JPH04293241A - Manufacture of semiconductor substrate - Google Patents

Manufacture of semiconductor substrate

Info

Publication number
JPH04293241A
JPH04293241A JP5861691A JP5861691A JPH04293241A JP H04293241 A JPH04293241 A JP H04293241A JP 5861691 A JP5861691 A JP 5861691A JP 5861691 A JP5861691 A JP 5861691A JP H04293241 A JPH04293241 A JP H04293241A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
gettering
heat treatment
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5861691A
Other languages
Japanese (ja)
Other versions
JP2943369B2 (en
Inventor
Masaki Hirota
正樹 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3058616A priority Critical patent/JP2943369B2/en
Publication of JPH04293241A publication Critical patent/JPH04293241A/en
Application granted granted Critical
Publication of JP2943369B2 publication Critical patent/JP2943369B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To shorten manufacturing time, reduce cost as compared with the conventional IG method, lengthen gettering action, and reduce wafer contamination during a gettering process as compared with the conventional EG method, regarding a semiconductor substrate manufacturing method using gettering action. CONSTITUTION:The following are provided; a process wherein an amorphous layer 2 is formed in a semiconductor substrate 1 by ion implantation, and a process wherein a residual defect layer 3 is formed by heat tratment of rapid thermal annealing.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、半導体単結晶基板の
製造方法において、重金属や化合物等の汚染物質をゲッ
タリングする技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for gettering contaminants such as heavy metals and compounds in a method of manufacturing a semiconductor single crystal substrate.

【0002】0002

【従来の技術】半導体技術においては、プロセスの微細
化がますます進行しており、プロセスによる汚染と、そ
れに伴う素子動作不良が重要な問題になっている。ゲッ
タリングは、汚染物質を素子形成領域外へ拡散させるこ
とによって素子特性の安定化をはかり歩留りを向上させ
る技術である。従来のゲッタリング技術としては大別し
て2種類ある。一つはイントリンシック・ゲッタリング
(以下、IG方法と略記する。例えば特開昭63−51
646号公報に記載)と呼ばれる方法であり、CZ単結
晶中に含まれる格子間酸素の析出を利用するものである
。他の一つは、エクストリンシック・ゲッタリング(以
下、EG方法と略記する。例えば特開昭60−1197
33号公報に記載)と呼ばれる方法であり、基板に機械
的損傷等を与えてゲッタリングを行なうものである。
2. Description of the Related Art In semiconductor technology, process miniaturization is progressing more and more, and contamination caused by the process and associated malfunction of elements have become important problems. Gettering is a technique that stabilizes device characteristics and improves yield by diffusing contaminants outside the device formation region. Conventional gettering techniques can be broadly classified into two types. One is intrinsic gettering (hereinafter abbreviated as IG method. For example, JP-A-63-51
646), which utilizes the precipitation of interstitial oxygen contained in the CZ single crystal. The other method is extrinsic gettering (hereinafter abbreviated as EG method).
This is a method called ``reference method'' (described in Japanese Patent Application No. 33), in which gettering is performed by mechanically damaging the substrate.

【0003】上記のIG方法においては、基板にある格
子間酸素をうまく素子形成領域外に析出させる技術が必
要となる。通常は、低温熱処理による析出核形成と高温
熱処理による核形成の2つの熱処理を組み合わせること
によって行なうのであるが、低温熱処理は数十時間に及
ぶので、製造時間、工数、コスト的に問題がある。さら
に、引き上げた単結晶インゴット中の酸素濃度は変化す
るので、すべての基板に対して同様の効果を得るには、
高度に制御された引上げ技術と熱処理技術が必要となる
。逆に言うと効果を安定させるのが難しい。ただし、外
部から処理(成膜等)を行なわないので、クリーンな技
術といえる。
The above-mentioned IG method requires a technique for successfully depositing interstitial oxygen present in the substrate outside the device formation region. Usually, this is carried out by combining two heat treatments: precipitation nucleation by low-temperature heat treatment and nucleation by high-temperature heat treatment, but since low-temperature heat treatment lasts for several tens of hours, there are problems in terms of manufacturing time, man-hours, and cost. Furthermore, since the oxygen concentration in the pulled single crystal ingot varies, to obtain a similar effect for all substrates,
Highly controlled pulling and heat treatment techniques are required. Conversely, it is difficult to stabilize the effect. However, since no external processing (film formation, etc.) is performed, it can be said to be a clean technology.

【0004】一方、EG方法は、サンドブラストによる
機械的損傷やリン拡散、イオン注入、ポリSiやSi3
N4の裏面へのデポジット等によって半導体基板に機械
的な損傷あるいはストレスによる転位を与え、その転位
やダメージにコットレル効果によって重金属をゲッタリ
ングさせる方法である。このEG方法は、手軽に行なう
ことができ、かつ効果が当初は安定しているのであるが
、素子形成プロセスなどの熱処理を行なっていくうちに
ダメージが回復してしまい、ゲッタリング効果が長続き
しないという欠点がある。したがって、熱処理によって
回復しにくいダメージを形成することが、EG方法では
重要な要素となる。また、ポリSiやSi3N4層を形
成して行なうEG方法の場合には、裏面ばかりではなく
表面にも成膜されてしまうので、その後に剥離や洗浄の
工程が必要となるため、工程増となるばかりでなく、汚
染に対しても弱い方法である。
On the other hand, the EG method uses mechanical damage caused by sandblasting, phosphorus diffusion, ion implantation, poly-Si and Si3
This is a method in which the semiconductor substrate is mechanically damaged or dislocated due to stress by depositing N4 on the back surface, and heavy metals are gettered onto the dislocations or damage by the Cottrell effect. This EG method is easy to perform and the effect is stable at first, but as the heat treatment is performed during the element formation process, the damage is recovered and the gettering effect does not last long. There is a drawback. Therefore, creating damage that is difficult to recover from by heat treatment is an important factor in the EG method. In addition, in the case of the EG method, which is performed by forming a poly-Si or Si3N4 layer, the film is formed not only on the back side but also on the front side, so subsequent steps of peeling and cleaning are required, which increases the number of steps. Not only that, but it is also a method that is vulnerable to contamination.

【0005】[0005]

【発明が解決しようとする課題】上記のように、従来の
IG方法においては、製造時間、工数、コスト的に問題
があると共に、高度に制御された引上げ技術と熱処理技
術が必要であり、効果を安定させるのが難しいという問
題がある。また、従来のEG方法においては、■機械的
損傷、イオン注入損傷による方法の場合は、素子形成プ
ロセス時の熱処理によって損傷がすぐに回復してしまい
、ゲッタリングが長続きしない。■ポリSiやSi3N
4層を形成する方法では、表面の処理によってダメージ
の残留や汚染によって素子特性が悪化する、という問題
があった。
[Problems to be Solved by the Invention] As mentioned above, the conventional IG method has problems in terms of manufacturing time, man-hours, and cost, and requires highly controlled pulling technology and heat treatment technology. The problem is that it is difficult to stabilize the Furthermore, in the conventional EG method, (1) in the case of a method based on mechanical damage or ion implantation damage, the damage is quickly recovered by heat treatment during the element formation process, and gettering does not last long. ■Poly-Si and Si3N
The method of forming four layers had a problem in that element characteristics deteriorated due to residual damage and contamination caused by surface treatment.

【0006】この発明は、上記のごとき従来技術の問題
を解決するためになされたものであり、従来のIG方法
よりも製造時間が大幅に短く、低コストに出来、また、
従来のEG方法よりもゲッタリングの作用が長続きする
と共にゲッタプロセス中のウエハの汚染が少ない、ゲッ
タリング作用を備えた半導体基板の製造方法を提供する
ことを目的とする。
[0006] The present invention was made to solve the problems of the prior art as described above, and the manufacturing time is significantly shorter and the cost is lower than that of the conventional IG method.
It is an object of the present invention to provide a method for manufacturing a semiconductor substrate with a gettering effect, in which the gettering effect lasts longer than in the conventional EG method, and the wafer is less contaminated during the gettering process.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明においては、特許請求の範囲に記載するよう
に構成している。すなわち、本発明においては、半導体
基板中へ高濃度のイオン注入を行ない、非晶質(アモル
ファス)層を形成したのち、ラピッド・サーマル・アニ
ーリング(Rapid Thermal Anneal
ing:急速アニール、以下、RTAと略記する)を行
なうことにより、非晶質と結晶界面に残留欠陥を多く残
し、この残留欠陥をゲッターシンクの核にするように構
成したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention is constructed as described in the claims. That is, in the present invention, after performing high concentration ion implantation into a semiconductor substrate to form an amorphous layer, rapid thermal annealing is performed.
By performing rapid annealing (hereinafter abbreviated as RTA), many residual defects are left at the amorphous-crystalline interface, and these residual defects become the core of the getter sink.

【0008】[0008]

【作用】上記の工程によって非晶質層と結晶質の界面に
出来た残留欠陥は、その後のプロセス熱処理によっても
2次欠陥が成長するため欠陥が回復しない。そのためゲ
ッタリングの作用が長続きする。また、イオン注入とR
TAを行なうだけなので、ゲッタプロセス中のウエハの
汚染が他のEG方法に比べて少なくなる。
[Operation] The residual defects formed at the interface between the amorphous layer and the crystalline layer by the above process are not recovered even by subsequent process heat treatment because secondary defects grow. Therefore, the gettering effect lasts for a long time. In addition, ion implantation and R
Since only TA is performed, wafer contamination during the getter process is reduced compared to other EG methods.

【0009】[0009]

【発明の実施例】図1は、本発明の一実施例の工程を示
す断面図である。図1において、まず、(a)に示すご
とく、Siの単結晶基板1を用意する。この単結晶基板
1としては、大口径ウエハの場合にはCZ法によって作
られた基板が一般的である。次に、(b)に示すごとく
、単結晶基板1の裏面からSi、C等のIV族元素や基
板と同じ伝導型のドーパント、例えばn型基板の場合は
Sb+、As+等の大きく重い元素(Pでも可能)など
をイオン注入し、非晶質層2を形成する。次に、(c)
に示すごとく、RTA(RapidThermal A
nnealing)を行なう。温度は900℃〜110
0℃程度、時間は数十秒程度である。その結果、非晶質
層2と結晶質の界面に残留欠陥層3が残る。また、(d
)に示すごとく、その後のプロセス熱処理によっても2
次欠陥層4が成長することにより、残留欠陥はなかなか
回復しない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view showing the steps of an embodiment of the present invention. In FIG. 1, first, as shown in (a), a Si single crystal substrate 1 is prepared. As this single crystal substrate 1, in the case of a large diameter wafer, a substrate made by the CZ method is generally used. Next, as shown in (b), from the back side of the single crystal substrate 1, group IV elements such as Si and C, dopants of the same conductivity type as the substrate, for example, in the case of an n-type substrate, large and heavy elements such as Sb+ and As+ ( The amorphous layer 2 is formed by ion-implanting ions such as P (possibly even P). Next, (c)
As shown in the figure, RTA (Rapid Thermal A
nnealing). Temperature is 900℃~110℃
The temperature is about 0°C and the time is about several tens of seconds. As a result, a residual defect layer 3 remains at the interface between the amorphous layer 2 and the crystalline layer. Also, (d
), the subsequent process heat treatment also resulted in 2
Due to the growth of the secondary defect layer 4, the remaining defects are not easily recovered.

【0010】次に作用を説明する。ゲッタリングは、均
一に近い状態で存在している物質を逆濃度拡散させるこ
とであり、これを行なうためにコットレル(cottr
ell)効果を利用している。コットレル効果とは転位
が形成する歪場にCu、Feなどの重金属が引き寄せら
れることである。したがって、いかに効率的に転位を形
成し、安定化させるかがゲッタリング、特にEG方法の
場合に重要となる。シリコン基板中にイオン注入を行な
うと、注入イオンが格子サイトにあるSi原子と衝突し
てシリコン基板にダメージを与える。注入量が少ない場
合は点欠陥となるが、注入量が多くなるにつれてクラス
タ状となり、臨界ドーズ量(Si+の場合〜5×101
4/cm2)以上ではアモルファス状(図1の2)にな
る。この状態のウエハにRTAを行なう。温度は900
〜1100℃程度で、時間は多くても数十秒程度である
。このようなRTAを行なった場合には、非晶質層と結
晶層の間に残留欠陥(図1の3)が残る。これは、急速
、短時間の熱処理によって、再結晶化がランダムに進む
ために、界面付近に欠陥が残ってしまうからである。こ
のような欠陥は以後の熱処理によっても消えにくく、素
子形成のプロセス中に継続して残る。この欠陥付近に発
生する歪場へ格子間酸素が引き寄せられてSiO2を析
出させる。これによって発生した格子間シリコンがOS
F(OxidationInducet Stacki
ng Fault:酸化誘起積層欠陥)を発生させる。 これらの欠陥が総合してゲッターシンクとなって重金属
をゲッタリングさせる。特に、プロセスの低温化が進ん
でいる微細化プロセスでは、強力なゲッターシンクとし
て作用する。上記のような工程の結果、素子形成領域の
汚染物質を確実にゲッタリングすることが出来たため、
形成した素子の耐圧特性が向上した。特に、nチャネル
の素子の耐圧不良は、従来の60%から5%へと大幅に
減少し、明確な効果を確認することが出来た。
Next, the operation will be explained. Gettering is the reverse concentration diffusion of substances that exist in a nearly uniform state, and to do this, Cottrell
ell) effect is used. The Cottrell effect is that heavy metals such as Cu and Fe are attracted to the strain field formed by dislocations. Therefore, how to efficiently form and stabilize dislocations is important in gettering, especially in the case of the EG method. When ions are implanted into a silicon substrate, the implanted ions collide with Si atoms at lattice sites, damaging the silicon substrate. If the implantation amount is small, the defects will be point defects, but as the implantation amount increases, they will become cluster-like, reaching the critical dose (~5×101 for Si+).
4/cm2) or more, it becomes amorphous (2 in FIG. 1). RTA is performed on the wafer in this state. The temperature is 900
The temperature is about ~1100°C, and the time is about several tens of seconds at most. When such RTA is performed, residual defects (3 in FIG. 1) remain between the amorphous layer and the crystalline layer. This is because recrystallization proceeds randomly due to rapid and short-term heat treatment, leaving defects near the interface. Such defects are difficult to eliminate even by subsequent heat treatment, and remain continuously during the element formation process. Interstitial oxygen is attracted to the strain field generated near this defect and precipitates SiO2. The interstitial silicon generated by this is the OS
F(Oxidation Induce Stacki)
ng Fault: oxidation-induced stacking fault). These defects collectively act as a getter sink and cause heavy metals to getter. In particular, it acts as a powerful getter sink in the miniaturization process where the process temperature is becoming lower. As a result of the above process, we were able to reliably getter the contaminants in the element formation area.
The breakdown voltage characteristics of the formed device were improved. In particular, the breakdown voltage failure of n-channel devices was significantly reduced from 60% to 5%, and a clear effect could be confirmed.

【0011】図2および図3は、実際のシリコン基板内
部の結晶構造の電子顕微鏡写真(倍率約23000倍)
であり、図2はシリコン基板1にイオン注入し、RTA
を行なった後のウエハ断面の電子顕微鏡写真、図3はそ
の後に熱処理を施したウエハ断面の電子顕微鏡写真を示
す。図2には残留欠陥層3が、図3には2次欠陥層4が
明瞭に示されている。
FIGS. 2 and 3 are electron micrographs (magnification approximately 23,000 times) of the crystal structure inside an actual silicon substrate.
2, ions are implanted into the silicon substrate 1 and RTA is performed.
FIG. 3 shows an electron micrograph of a cross section of the wafer after the heat treatment. The residual defect layer 3 is clearly shown in FIG. 2, and the secondary defect layer 4 is clearly shown in FIG.

【0012】次に、図4は本発明の他の実施例の製造工
程を示す断面図である。この実施例は、非晶質層形成の
ためのイオン注入を数MeV程度の高エネルギーで行な
うことによって非晶質層2を裏面から深い位置に形成す
る。このようにすると非晶質層2と結晶層との界面が2
面出来るので、RTAを行なうことによって2つの残留
欠陥層3と3’が形成される。そのためより多くのゲッ
ターシンクを作ることが出来るので、より強力なゲッタ
リング作用を持たせることが出来る。また、イオンを深
く打ち込むことによってゲッターシンクと素子形成領域
を近づける効果もあり、それによってもさらに強力なゲ
ッタリング作用を得ることが出来る。
Next, FIG. 4 is a sectional view showing the manufacturing process of another embodiment of the present invention. In this embodiment, the amorphous layer 2 is formed at a deep position from the back surface by performing ion implantation for forming the amorphous layer at a high energy of about several MeV. In this way, the interface between the amorphous layer 2 and the crystal layer is 2
Two residual defect layers 3 and 3' are formed by performing RTA. Therefore, more getter sinks can be created, and a stronger gettering effect can be provided. In addition, by deeply implanting ions, there is an effect of bringing the getter sink and the element formation region closer together, which also makes it possible to obtain a stronger gettering effect.

【0013】次に、図5は、本発明の第3の実施例の製
造工程を示す断面図である。この実施例は、シリコン基
板1の表面から数MeV程度の高エネルギーのイオン注
入を行なうことによって表面の深い部分に非晶質層2を
形成し、RTAを行なって2層の残留欠陥層3と3’を
形成するものである。このように基板表面の素子形成領
域の下にゲッターシンクを形成すれば、ゲッターシンク
と素子形成領域との距離をさらに縮めることが出来る。
Next, FIG. 5 is a sectional view showing the manufacturing process of a third embodiment of the present invention. In this embodiment, an amorphous layer 2 is formed deep on the surface of a silicon substrate 1 by ion implantation with high energy of about several MeV from the surface, and two residual defect layers 3 are formed by RTA. 3'. By forming the getter sink under the element formation region on the substrate surface in this manner, the distance between the getter sink and the element formation region can be further reduced.

【0014】[0014]

【発明の効果】以上説明したように、本発明においては
、半導体基板にイオン注入によって非晶質層を形成し、
その後、ラピッド・サーマル・アニーリングによる熱処
理を行なって残留欠陥層を形成するように構成したこと
により、■欠陥層が後の素子形成プロセス時の熱処理に
よってもなかなか回復しにくく、従来のEG方法に比べ
てゲッタリング作用が長続きする。■IG方法に比べる
と非常に短い時間でできるために、コストダウンするこ
とが出来、かつIG方法よりも安定している。■ゲッタ
プロセス中のウエハの汚染が他のEG方法に比べて少な
い。等の優れた効果が得られる。また、図4に示した実
施例においては、欠陥層が2層になるため、ゲッタ作用
がより強力になる。また、図5に示した実施例において
は、ゲッターシンクと素子形成領域が近くなるため、ゲ
ッタリング作用がさらに強力になる、という効果が得ら
れる。
[Effects of the Invention] As explained above, in the present invention, an amorphous layer is formed in a semiconductor substrate by ion implantation,
After that, a heat treatment using rapid thermal annealing is performed to form a residual defect layer, which makes it difficult for the defect layer to be recovered by heat treatment during the subsequent device formation process, compared to the conventional EG method. The gettering effect lasts for a long time. ■Compared to the IG method, it can be done in a much shorter time, so costs can be reduced, and it is more stable than the IG method. ■ Wafer contamination during the getter process is less compared to other EG methods. Excellent effects such as these can be obtained. Further, in the embodiment shown in FIG. 4, since there are two defective layers, the gettering effect becomes stronger. Further, in the embodiment shown in FIG. 5, since the getter sink and the element formation region are located close to each other, the effect that the gettering effect becomes even stronger can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第1の実施例の製造工程を示す断面図
FIG. 1 is a sectional view showing the manufacturing process of a first embodiment of the present invention.

【図2】RTA後のシリコン基板内部の結晶構造の電子
顕微鏡写真を示す図。
FIG. 2 is a diagram showing an electron micrograph of the crystal structure inside the silicon substrate after RTA.

【図3】熱処理を行なった後のシリコン基板内部の結晶
構造の電子顕微鏡写真を示す図。
FIG. 3 is a diagram showing an electron micrograph of the crystal structure inside the silicon substrate after heat treatment.

【図4】本発明の第2の実施例の製造工程を示す断面図
FIG. 4 is a sectional view showing the manufacturing process of a second embodiment of the present invention.

【図5】本発明の第3の実施例の製造工程を示す断面図
FIG. 5 is a sectional view showing the manufacturing process of a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…シリコン基板 2…非晶質層 3、3’…残留欠陥層 4…2次欠陥層 1...Silicon substrate 2...Amorphous layer 3, 3'...Residual defect layer 4...Secondary defect layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板にイオン注入によって非晶質層
を形成する工程と、上記半導体基板にラピッド・サーマ
ル・アニーリングによる熱処理を行なって残留欠陥層を
形成する工程と、を有し、素子特性を悪化させる汚染物
質を上記残留欠陥層によってゲッタリングすることを特
徴とする半導体基板の製造方法。
1. A step of forming an amorphous layer on a semiconductor substrate by ion implantation, and a step of forming a residual defect layer by subjecting the semiconductor substrate to heat treatment by rapid thermal annealing. A method for manufacturing a semiconductor substrate, comprising the step of gettering contaminants that worsen the quality of the semiconductor substrate using the residual defect layer.
JP3058616A 1991-03-22 1991-03-22 Semiconductor substrate manufacturing method Expired - Lifetime JP2943369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3058616A JP2943369B2 (en) 1991-03-22 1991-03-22 Semiconductor substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3058616A JP2943369B2 (en) 1991-03-22 1991-03-22 Semiconductor substrate manufacturing method

Publications (2)

Publication Number Publication Date
JPH04293241A true JPH04293241A (en) 1992-10-16
JP2943369B2 JP2943369B2 (en) 1999-08-30

Family

ID=13089489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3058616A Expired - Lifetime JP2943369B2 (en) 1991-03-22 1991-03-22 Semiconductor substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP2943369B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125771A1 (en) * 2006-04-27 2007-11-08 Shin-Etsu Handotai Co., Ltd. Soi wafer manufacturing method
JP2010018513A (en) * 2008-07-09 2010-01-28 Commissariat A L'energie Atomique Method for purifying crystalline silicon substrate and process of manufacturing photovoltaic cell
CN110663096A (en) * 2017-07-19 2020-01-07 X-Vi株式会社 Compound semiconductor substrate and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180028A (en) * 1982-04-16 1983-10-21 Oki Electric Ind Co Ltd Treating method for semiconductor wafer
JPS6351646A (en) * 1986-08-21 1988-03-04 Fuji Photo Film Co Ltd Intrinsic gettering process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180028A (en) * 1982-04-16 1983-10-21 Oki Electric Ind Co Ltd Treating method for semiconductor wafer
JPS6351646A (en) * 1986-08-21 1988-03-04 Fuji Photo Film Co Ltd Intrinsic gettering process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125771A1 (en) * 2006-04-27 2007-11-08 Shin-Etsu Handotai Co., Ltd. Soi wafer manufacturing method
US7910455B2 (en) 2006-04-27 2011-03-22 Shin-Etsu Handotai Co., Ltd. Method for producing SOI wafer
JP2010018513A (en) * 2008-07-09 2010-01-28 Commissariat A L'energie Atomique Method for purifying crystalline silicon substrate and process of manufacturing photovoltaic cell
CN110663096A (en) * 2017-07-19 2020-01-07 X-Vi株式会社 Compound semiconductor substrate and method for manufacturing same
CN110663096B (en) * 2017-07-19 2023-06-06 X-Vi株式会社 Compound semiconductor substrate and method for producing same

Also Published As

Publication number Publication date
JP2943369B2 (en) 1999-08-30

Similar Documents

Publication Publication Date Title
US20080044669A1 (en) Method for Manufacturing Simox Substrate and Simox Substrate Obtained by the Method
JPS62208638A (en) Manufacture of semiconductor device
KR20070100119A (en) Method for manufacturing simox wafer and simox wafer obtained by this method
JP2005094006A (en) Method improving quality of defective semiconductor material
US7947571B2 (en) Method for fabricating a semiconductor on insulator substrate with reduced Secco defect density
JP2998330B2 (en) SIMOX substrate and method of manufacturing the same
JPH04293241A (en) Manufacture of semiconductor substrate
WO2016166930A1 (en) Method for manufacturing semiconductor device and method for evaluating semiconductor device
JP5200412B2 (en) Manufacturing method of SOI substrate
US6518150B1 (en) Method of manufacturing semiconductor device
JPH05235005A (en) Semiconductor substrate and manufacture thereof
JPH06216137A (en) Semiconductor device and manufacture thereof
JP4647732B2 (en) Manufacturing method of P / P-epitaxial wafer
JP4826993B2 (en) Method for producing p-type silicon single crystal wafer
JPH1098004A (en) Semiconductor device and manufacture thereof
JPS6326541B2 (en)
KR100545990B1 (en) How to remove metal impurities in silicon wafer
JPH1187258A (en) Manufacture of semiconductor device
JPH0590272A (en) Semiconductor device and manufacture thereof
JPH03201440A (en) Formation of rear distortion of semiconductor substrate
JP4531339B2 (en) Manufacturing method of semiconductor substrate
JPH01147830A (en) Manufacture of semiconductor device
JPH0645270A (en) Method for heat-treating semiconductor substrate
JPH04368131A (en) Manufacture of semiconductor device
JPH0235455B2 (en)