
Note that in order to supply the refrigerant from the inlet (6) and flow it outside the space (2) (not shown) from the outlet (9), the refrigerant is forced to circulate or undergo thermal convection.

〔発明の効果〕〔Effect of the invention〕

本発明の超電導コイルにおいては、隣接する超電導線の
間の通路(内部通路)の冷媒流量が多くなることから、
内部通路に冷媒の気泡が発生しても気泡は冷媒と共に動
き易い。このため、超電導線の一定箇所の冷却が気泡に
より長時間妨げられることがない。このように冷却性能
が安定するため、超電導状態を安定に維持することがで
きる。
In the superconducting coil of the present invention, since the flow rate of refrigerant in the passage (internal passage) between adjacent superconducting wires is increased,
Even if refrigerant bubbles occur in the internal passage, the bubbles tend to move together with the refrigerant. Therefore, cooling of a certain part of the superconducting wire is not obstructed by air bubbles for a long time. Since the cooling performance is thus stabilized, the superconducting state can be stably maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の超電導コイルの断面図、第
2図は本発明の他の実施例の超電導コイルの断面図、第
3図は従来の超電導コイルの断面図である。 1a、1b…保持部材 2…空間 3…超電導線 4a、4b、4c…絶縁部材5…絶縁ス
ペーサ 6…入口 7…側部通路 8…内部通路 9…出口 10…液溜め 代理人 弁理士 則近憲佑 同、弟子丸健
FIG. 1 is a cross-sectional view of a superconducting coil according to one embodiment of the present invention, FIG. 2 is a cross-sectional view of a superconducting coil according to another embodiment of the present invention, and FIG. 3 is a cross-sectional view of a conventional superconducting coil. 1a, 1b...Holding member 2...Space 3...Superconducting wire 4a, 4b, 4c...Insulating member 5...Insulating spacer 6...Inlet 7...Side passage 8...Inner passage 9...Outlet 10...Liquid reservoir agent Patent attorney Norichika Kensuke, Ken Deshimaru

Claims (1)

【特許請求の範囲】[Claims] 隣接する超電導線の間に通路を設けた多重巻き超電導線
を構成し、保持部材で所定の空間を構成し、該多重巻き
超電導線を該空間に納め、該通路に冷媒を流すようにし
た超電導コイルにおいて、該空間に該冷媒の入口および
出口を設け、該多重巻き超電導線と該保持部材の間に該
冷媒の液溜めを設け、該通路と該入口、出口および液溜
めとを接続し、該出口と該液溜めを遮断したことを特徴
とする超電導コイル。
A superconductor comprising a multi-wound superconducting wire in which a passage is provided between adjacent superconducting wires, a predetermined space is formed with a holding member, the multi-wound superconducting wire is housed in the space, and a coolant is allowed to flow through the passage. In the coil, an inlet and an outlet for the refrigerant are provided in the space, a reservoir for the refrigerant is provided between the multi-wound superconducting wire and the holding member, and the passage is connected to the inlet, the outlet, and the reservoir; A superconducting coil characterized in that the outlet and the liquid reservoir are isolated.
JP62160880A 1987-06-30 1987-06-30 Superconducting coil Pending JPH04297002A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62160880A JPH04297002A (en) 1987-06-30 1987-06-30 Superconducting coil
JP62168027A JPH0192800A (en) 1987-06-30 1987-07-06 Automatic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62160880A JPH04297002A (en) 1987-06-30 1987-06-30 Superconducting coil

Publications (1)

Publication Number Publication Date
JPH04297002A true JPH04297002A (en) 1992-10-21

Family

ID=15724369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62160880A Pending JPH04297002A (en) 1987-06-30 1987-06-30 Superconducting coil

Country Status (1)

Country Link
JP (1) JPH04297002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235940A1 (en) * 2017-06-23 2018-12-27 日本マグネティックス株式会社 Electromagnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235940A1 (en) * 2017-06-23 2018-12-27 日本マグネティックス株式会社 Electromagnet
JP2019009272A (en) * 2017-06-23 2019-01-17 日本マグネティックス株式会社 electromagnet

Similar Documents

Publication Publication Date Title
US4543503A (en) Ventilated end turns for rotor windings of a dynamoelectric machine
JP4180700B2 (en) Turbo generator
US3769948A (en) Cylinder head for a water-cooled internal combustion engine
EP0250980A1 (en) Ventilated end turns for rotor windings of a dynamoelectric machine
JPH0817549B2 (en) Coolant flow path structure for liquid cooling motor
US6844637B1 (en) Rotor assembly end turn cooling system and method
JP3737481B2 (en) Flow-through space block with deflector and method for improving generator coil end cooling
US4246503A (en) Gas flow cooling system for a rotary electric machine
US6740993B2 (en) Air-cooled electric rotary machine
KR930001775B1 (en) Apparatus for dispersing cooling gas under a support sleeve at one end of a turbo- alternator rotor excitation winding
US2791707A (en) Dynamoelectric machine conductor with internal fluid cooling passages
JPH04297002A (en) Superconducting coil
CN109644548B (en) Cooled plasma cutting systems and related systems and methods
US4447670A (en) High-current cryogenic leads
US5138294A (en) Electromagnetic induction device
US3457439A (en) Device for the cooling of rotating electrical machines of completely closed design
JPH0647500A (en) Device and method for magnetical limiting of molten metal
US4164974A (en) Liquid-cooled electromagnetic continuous casting mold
US4100439A (en) Apparatus for cooling the end zones of the lamination stacks of electric machines
US4311931A (en) Rotor for hydrogen-cooled rotary electric machines
JP2711353B2 (en) Power supply dies for wire cut electric discharge machines
US4518885A (en) Superconducting rotor with vapor cooled cryogenic leads having a regenerator portion
JPS605554Y2 (en) Outside iron transformer coil cooling system
JP2552734B2 (en) Evaporative cooling stationary induction device
JP2024506615A (en) Headers that guide fluid flow to and from the cooling channels of high-density motors